
Lecture 9 p.1

Faculty of Computer Science, Dalhousie University 3-Oct-2023
CSCI 4152/6509 — Natural Language Processing

Lecture 9: Similarity-based Text Classification

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– Guest speaker: Three project ideas
– IR evaluation measures review
– Recall-precision curve review
– Text classification review
– Evaluation measures for Text Classification review

10 Similarity-based Text Classification
In this section we will discuss a simple approach to text classification using similarity measures between test docu-
ment and training documents in different classes. We call these general approach the similarity-based classification.

Similarity-based Text Classification

– Aggregate training text for each class into a profile
– Aggregate testing text into another profile
– Classify according to profile similarity
– If a profile is a vector, we can use different similarity measures; e.g.,

– cosine similarity,
– Euclidean similarity, or
– some other type of vector similarity

10.1 Similarity-based Classification using Vector Space Model

There are different approaches to creating a vector from a document or a set of documents. We talked about the
Vector Space Model, according to which we can create boolean vectors, term frequency vectors, or tfidf vectors.
One can use the ‘word2vec’ model1 or another similar word-embedding model for translating words to vectors,
which can then be used to generate document vectors.

When it comes to the similarity measure between vectors, one common measure is the cosine similarity, based
on the cosine angle calculation between vectors in vector spaces. For two vectors a1 = (a1, a2, . . . , an) and
b1 = (b1, b2, . . . , bn) the cosine similarity between them is calculated using the formula:

cosine sim(a,b) =
a · b

||a|| · ||b||
=

∑n
i aibi√∑n

i a
2
i ·
√∑n

i b
2
i

=
a1b1 + a2b2 + . . . anbn√

a21 + a22 + . . . + a2n ·
√
b21 + b22 + . . . + b2n

The cosine similarity is always between 0 and 1, with numbers close to 0 meaning that the vectors are very different,
and numbers close to 1 meaning that the vectors are very similar.

1https://en.wikipedia.org/wiki/Word2vec

October 5, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

https://en.wikipedia.org/wiki/Word2vec
http://web.cs.dal.ca/~vlado/csci6509/

Lecture 9 p.2 CSCI 4152/6509

The Euclidean distance is another very common similarity measure. It comes form the point distance in the
Euclidean space; i.e., our usual physical space. It is usually applied to normalized vectors; i.e., vectors scaled to
length 1. The Euclidean distance formula is:

Euclidean sim(a,b) =

√√√√ n∑
i=1

(ai − bi)2 =
√

(a1 − b1)2 + (a2 − b2)2 + . . . (an − bn)2

10.2 Common N-Grams Method for Text Classification (CNG)

We will now take a closer look at a specific kind of text classification problem, called authorship attribution, and a
simple character n-grams based method that works well on this task, called the CNG method (Common N-Gram
analysis method). The method was initially published in 2003 and used in the authorship attribution task, but later
showed some good results on other tasks as well. Figure 2 illustrates the general authorship attribution problem.

Figure 2: Authorship Attribution Problem

CNG Method Overview

– Method based on character n-grams
– Language independent
– Based on creating n-gram based author profiles
– Similarity based (a type of kNN method—k Nearest Neighbours)
– Similarity measure:

∑
g∈D1∪D2

(
f1(g)− f2(g)

f1(g)+f2(g)
2

)2

=
∑

g∈D1∪D2

(
2 · (f1(g)− f2(g))

f1(g) + f2(g)

)2

(1)

where fi(g) = 0 if g 6∈ Di.

CSCI 4152/6509 Lecture 9 p.3

Example of Creating an Author Profile

_th 0.015

___ 0.013

the 0.013

he_ 0.011

and 0.007

_an 0.007

nd_ 0.007

ed_ 0.006

M a r l e y w a s d e a d : to begin with.

There is no doubt whatever about that...

(from Christmas Carol by Charles Dickens)

Mar

arl

rle

ley

ey_

y_w

_wa

was

...

n=3

L=5
sort by frequency

Preparing character n−gram profile (n=3, L=5)

The profile is created by collecting all character n-grams of certain size, sorting them according to the normalized
frequency; i.e., frequency obtained by taking n-grams count divided by the total number of n-grams; and keeping L
most frequent n-grams, where L is a positive integer called the profile length.

How to measure profile similarity?

