
Lecture 6 p.1

Faculty of Computer Science, Dalhousie University 21-Sep-2023
CSCI 4152/6509 — Natural Language Processing

Lecture 6: Elements of Morphology

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– Regular expressions in Perl
– Use of special variables
– Backreferences, shortest match

– Text processing examples
– tokenization
– counting letters

We will look now at an implementation where letters and their frequencies are sorted by the frequency, from the
highest-frequency letter to the lowest. We will also produce frequencies both as letter counts, and as normalized
frequencies; i.e., as proportional frequencies of the letters out of 1.

Letter Frequencies Modification (3)

#!/usr/bin/perl
Letter frequencies (3)

while (<>) {
while (/[a-zA-Z]/) {

my $l = $&; $_ = $’;
$f{lc $l} += 1; $tot ++;

}
}

for (sort { $f{$b} <=> $f{$a} } keys %f) {
print sprintf("%6d %.4lf %s\n",

$f{$_}, $f{$_}/$tot, $_); }

Output 3

35697 0.1204 e
28897 0.0974 t
23528 0.0793 a
23264 0.0784 o
20200 0.0681 n
19608 0.0661 h
18849 0.0635 i
17760 0.0599 s
15297 0.0516 r

September 21, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 6 p.2 CSCI 4152/6509

14879 0.0502 d
12163 0.0410 l
8959 0.0302 u

...

6 Elements of Morphology
– Reading: Section 3.1 in the textbook, “Survey of (Mostly) English Morphology”
– morphemes — smallest meaning-bearing units
– stems and affixes; stems provide the “main” meaning, while affixes act as modifiers
– affixes: prefix, suffix, infix, or circumfix
– cliticization — clitics appear as parts of a word, but syntactically they act as words (e.g., ’m, ’re, ’s)
– tokenization, stemming (Porter stemmer), lemmatization

The morphemes are the smallest meaning-bearing parts of a word. For example, the word cats contains two
morphemes cat and s, the word unbelievably contains the four morphemes un, believ, ab, and ly, and the word
unmorpholinguistically contains the six morphemes un, morpho, ling, uist, ical, and ly. It could be sometimes
debatable what is the proper way of breaking a word into morphemes, but not having a clear correct answer is not
uncommon in analysis of natural languages.

– suffix example: eats; prefix example: unbuckle; circumfix example from German: sagen (to say) and geesagt
(said, past participle); infix example from Tagalog (Philipine language): hingi (borrow) and humingi

– stacking multiple affixes is possible: unbelievably = un-believe-able-y
– English typically allows up to 4 affixes, but some languages allow up to 10 affixes, such as Turkish. Such

languages are are called agglutinative languages.
– cliticization is considered to be a morphological process
– Clitics appear as orthographic or phonological parts of the words, but syntactically they act as words.
– Clitic examples: ’m in I’m, ’re in we’re, possessive ’s

Tokenization

– Text processing in which plain text is broken into words or tokens
– Tokens include non-word units, such as numbers and punctuation
– Tokenization may normalize words by making them lower-case or similar
– Usually simple, but prone to ambiguities, as most of the other NLP tasks

Tokenization is text processing in which the plain text is broken into words. It may not be a simple process,
depending on the type of text and kind of tokens that we want to recognize.

Stemming is the type of word processing in which a word is mapped into its stem, which is a part of the word that
represents the main meaning of the word. For example, foxes is mapped to the stem fox, or the word semantically is
mapped to the stem semanti.

It is used in Information Retrieval due to the property that if two words have the same stem, they are typically
semantically very related. Hence, if words in documents and queries are replaced by their stems, the resulting
indices are smaller, and words in a query can be easily matched with their morphological variations.

Lemmatization is a word processing method in which a surface word form, i.e., the word form as it appears in text,
is mapped to its lemma, i.e., the canonical form as it appears in a dictionary. For example, the word working would
be mapped into the verb work, or the word semantically would be mapped to the lemma semantics.

CSCI 4152/6509 Lecture 6 p.3

6.1 Morphological Processes

A morphological process is a word transformation that happens as a regular language transformation. There are tree
main morphological processes in English:

1. inflection,
2. derivation, and
3. compounding.

1. Inflection: is a transformation that transforms a word from one lexical class into another related word in the same
class. The transformation is performed by adding or changing a suffix or prefix. It is highly regular transformation.
Some inflection examples are: dog→ dogs, work→ works, work→ working, and work→ worked.

We will discuss more the concept of lexical class or part of speech class later, but for now you are probably familiar
with the following lexical classes (or types of words): nouns, verbs, adjectives, adverbs, and maybe some other.

Inflection is so regular transformation that usually we do not find inflected variations of a word in a dictionary.
It is assumed that a reader of the dictionary will be able to derive these variations by herself. Similarly, we can
frequently program inflection in a computer application rather than storing different variations of the word.

