Faculty of Computer Science, Dalhousie University
 21-Sep-2023
 CSCI 4152/6509 - Natural Language Processing

 Lecture 6: Elements of Morphology

 Lecture 6: Elements of Morphology}

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05-17:25

Previous Lecture

- Regular expressions in Perl
- Use of special variables
- Backreferences, shortest match
- Text processing examples
- tokenization
- counting letters

We will look now at an implementation where letters and their frequencies are sorted by the frequency, from the highest-frequency letter to the lowest. We will also produce frequencies both as letter counts, and as normalized frequencies; i.e., as proportional frequencies of the letters out of 1 .

Letter Frequencies Modification (3)

```
#!/usr/bin/perl
# Letter frequencies
while (<>) {
    while (/[a-zA-Z]/) {
        my $l = $&; $_ = $';
        $f{lc $l} += 1; $tot ++;
    }
}
for (sort { $f{$b} <=> $f{$a} } keys %f) {
    print sprintf("%6d %.4lf %s\n",
                        $f{$_}, $f{$_}/$tot, $_); }
```


Output 3

```
    35697 0.1204 e
    28897 0.0974 t
    23528 0.0793 a
    23264 0.0784 ○
    20200 0.0681 n
    19608 0.0661 h
    18849 0.0635 i
    17760 0.0599 s
    152970.0516 r
```

```
14879 0.0502 d
12163 0.0410 1
    8959 0.0302 u
```


6 Elements of Morphology

- Reading: Section 3.1 in the textbook, "Survey of (Mostly) English Morphology"
- morphemes - smallest meaning-bearing units
- stems and affixes; stems provide the "main" meaning, while affixes act as modifiers
- affixes: prefix, suffix, infix, or circumfix
- cliticization - clitics appear as parts of a word, but syntactically they act as words (e.g., 'm, 're, 's)
- tokenization, stemming (Porter stemmer), lemmatization

The morphemes are the smallest meaning-bearing parts of a word. For example, the word cats contains two morphemes cat and s, the word unbelievably contains the four morphemes un, believ, ab, and $l y$, and the word unmorpholinguistically contains the six morphemes un, morpho, ling, uist, ical, and ly. It could be sometimes debatable what is the proper way of breaking a word into morphemes, but not having a clear correct answer is not uncommon in analysis of natural languages.

- suffix example: eats; prefix example: unbuckle; circumfix example from German: sagen (to say) and geesagt (said, past participle); infix example from Tagalog (Philipine language): hingi (borrow) and humingi
- stacking multiple affixes is possible: unbelievably = un-believe-able-y
- English typically allows up to 4 affixes, but some languages allow up to 10 affixes, such as Turkish. Such languages are are called agglutinative languages.
- cliticization is considered to be a morphological process
- Clitics appear as orthographic or phonological parts of the words, but syntactically they act as words.
- Clitic examples: 'm in I'm, 're in we're, possessive 's

Tokenization

- Text processing in which plain text is broken into words or tokens
- Tokens include non-word units, such as numbers and punctuation
- Tokenization may normalize words by making them lower-case or similar
- Usually simple, but prone to ambiguities, as most of the other NLP tasks

Tokenization is text processing in which the plain text is broken into words. It may not be a simple process, depending on the type of text and kind of tokens that we want to recognize.

Stemming is the type of word processing in which a word is mapped into its stem, which is a part of the word that represents the main meaning of the word. For example, foxes is mapped to the stem fox, or the word semantically is mapped to the stem semanti.

It is used in Information Retrieval due to the property that if two words have the same stem, they are typically semantically very related. Hence, if words in documents and queries are replaced by their stems, the resulting indices are smaller, and words in a query can be easily matched with their morphological variations.

Lemmatization is a word processing method in which a surface word form, i.e., the word form as it appears in text, is mapped to its lemma, i.e., the canonical form as it appears in a dictionary. For example, the word working would be mapped into the verb work, or the word semantically would be mapped to the lemma semantics.

6.1 Morphological Processes

A morphological process is a word transformation that happens as a regular language transformation. There are tree main morphological processes in English:

1. inflection,
2. derivation, and
3. compounding.
4. Inflection: is a transformation that transforms a word from one lexical class into another related word in the same class. The transformation is performed by adding or changing a suffix or prefix. It is highly regular transformation. Some inflection examples are: dog \rightarrow dogs, work \rightarrow works, work \rightarrow working, and work \rightarrow worked.

We will discuss more the concept of lexical class or part of speech class later, but for now you are probably familiar with the following lexical classes (or types of words): nouns, verbs, adjectives, adverbs, and maybe some other.

Inflection is so regular transformation that usually we do not find inflected variations of a word in a dictionary It is assumed that a reader of the dictionary will be able to derive these variations by herself. Similarly, we can frequently program inflection in a computer application rather than storing different variations of the word.
2. Derivation: is a transformation that transforms a word from one lexical class into a related word in a different class. Similarly to inflection, it is performed by adding or changing a suffix or prefix. There is also some regularity, but it is less regular than inflection. For example, a derivation is wide (adjective) \rightarrow widely (adverb), but a similar transformation old \rightarrow oldly is not valid. Some other examples are: accept (verb) \rightarrow acceptable (adjective), acceptable (adjective) \rightarrow acceptably (adverb), and teach (verb) \rightarrow teacher (noun).