CNG Similarity Measure

– Euclidean-style distance with relative differences, rather than absolute
– Example: instead of using 0.88− 0.80 = 0.10, we say it is about 10% difference, which is the same for 0.088

and 0.080
– To be symmetric, divide by the arithmetic average:

d(f1, f2) = Σn∈dom(f1)∪dom(f2)

(
f1(n)− f2(n)

f1(n)+f2(n)
2

)2

– dom(fi) is the domain of function fi, i.e., of the profile i

Motivation for Similarity Measure: The idea for this particular similarity measure comes from the standard
Euclidean distance: ∑

g∈D1∪D2

(f1(g)− f2(g))
2 (2)

However, the Euclidean distance would be dominated by the most frequent n-grams, since their frequency is orders
of magnitude higher than lower frequency n-grams. This is due to a Zipf’s-like distribution law for n-grams; i.e., a
power-law distribution of n-gram frequencies. To increase the impact of lower-frequency n-grams, we calculate

Lecture 9 p.4 CSCI 4152/6509

an Euclidean-style distance for relative n-gram frequency differences. This is how we obtain the CNG similarity
measure: ∑

g∈D1∪D2

(
f1(g)− f2(g)

f1(g)+f2(g)
2

)2

=
∑

g∈D1∪D2

(
2 · (f1(g)− f2(g))

f1(g) + f2(g)

)2

where fi(g) = 0 if g 6∈ Di. It is important that we take a union of the n-grams in profiles, rather than an intersection,
since taking an intersection would lead to a low distance value for profiles with small overlap, which are intuitively
dissimilar.

CNG Similarity Example

Let us consider an example of comparing two very simple documents, each one consisting of one line:

d1: the dog eat homework
d2: the cat eat homework

In other words, the first document d1 contains only the string ‘the dog eat homework” and the second
document d2 contains the string “the cat eat homework”. The two strings are not grammatical sentences
for simplicity reasons, although they may realistically occur after stemming grammatical sentences. If we collect
all character tri-grams from these strings, we will obtain the following trigrams from the first document:

the he_ e_d _do dog og_ g_e _ea eat
at_ t_h _ho hom ome mew ewo wor ork

If we sort the n-grams, count them, and normalize their frequency we obtain the following results:

Trigram count normalized frequency (f1)
_do 1 0.0555555555555556
_ea 1 0.0555555555555556
_ho 1 0.0555555555555556
at_ 1 0.0555555555555556
dog 1 0.0555555555555556
e_d 1 0.0555555555555556
eat 1 0.0555555555555556
ewo 1 0.0555555555555556
g_e 1 0.0555555555555556
he_ 1 0.0555555555555556
hom 1 0.0555555555555556
mew 1 0.0555555555555556
og_ 1 0.0555555555555556
ome 1 0.0555555555555556
ork 1 0.0555555555555556
t_h 1 0.0555555555555556
the 1 0.0555555555555556
wor 1 0.0555555555555556
sum 18 1.0

The list of frequencies is very simply since we have no repeated trigrams in this simple string. Similarly, for the
second string we obtain frequencies:

CSCI 4152/6509 Lecture 9 p.5

Trigram count normalized frequency (f2)
_ca 1 0.0555555555555556
_ea 1 0.0555555555555556
_ho 1 0.0555555555555556
at_ 2 0.111111111111111
cat 1 0.0555555555555556
e_c 1 0.0555555555555556
eat 1 0.0555555555555556
ewo 1 0.0555555555555556
he_ 1 0.0555555555555556
hom 1 0.0555555555555556
mew 1 0.0555555555555556
ome 1 0.0555555555555556
ork 1 0.0555555555555556
t_e 1 0.0555555555555556
t_h 1 0.0555555555555556
the 1 0.0555555555555556
wor 1 0.0555555555555556
sum 18 1.0

Since the documents are very short, we are not going to use the profile cut-off length L; i.e., we will use all n-grams.
In order to calculate the CNG distance, we now make a union of all n-grams and compare their frequencies. This is
how we obtain the following table:

