Natural Language Processing CSCI 4152/6509 — Lecture 9 Similarity-based Text Classification

Instructors: Vlado Keselj Time and date: 16:05 – 17:25, 3-Oct-2023 Location: Rowe 1011

Previous Lecture

- Guest speaker: Three project ideas
- IR evaluation measures review
- Recall-precision curve review
- Text classification review
- Evaluation measures for Text Classification review

Similarity-based Text Classification

- Aggregate training text for each class into a profile
- Aggregate testing text into another profile
- Classify according to profile similarity
- If a profile is a vector, we can use different similarity measures; e.g.,
 - cosine similarity,
 - Euclidean similarity, or
 - some other type of vector similarity

• • = • • = •

CNG Method for Text Classification

- A simple method, initially used for authorship attribution
- Authorship attribution problem:

CNG Method Overview

- Method based on character n-grams
- Language independent
- Based on creating n-gram based author profiles
- Similarity based (a type of kNN method—k Nearest Neighbours)
- Similarity measure:

$$\sum_{g \in D_1 \cup D_2} \left(\frac{f_1(g) - f_2(g)}{\frac{f_1(g) + f_2(g)}{2}} \right)^2 = \sum_{g \in D_1 \cup D_2} \left(\frac{2 \cdot (f_1(g) - f_2(g))}{f_1(g) + f_2(g)} \right)^2$$
(1)

where $f_i(g) = 0$ if $g \notin D_i$.

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that... (from Christmas Carol by Charles Dickens)

- 4 週 ト - 4 三 ト - 4 三 ト

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that... (from Christmas Carol by Charles Dickens)

n=3

Mar

イロト イヨト イヨト

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that... (from Christmas Carol by Charles Dickens)

n=3 Mar **arl**

Preparing character n–gram profile (n=3, L=5)

Ma**rle**y was dead: to begin with. There is no doubt whatever about that... (from Christmas Carol by Charles Dickens)

n=3
Mar
arl
rle

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that... (from Christmas Carol by Charles Dickens)

n=3
Mar
arl
rle
ley

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that... (from Christmas Carol by Charles Dickens)

n=3						
Mar						
arl						
rle						
ley						
ey_						

Preparing character n–gram profile (n=3, L=5)

Marle**y w**as dead: to begin with. There is no doubt whatever about that... (from Christmas Carol by Charles Dickens)

n=3						
Mar						
arl						
rle						
ley						
ey_						
y_w						

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that...

(from Christmas Carol by Charles Dickens)

<i>n=3</i>
Mar
arl
rle
ley
ey_
Y_₩
_wa
was

イロト イヨト イヨト

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that...

(from Christmas Carol by Charles Dickens)

Preparing character n–gram profile (n=3, L=5)

Marley was dead: to begin with. There is no doubt whatever about that...

(from Christmas Carol by Charles Dickens)

A B A A B A

How to measure profile similarity?

CSCI 4152/6509, Vlado Keselj

16 / 27

3

A B F A B F

CNG Similarity Measure

- Euclidean-style distance with relative differences, rather than absolute
- Example: instead of using 0.88 0.80 = 0.10, we say it is about 10% difference, which is the same for 0.088 and 0.080
- To be symmetric, divide by the arithmetic average:

$$d(f_1, f_2) = \sum_{n \in \mathsf{dom}(f_1) \cup \mathsf{dom}(f_2)} \left(\frac{f_1(n) - f_2(n)}{\frac{f_1(n) + f_2(n)}{2}} \right)^2$$

• $dom(f_i)$ is the domain of function f_i , i.e., of the profile i

0

Classification using CNG

• Create profile for each class using training text

- done by merging all texts in each class into one long document
- another option: centroid of profiles of individual documents
- Create profile for the test document
- Assign class to the document according to the closest class profile according to the CNG distance

Edit Distance Another text similarity measure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Edit Distance: Introduction

- Edit distance is a similarity measure convenient for words and short texts, robust for typos and morphological differences
- Tends to be too expensive for longer texts
- Consider typical errors that cause typos:
 - there \rightarrow thre (missed a letter)
 - there \rightarrow theare (inserted an extra letter)
 - there \rightarrow yhere (mistyped a letter)
- Task: find a word in lexicon most likely to produce incorrect word found in text

Edit Distance: Brute Force Approaches

- one approach: search lexicon and try deleting, inserting, and replacing each of the letters, and compare with mistyped word
- this is already quite expensive, but what with multiple errors?
- Can we find the minimal number of edit operations (deletes, inserts, or substitutions) that would lead from a source string s to the target string t?
- This is minimal edit distance it always exists because we can always delete |s| letters and insert |t| letters, so it is always $\leq |s| + |t|$

• • = • • = •

Edit Distance: Properties

- Reflexive: d(s,t) = 0 if and only if s = t
- Symmetric: d(s,t) = d(t,s), because edit operations are reversible
- Transitive: $d(s,t) + d(t,v) \ge d(s,v)$
- Can be parametrized with cost_d(c), cost_i(c), cost_s(c, d) for all characters c and d; positive cost functions with exception cost_s(c, c) = 0
- If cost is 1 for delete and insert, and 2 for substitute operations, it is also known as the Levenshtein distance [JM] (all cost= 1 according to some sources)

くほと くほと くほと

Edit Distance: Dynamic Programming Idea

 calculate optimal distance between s = xe and t = yf using optimal distances between xe and y, x and yf, and x and y

Efficient calculation of Min. Edit Distance - a dynamic programming approach source string Example: there thre 17 ythre

э

	→	+	l h	r	e	
٩						
γ						
ł						
h						
r						
e						

	→		+		l h		٩		<u> </u>		<u>e</u>	
1		0	1	1	2	2	3	3	4	Ş	5	5
γ		÷+++	1	2	2 Z	3 2	っ い	43	4 5	5 4	5 5	6 5
ł		2 2	1	2	2 2	3 2	3	4 3	4	5 4	5 5	6 5
h		う う	3 4	2 2	3	3	3 2	4 Z	43	۲۶ ۳۹	5 4	6
r		5 5	4 5	3 3	3 4	2 2	2 3	3 Z	2 3	4 Z	4 3	5 3
e		5 5	5	4 4	4 5	3 3	2	3 2	33	3	2	5 2

Edit Distance Algorithm

```
Algorithm EditDistance(s,t)
n = len(s); m = len(t)
d[m+1,n+1] - initialize to Os
for i=1 to n do d[0,i] = d[0,i-1] + cost_d(s[i-1])
for j=1 to m do d[j,0] = d[j-1,0] + cost_i(t[j-1])
for j=1 to m do
  for i=1 to n do
    d[j,i] = min(d[j-1,i-1] + cost_s(s[i-1],t[j-1])),
                  d[j-1,i] + cost_i(t[j-1]),
                  d[j,i-1] + cost_d(s[i-1]) )
return d[m,n]
```

イロト イポト イヨト イヨト 二日