There are exceptions where a derivation is used to transform a word in a lexical class to another word in the same class but it is a significantly a different word. For example, the transformation of the adjective red to redish is considered a derivation, rather than an inflection.

Since derivation is not as regular transformation as inflection, derived variations of a word are usually stored in a dictionary, and in a computer application we may want to store them in a lexicon, i.e., a word database, in many cases.

Below you can find a table with some more derivation examples:

Derivation type	Suffix	Example		
noun-to-verb	- -fy	glory	\rightarrow	glorify
noun-to-adjective	- -al	tide	\rightarrow	tidal
verb-to-noun (agent)	- -er	teach	\rightarrow	teacher
verb-to-noun (abstract)	- ance	delivery	\rightarrow	deliverance
verb-to-adjective	- able	accept	\rightarrow	acceptable
adjective-to-noun	- -ness	slow	\rightarrow	slowness
adjective-to-verb	$-i s e$	modern	\rightarrow	modernise (Brit.)
adjective-to-verb	$-i z e$	modern	\rightarrow	modernize (U.S.)
adjective-to-adjective	$-i s h$	red	\rightarrow	reddish
adjective-to-adverb	$-l y$	wide	\rightarrow	widely

3. Compounding: is a transformation where two or more words are combined, usually by concatenation, to create a new word. Some examples are: news + group \rightarrow newsgroup, down + market \rightarrow downmarket, over + take \rightarrow overtake, play + ground \rightarrow playground, and lady + bug \rightarrow ladybug.

7 Characters, Words, and N-grams

7.1 Zipf's Law

| | Word | Freq (f) | Rank (r) |
| :--- | :---: | :---: | :---: | :---: |
| | the | 3331 | 1 |
| | and | 2971 | 2 |
| - We looked at code for counting letters, words, and | a | 1776 | 3 |
| sentences | to | 1725 | 4 |
| - We can look again at counting words; e.g., in "Tom | was | 1440 | 5 |
| Sawyer": | it | 1161 | 6 |
| - We can observe: Zipf's law (1929): $r \times f \approx$ const. | I | 1030 | 7 |
| | that | 959 | 8 |
| | he | 924 | 9 |
| | in | 906 | 10 |
| | 's | 834 | 12 |
| | you | 780 | 13 |
| | his | 772 | 14 |
| | Tom | 763 | 15 |
| | 't | 654 | 16 |
| | \vdots | \vdots | |

One of the basic tasks that we can do using stream-oriented processing of language is to collect statistical values on letters, words, sentences, or similar tokens. We saw previously the code for finding frequency of different letters, and these data can be useful for example for computer identification of a natural language. We can do similar counting but this time of word frequencies. The table above shows the frequencies of words in the novel "Tom Sawyer" by Mark Twain.

Zipf's law is an observation that the product of rank and frequency of the words in a text is "quite constant," if we can use that term. For example, we can test this "law" on the words in the "Tom Sawyer" novel using the following code:

Counting Words

```
#!/usr/bin/perl
# word-frequency.pl
while (<>) {
    while (/'?[a-zA-Z]+/g) { $f{$&}++; $tot++; }
}
print "rank f f(norm) word r*f\n".
        ('-'x35)."\n";
for (sort { $f{$b} <=> $f{$a} } keys %f) {
    print sprintf("%3d. %4d %lf %-8s %5d\n",
    ++$rank, $f{$_}, $f{$_}/$tot, $_,
    $rank*$f{$_});
}
```


Program Output (Zipf's Law)

rank f word r*f 18. 516 for 9288

			19.	511	had	9709
1. 3331	the	3331	20.	460	they	9200
2. 2971	and	5942	21.	425	him	8925
3. 1776	a	5328	22.	411	but	9042
4. 1725	to	6900	23.	371	on	8533
5. 1440	of	7200	24.	370	The	8880
6. 1161	was	6966	25.	369	as	9225
7. 1130	it	7910	26.	352	said	9152
8. 1016	I	8128	27.	325	He	8775
9. 959	that	8631	28.	322	at	9016
10. 924	he	9240	29.	313	she	9077
11. 906	in	9966	30.	303	up	9090
12. 834	's	10008	31.	297	so	9207
13. 780	you	10140	32.	294	be	9408
14. 772	his	10808	33.	286	all	9438
15. 763	Tom	11445	34.	278	her	9452
16. 654	't	10464	35.	276	out	9660
17. 642	with	10914	36.	275	not	9900

We can present this data in a graphical form and compare it with the function $f=10000 / r$ to demonstrate the

Zipf's law:
rank
If we apply a logarithm on both sides of the Zipf's formula we get the formula $\log r+\log f \approx$ const., which means that the Zipf's law implies that the rank-frequency graph using log scales of x and y axis should be close to a straight line, descending under an angle of 45 degrees. The following graph illustrates this:

