Natural Language Processing CSCI 4152/6509 — Lecture 8 Text Mining Review

Instructors: Vlado Keselj

Time and date: 16:05 – 17:25, 28-Sep-2023

Location: Rowe 1011

Previous Lecture

- P0 reminder: due this Friday by midnight, submission by email
 - Some possible sources of data and ideas for projects: Kaggle, TREC, PAN workshops, etc.
 - Guest speaker next lecture
- N-grams definition
- Extracting and Analyzing n-grams in Perl
- Elements of Information Retrieval
- Vector space model

Example: tfidf Weights

Consider documents:

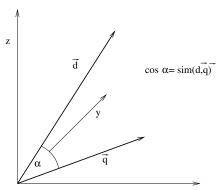
d1: dog cat dog dog

d2: book sky dog book

d3: cat cat sky cat

Cosine Similarity Measure

$$\mathit{sim}(q,d) = \frac{\sum_{i=1}^{m} w_{i,q} w_{i,d}}{\sqrt{\sum_{i=1}^{m} w_{i,q}^2} \cdot \sqrt{\sum_{i=1}^{m} w_{i,d}^2}} = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| \cdot |\vec{d}|}$$



Side Note: Lucene and IR Book

- Lucene search engine
- http://lucene.apache.org
- Open-source, written in Java
- Uses the vector space model
- Another interesting link: Introduction to IR on-line book covers well text classification:

```
http:
```

//nlp.stanford.edu/IR-book/html/htmledition/irbook.html

IR Evaluation: Precision and Recall

 Precision is the percentage of true positives out of all returned documents; i.e.,

$$P = \frac{TP}{TP + FP}$$

 Recall is the percentage of true positives out of all relevant documents in the collection; i.e.,

$$R = \frac{TP}{TP + FN}$$

Precision and Recall: Venn Diagram

F-measure

• **F-measure** is a weighted harmonic mean between Precision and Recall:

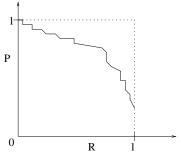
$$F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

• We usually set $\beta = 1$, in which case we have:

$$F = \frac{2PR}{P+R}$$

Recall-Precision Curve

- A more appropriate way to evaluate a ranked list of relevant documents is the Recall-Precision Curve
- Connects (recall, precision) points for the sets of 1, 2,
 ... most relevant documents on the list
- It typically looks as follows:



Recall-Precision Curve Example

Results returned by a search engine (8 rel.doc.total):

- 1. relevant
- 2. relevant
- 3 relevant
- 4. not relevant
- 5. relevant
- 6. not relevant
- 7. relevant
- 8. not relevant
- 9. not relevant
- 10. relevant
- 11. not relevant
- 12. not relevant

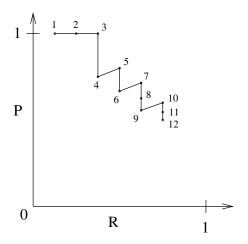
Task 1: Precision, Recall and F-measure

• Assuming that the total number of relevant documents in the collection is 8, calculate precision, recall, and F-measure ($\beta = 1$) for the returned 12 results.

Task 2: Recall-Precision Curve

- Task: Draw the recall-precision curve for these results
- First step: Form sets of n initial documents, and look at their relevance:
 - Set 1: $\{R\}$ (R = 0.125, P = 1)
 - Set 2: $\{R, R\}$ (R = 0.25, P = 1)
 - Set 3: $\{R, R, R\}$, (R = 0.375, P = 1)
 - Set 4: $\{R, R, R, NR\}$, (R = 0.375, P = 0.75)
 - Set 5: $\{R, R, R, NR, R\}$, (R = 0.5, P = 0.8)
 - ...etc.

Recall-Precision Curve



Task 3: Interpolated Recall-Precision Curve

- Task: Draw interpolated Recall-Precision curve
- Formula:

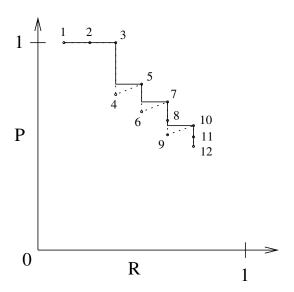
$$IntPrec(r) = \max_{k,R(k) \ge r} P(k)$$

Based on the previous Task:

$$0 \le r \le R_4 = \frac{3}{8} = 0.375 \Rightarrow IntPrec(r) = 1$$

 $R_4 < r \le R_6 = \frac{4}{8} = 0.5 \Rightarrow IntPrec(r) = 0.8$
 $R_6 < r \le R_9 = \frac{5}{8} = 0.625 \Rightarrow IntPrec(r) = 5/7 \approx 0.714285714$
 $R_9 < r \le R_{12} = \frac{6}{8} = 0.75 \Rightarrow IntPrec(r) = 0.6$

Interpolated Recall-Precision Curve



Interpolated R-P Curve at 11 Standard Levels

Some Other Similar Measures

Fallout

$$Fallout = \frac{FP}{FP + TN}$$

Specificity

$$Specificity = \frac{TN}{TN + FP}$$

Sensitivity

$$Sensitivity = \frac{TP}{TP + FN} \quad (= R)$$

 Sensitivity and Specificity: useful in classification and contexts such as medical tests