Trigram f1 f2 (2(f1 − f2)/(f1 + f2))2

_ca 0 0.0555555555555556 4.0
_do 0.0555555555555556 0 4.0
_ea 0.0555555555555556 0.0555555555555556 0.0
_ho 0.0555555555555556 0.0555555555555556 0.0
at_ 0.0555555555555556 0.111111111111111 0.444444444444444
cat 0 0.0555555555555556 4.0
dog 0.0555555555555556 0 4.0
e_c 0 0.0555555555555556 4.0
e_d 0.0555555555555556 0 4.0
eat 0.0555555555555556 0.0555555555555556 0.0
ewo 0.0555555555555556 0.0555555555555556 0.0
g_e 0.0555555555555556 0 4.0
he_ 0.0555555555555556 0.0555555555555556 0.0
hom 0.0555555555555556 0.0555555555555556 0.0
mew 0.0555555555555556 0.0555555555555556 0.0
og_ 0.0555555555555556 0 4.0
ome 0.0555555555555556 0.0555555555555556 0.0
ork 0.0555555555555556 0.0555555555555556 0.0
t_e 0 0.0555555555555556 4.0
t_h 0.0555555555555556 0.0555555555555556 0.0
the 0.0555555555555556 0.0555555555555556 0.0
wor 0.0555555555555556 0.0555555555555556 0.0
sum 36.444444444444444

Hence, the CNG distance between documents d1 and d2 is 36.444444444444444.

Lecture 9 p.6 CSCI 4152/6509

Classification using CNG

– Create profile for each class using training text
– done by merging all texts in each class into one long document
– another option: centroid of profiles of individual documents

– Create profile for the test document
– Assign class to the document according to the closest class profile according to the CNG distance

10.3 Edit Distance

The CNG similarity is one way of measuring text similarity, which is quite robust to typos, morphological variations,
and similar general string differences. It also somewhat captures word ordering and punctuation, since n-grams
can span two words. These characteristics are particularly noticable when comparing this similarity to the standard
bag-of-words approach, which may or may not use stemming, and which relies on cosine similarity. Another
similarity measure that is very string-oriented, with a similar set of characteristics, is the edit distance.

Slide notes:

Edit Distance: Introduction
– Edit distance is a similarity measure convenient for words and

short texts, robust for typos and morphological differences
– Tends to be too expensive for longer texts
– Consider typical errors that cause typos:

– there→ thre (missed a letter)
– there→ theare (inserted an extra letter)
– there→ yhere (mistyped a letter)

– Task: find a word in lexicon most likely to produce incorrect word
found in text

Slide notes:

Edit Distance: Brute Force Approaches
– one approach: search lexicon and try deleting, inserting, and

replacing each of the letters, and compare with mistyped word
– this is already quite expensive, but what with multiple errors?
– Can we find the minimal number of edit operations (deletes,

inserts, or substitutions) that would lead from a source string s to
the target string t?

– This is minimal edit distance — it always exists because we can
always delete |s| letters and insert |t| letters, so it is always
≤ |s|+ |t|

Slide notes:

Edit Distance: Properties
– Reflexive: d(s, t) = 0 if and only if s = t
– Symmetric: d(s, t) = d(t, s), because edit operations are

reversible
– Transitive: d(s, t) + d(t, v) ≥ d(s, v)
– Can be parametrized with cost d(c), cost i(c), cost s(c, d) for all

characters c and d; positive cost functions with exception
cost s(c, c) = 0

– If cost is 1 for delete and insert, and 2 for substitute operations, it
is also known as the Levenshtein distance [JM] (all cost= 1
according to some sources)

CSCI 4152/6509 Lecture 9 p.7

Slide notes:

Edit Distance: Dynamic Programming Idea
– calculate optimal distance between s = xe and t = yf using

optimal distances between xe and y, x and yf , and x and y

Slide notes:

Slide notes:

Lecture 9 p.8 CSCI 4152/6509

Slide notes:

Edit Distance Algorithm

Algorithm EditDistance(s,t)
n = len(s); m = len(t)
d[m+1,n+1] - initialize to 0s
for i=1 to n do d[0,i] = d[0,i-1] + cost_d(s[i-1])
for j=1 to m do d[j,0] = d[j-1,0] + cost_i(t[j-1])
for j=1 to m do

for i=1 to n do
d[j,i] = min(d[j-1,i-1] + cost_s(s[i-1],t[j-1]),

d[j-1,i] + cost_i(t[j-1]),
d[j,i-1] + cost_d(s[i-1]))

return d[m,n]

	Similarity-based Text Classification
	Similarity-based Classification using Vector Space Model
	Common N-Grams Method for Text Classification (CNG)
	Edit Distance