2. Derivation: is a transformation that transforms a word from one lexical class into a related word in a different
class. Similarly to inflection, it is performed by adding or changing a suffix or prefix. There is also some regularity,
but it is less regular than inflection. For example, a derivation is wide (adjective)→ widely (adverb), but a similar
transformation old→ oldly is not valid. Some other examples are: accept (verb)→ acceptable (adjective), acceptable
(adjective)→ acceptably (adverb), and teach (verb)→ teacher (noun).

There are exceptions where a derivation is used to transform a word in a lexical class to another word in the same
class but it is a significantly a different word. For example, the transformation of the adjective red to redish is
considered a derivation, rather than an inflection.

Since derivation is not as regular transformation as inflection, derived variations of a word are usually stored in a
dictionary, and in a computer application we may want to store them in a lexicon, i.e., a word database, in many
cases.

Below you can find a table with some more derivation examples:

Derivation type Suffix Example
noun-to-verb -fy glory → glorify

noun-to-adjective -al tide → tidal
verb-to-noun (agent) -er teach → teacher

verb-to-noun (abstract) -ance delivery → deliverance
verb-to-adjective -able accept → acceptable
adjective-to-noun -ness slow → slowness
adjective-to-verb -ise modern → modernise (Brit.)
adjective-to-verb -ize modern → modernize (U.S.)

adjective-to-adjective -ish red → reddish
adjective-to-adverb -ly wide → widely

3. Compounding: is a transformation where two or more words are combined, usually by concatenation, to create
a new word. Some examples are: news + group→ newsgroup, down + market→ downmarket, over + take→
overtake, play + ground→ playground, and lady + bug→ ladybug.

Lecture 6 p.4 CSCI 4152/6509

7 Characters, Words, and N-grams

7.1 Zipf’s Law

– We looked at code for counting letters, words, and
sentences

– We can look again at counting words; e.g., in “Tom
Sawyer”:

– We can observe: Zipf’s law (1929): r × f ≈ const.

Word Freq (f) Rank (r)
the 3331 1
and 2971 2
a 1776 3
to 1725 4
of 1440 5

was 1161 6
it 1030 7
I 1016 8

that 959 9
he 924 10
in 906 11
’s 834 12

you 780 13
his 772 14

Tom 763 15
’t 654 16
...

...
One of the basic tasks that we can do using stream-oriented processing of language is to collect statistical values

on letters, words, sentences, or similar tokens. We saw previously the code for finding frequency of different letters,
and these data can be useful for example for computer identification of a natural language. We can do similar
counting but this time of word frequencies. The table above shows the frequencies of words in the novel “Tom
Sawyer” by Mark Twain.

Zipf’s law is an observation that the product of rank and frequency of the words in a text is “quite constant,” if we
can use that term. For example, we can test this “law” on the words in the “Tom Sawyer” novel using the following
code:

Counting Words

#!/usr/bin/perl
word-frequency.pl

while (<>) {
while (/’?[a-zA-Z]+/g) { $f{$&}++; $tot++; }

}

print "rank f f(norm) word r*f\n".
(’-’x35)."\n";

for (sort { $f{$b} <=> $f{$a} } keys %f) {
print sprintf("%3d. %4d %lf %-8s %5d\n",

++$rank, $f{$_}, $f{$_}/$tot, $_,
$rank*$f{$_});

}

Program Output (Zipf’s Law)

rank f word r*f 18. 516 for 9288

CSCI 4152/6509 Lecture 6 p.5

---------- ----------------- 19. 511 had 9709
1. 3331 the 3331 20. 460 they 9200
2. 2971 and 5942 21. 425 him 8925
3. 1776 a 5328 22. 411 but 9042
4. 1725 to 6900 23. 371 on 8533
5. 1440 of 7200 24. 370 The 8880
6. 1161 was 6966 25. 369 as 9225
7. 1130 it 7910 26. 352 said 9152
8. 1016 I 8128 27. 325 He 8775
9. 959 that 8631 28. 322 at 9016
10. 924 he 9240 29. 313 she 9077
11. 906 in 9966 30. 303 up 9090
12. 834 ’s 10008 31. 297 so 9207
13. 780 you 10140 32. 294 be 9408
14. 772 his 10808 33. 286 all 9438
15. 763 Tom 11445 34. 278 her 9452
16. 654 ’t 10464 35. 276 out 9660
17. 642 with 10914 36. 275 not 9900

We can present this data in a graphical form and compare it with the function f = 10000/r to demonstrate the

Zipf’s law:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200

fr
e
q

u
e
n
cy

rank

Tom Sawyer
10000/rank

If we apply a logarithm on both sides of the Zipf’s formula we get the formula log r + log f ≈ const., which
means that the Zipf’s law implies that the rank-frequency graph using log scales of x and y axis should be close to a
straight line, descending under an angle of 45 degrees. The following graph illustrates this:

Lecture 6 p.6 CSCI 4152/6509

 1

 10

 100

 1000

 1 10 100 1000

fr
e
q

u
e
n
cy

rank

Tom Sawyer
10000/rank

	Elements of Morphology
	Morphological Processes

	Characters, Words, and N-grams
	Zipf's Law