Some Text Mining Tasks

- Text Classification
- Text Clustering
- Information Extraction
- And some new and less prominent tasks:
 - Text Visualization
 - Filtering tasks, Event Detection
 - Terminology Extraction

Text Classification

- It is also known as Text Categorization.
- Additional reading: Manning and Schütze, Ch 16: Text Categorization
- Problem definition:
 Classify a document into a class (category) of documents
- Typical approach:
 Use of Machine Learning to learn classification model from previously labeled documents
- An example of supervised learning

Types of Text Classification

- topic categorization
- sentiment classification
- authorship attribution and plagiarism detection
- authorship profiling (e.g., age and gender detection)
- spam detection and e-mail classification
- encoding and language identification
- automatic essay grading

More specialized example: dementia detection using spontaneous speech

Creating Text Classifiers

- Can be created manually
 - typically rule-based classifier
 - example: detect or count occurrences of some words, phrases, or strings
- Another approach: make programs that *learn* to classify
 - In other words, classifiers are generated based on labeled data
 - supervised learning

Evaluation Measures for Text Classification

- Contingency table (confusion matrix) and Accuracy
- Example (classes A, B, and C):

		Gold standard			
		\overline{A}	B	C	
Model	\overline{A}	5	1	1	7
classification	\overline{B}	3	10	2	15
	\overline{C}	0	2	10	12
		8	13	13	34

• Accuracy: percentage of correct classifications; in the example, $=25/34\approx0.7353=73.53\%$

Per class: Precision, Recall, and F-measure

For each class: Yes = in class, No = not in class
 Yes is correct | No is correct

	Yes is correct	No is correct
Yes assigned	a	b
No assigned	c	d
		•

• precision $(\frac{a}{a+b})$, recall $(\frac{a}{a+c})$, fallout $(\frac{b}{b+d})$, F-measure:

$$F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- If $\beta = 1 \Rightarrow$ Precision and Recall treated equally
- macro-averaging (equal weight to each class) and micro-averaging (equal weight to each object) (2×2 contingency tables vs. one large contingency table)

Example: Classification Results

		Gold standard			
		A1	A2	А3	
System	A1	5	1	1	7
response	A2	3	10	2	15
	A3	0	2	10	12
		8	13	13	34

Or, we can create contingency tables for each class separately:

	Gold		
	A1	not A1	
A1	5	2	7
not A1	3	24	27
	8	26	34

	Gold		
	A2	not A2	
A2	10	5	15
not A2	3	16	19
	13	21	34

	Gold		
	А3	not A3	
A3	10	2	12
not A3	3	19	22
	13	21	34

The overall accuracy can be calculated using the overall table;

$$Accuracy = \frac{5 + 10 + 10}{34}$$

Per-class precisions are:

$$P_{A1} = \frac{5}{7}$$
 $P_{A2} = \frac{10}{15}$ $P_{A3} = \frac{10}{12}$

Per-class recalls are:

$$R_{A1} = \frac{5}{8}$$
 $R_{A2} = \frac{10}{13}$ $R_{A3} = \frac{10}{13}$

Macro-averaged precision, recall, and F-measure are:

$$P_{\textit{macro}} = \frac{5/7 + 10/15 + 10/12}{3} \quad R_{\textit{macro}} = \frac{5/8 + 10/13 + 10/13}{3}$$

$$F_{\textit{macro}} = \frac{2 \cdot P_{\textit{macro}} \cdot R_{\textit{macro}}}{P_{\textit{macro}} + R_{\textit{macro}}}$$

To calculate micro-averaged precision, recall, and F-measure, we calculate cumulative per-class table:

	Gol		
	Α	not A	
Α	25	9	34
not A	9	59	68
	34	68	102

and then we calculate the micro-averaged measures:

$$P_{\textit{micro}} = \frac{25}{34} \quad R_{\textit{micro}} = \frac{25}{34} \quad F_{\textit{micro}} = \frac{2 \cdot P_{\textit{micro}} \cdot R_{\textit{micro}}}{P_{\textit{micro}} + R_{\textit{micro}}} = \frac{25}{34}$$

Evaluation Methods for Classification

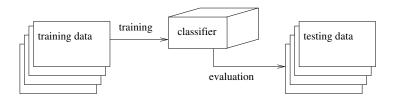
- General issues in classification
 - Underfitting and Overfitting
- Example with polynomial-based function learning
 - Underfitting and Overfitting

Evaluation Methods for Text Classifiers

- Training Error
- Train and Test
- N-fold Cross-validation

Train and Test

- Labeled data is divided into training and testing data
- Typically training data size : testing data size = 9 :
 1, sometimes 2 : 1



N-fold Cross-Validation

fold 1
fold 2
fold 3
...
fold n
fold n-1

training
classifier 2
evaluation

fold 2
fold 3

...

fold n-1
fold n

fold 1

fold 1

Text Clustering

- Text clustering is an interesting text mining task
- It is relevant to the course and a clustering task can be a project topic
- Since it is covered in some other courses, we will not cover it in much detail here
- Some notes are provided for your information