Natural Language Processing CSCI 4152/6509 - Lecture 6 Elements of Morphology

Instructors: Vlado Keselj
Time and date: 16:05-17:25, 21-Sep-2023
Location: Rowe 1011

Previous Lecture

- Regular expressions in Perl
- Use of special variables
- Backreferences, shortest match
- Text processing examples
- tokenization
- counting letters

Letter Frequencies Modification (3)

 \#!/usr/bin/perl\# Letter frequencies (3)
while (<>) \{
while (/[a-zA-Z]/) \{
my $\$ 1=\$ \& ; \$ _=\$ ' ;$
\$f $\{\mathrm{lc}$ $\$ \mathrm{l}\}+=1$; \$tot ++;
\}
\}
for (sort \{ \$f \{\$b\} <=> \$f \{\$a\} \} keys \%f) \{ print sprintf("\%6d \%. $41 \mathrm{f} \% \mathrm{~s} \backslash \mathrm{n} "$, \$f\{\$_\}, \$f\{\$_\}/\$tot, \$_); \}

Output 3

356970.1204 e 288970.0974 t 235280.0793 a
232640.0784 о
202000.0681 n
196080.0661 h
188490.0635 i
177600.0599 s
152970.0516 r
148790.0502 d
121630.0410 l 89590.0302 u

Elements of Morphology

- Reading: Section 3.1 in the textbook, "Survey of (Mostly) English Morphology"
- morphemes - smallest meaning-bearing units
- stems and affixes; stems provide the "main" meaning, while affixes act as modifiers
- affixes: prefix, suffix, infix, or circumfix
- cliticization - clitics appear as parts of a word, but syntactically they act as words (e.g., 'm, 're, 's)
- tokenization, stemming (Porter stemmer), lemmatization

Tokenization

- Text processing in which plain text is broken into words or tokens
- Tokens include non-word units, such as numbers and punctuation
- Tokenization may normalize words by making them lower-case or similar
- Usually simple, but prone to ambiguities, as most of the other NLP tasks

Stemming

- Mapping words to their stems
- Example: foxes \rightarrow fox
- Use in Information Retrieval and Text Mining to normalize text and reduce high dimensionality
- Typically works by removing some suffixes according to a set of rules
- Best known stemmer: Porter stemmer

Lemmatization

- Surface word form: a word as it appears in text (e.g., working, are, indices)
- Lemma: a canonical or normalized form of a word, as it appears in a dictionary (e.g., work, be, index)
- Lemmatization: word processing method which maps surface word forms into their lemmas

Morphological Processes

- Morphological Process = changing word form, as a part of regular language transformation
- Types of morphological processes
(1) inflection
(2) derivation
(3) compounding

1. Inflection

Examples: dog \rightarrow dogs work \rightarrow works
working
worked

- small change (word remains in the same category)
- relatively regular
- using suffixes and prefixes

2. Derivation

- Typically transforms word in one lexical class to a related word in another class
- Example: wide (adjective) \rightarrow widely (adverb) but, similarly: old \rightarrow oldly $\left({ }^{*}\right)$ is incorrect. more ex.: accept (verb) \rightarrow acceptable (adjective) acceptable (adjective) \rightarrow acceptably (adverb) teach (verb) \rightarrow teacher (noun)
- Derivation is a more radical change (change word class)
- less systematic
- using suffixes

Some Derivation Examples

Derivation type	Suffix	Example		
noun-to-verb	- -fy	glory	\rightarrow	glorify
noun-to-adjective	$-a l$	tide	\rightarrow	tidal
verb-to-noun (agent)	- -er	teach	\rightarrow	teacher
verb-to-noun (abstract)	-ance	delivery	\rightarrow	deliverance
verb-to-adjective	- able	accept	\rightarrow	acceptable
adjective-to-noun	$-n e s s ~$	slow	\rightarrow	slowness
adjective-to-verb	$-i s e$	modern	\rightarrow	modernise (Brit.)
adjective-to-verb	$-i z e$	modern	\rightarrow	modernize (U.S.)
adjective-to-adjective	$-i s h$	red	\rightarrow	reddish
adjective-to-adverb	$-l y$	wide	\rightarrow	widely

3. Compounding

Examples: news + group $=$ newsgroup down + market $=$ downmarket
over + take $=$ overtake play + ground $=$ playground lady + bug = ladybug

Characters, Words, and N-grams

- We looked at code for counting letters, words, and sentences

Word	Freq (f)	Rank (r)
the	3331	1
and	2971	2
a	1776	3
to	1725	4
of	1440	5
was	1161	6
it	1030	7
I	1016	8
that	959	9
he	924	10
in	906	11
's	834	12
you	780	13
his	772	14
Tom	763	15
't	654	16

Counting Words

```
#!/usr/bin/perl
# word-frequency.pl
while (<>) {
    while (/'?[a-zA-Z]+/g) { $f{$&}++; $tot++; }
}
print "rank f f(norm) word r*f\n".
        ('-'x35)."\n";
for (sort { $f{$b} <=> $f{$a} } keys %f) {
    print sprintf("%3d. %4d %lf %-8s %5d\n",
    ++$rank, $f{$_}, $f{$_}/$tot, $_,
    $rank*$f{$_});
\}
```


Program Output (Zipf's Law)

rank	f	word	$r * f$	18.	516	for	9288
				19.	511	had	9709
1	3331	the	3331	20.	460	they	9200
2.	2971	and	5942	21.	425	him	8925
3.	1776	a	5328	22.	411	but	9042
4.	1725	to	6900	23.	371	on	8533
5	1440	of	7200	24.	370	The	8880
6.	1161	was	6966	25.	369	as	9225
7	1130	it	7910	26.	352	said	9152
8.	1016	I	8128	27.	325	He	8775
9.	959	that	8631	28.	322	at	9016
10.	924	he	9240	29.	313	she	9077
11.	906	in	9966	30.	303	up	9090
12.	834	's	10008	31.	297	so	9207
13.	780	you	10140	32.	294	be	9408
14.	772	his	10808	33.	286	all	9438
15.	763	Tom	11445	34.	278	her	9452
16.	654	't	10464	35.	276	out	9660
17.	642	with	10914	36.	275	not	9900

Graphical Representation of Zipf's Law

Zipf's Law (log-log scale)

