
Natural Language Processing
CSCI 4152/6509 — Lecture 4
NFA, Regular Expressions Review, Perl

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 14-Sep-2023
Location: Rowe 1011

CSCI 4152/6509, Vlado Keselj Lecture 4 1 / 26

Previous Lecture

Part II: Stream-based Text Processing
Finite state automata

I Deterministic Finite Automaton (DFA)
I Non-deterministic Finite Automaton (NFA)

Review of Deterministic Finite Automata (DFA)

Non-deterministic Finite Automata (NFA)

Implementing NFA, NFA-to-DFA translation (started)

CSCI 4152/6509, Vlado Keselj Lecture 4 2 / 26

NFA to DFA Example

• Let us go back to the example done previously:

q
0

i n g

q
1

q
2

q
3

q
4

ε

*

CSCI 4152/6509, Vlado Keselj Lecture 4 3 / 26

q
0

i n g

q
1

q
2

q
3

q
4

ε

*

CSCI 4152/6509, Vlado Keselj Lecture 4 4 / 26

Final DFA

State i n g other letters)
(not i, n, or g)

→ {q0, q1} {q0, q1, q2} {q0, q1} {q0, q1} {q0, q1}
{q0, q1, q2} {q0, q1, q2} {q0, q1, q3} {q0, q1} {q0, q1}
{q0, q1, q3} {q0, q1, q2} {q0, q1} {q0, q1, q4} {q0, q1}

F: {q0, q1, q4} {q0, q1, q2} {q0, q1} {q0, q1} {q0, q1}

q
0

q
2

q
1

q
0
q

1
q

3
q

0
q

4
q

1q
0
q

1

i

n,g,x i

n

g,x i

n,x

g

i

n,g,x

CSCI 4152/6509, Vlado Keselj Lecture 4 5 / 26

Finite Automata in NLP

Useful in data preprocessing, cleaning, transformation
and similar low-level operations on text

Useful in preprocessing and data preparation

Efficient and easy to implement

Regular Expressions are equivalent to automata

Used in Morphology, Named Entity Recognition, and
some other NLP sub-areas

CSCI 4152/6509, Vlado Keselj Lecture 4 6 / 26

Regular Expressions

Review (should have been covered in earlier courses
as well)

Used as patterns to match parts of text

Equivalent to automata, although this may not be
obvious

Provide a compact, algebraic-like way of writing
patterns

Example: /Submit (the)?file [A-Za-z.-]+/

CSCI 4152/6509, Vlado Keselj Lecture 4 7 / 26

Some References on Regular Expressions

You can find many references on Regular Expressions,
including:

Chapter 2 of the textbook [JM]

Perl “Camel book” or many resources on Internet

On timberlea server: ‘man perlre’ and ‘man
perlretut’

The same effect: ‘perldoc perlre’ and ‘perldoc
perlretut’

Or on the web:
http://perldoc.perl.org/perlre.html and
http://perldoc.perl.org/perlretut.html

CSCI 4152/6509, Vlado Keselj Lecture 4 8 / 26

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlretut.html

A Historical View on Regular Expressions

Research by Stephen Kleene: regular sets, and the
name of regular sets and regular expressions (1951),

Implementation in QED by Ken Thompson (1968),

Open-source implementation by Henry Spencer
(1986),

Use in Perl by Larry Wall (1987),

Perl-style Regular Expressions in many modern
programming languages.

CSCI 4152/6509, Vlado Keselj Lecture 4 9 / 26

Example Regular Expressions

• Literal: /woodchuck/ /Buttercup/

• Character class: /./ (any character),
/[wW]oodchuck/, /[abc]/, /[12345]/

(any of the characters)
• Range of characters: /[0-9]/, /[3-7]/, /[a-z]/,
/[A-Za-z0-9_-]/

• Excluded characters and repetition: /[^()]+/

• Grouping and disjunction: /(Jan|Feb) \d?\d/

• Note: \d is same as [0-9]

• Another character class: \w is same as [0-9A-Za-z_]
(‘word’ characters)
• Opposite: \W same as [^0-9A-Za-z_]

CSCI 4152/6509, Vlado Keselj Lecture 4 10 / 26

RegEx Examples:
Anchors, Grouping, Iteration

/^This is a/ # use of anchor

/This^or^that/ # not an anchor

/woodchucks?/

/\bcolou?r\b/ # anchor \b

/is a sentence\.$/ # end of string anchor

Grouping and iteration:

/This sentence goes on(, and on)*\.$/

/cat|dog/ # disjunction (alternation)

/The (cat|dog) ate the food\./

CSCI 4152/6509, Vlado Keselj Lecture 4 11 / 26

Introduction to Perl

Created in 1987 by Larry Wall

Interpreted, but relatively efficient

Convenient for string processing, system admin, CGIs,
etc.

Convenient use of Regular Expressions

Larry Wall: Natural Language Principles in Perl

Perl is introduced in lab in more details

CSCI 4152/6509, Vlado Keselj Lecture 4 12 / 26

Perl: Some Language Features

interpreted language, with just-in-time
semi-compilation

dynamic language with memory management

provides effective string manipulation, brief if needed

convenient for system tasks

syntax (and semantics) similar to:
C, shell scripts, awk, sed, even Lisp, C++

CSCI 4152/6509, Vlado Keselj Lecture 4 13 / 26

Some Perl Strengths

Prototyping: good prototyping language, expressive: It can express a lot
in a few lines of code.

Incremental: useful even if you learn a small part of it. It becomes more
useful when you know more; i.e., its learning curve is not steep.

Flexible: e.g, most tasks can be done in more than one way

Managed memory: garbage collection and memory management

Open-source: free, open-source; portable, extensible

RegEx support: powerful, string and data manipulation, regular
expressions

Efficient: relatively, especially considering it is an interpreted language

OOP: supports Object-Oriented style

CSCI 4152/6509, Vlado Keselj Lecture 4 14 / 26

Some Perl Weaknesses

not as efficient as C/C++

may not be very readable without prior

knowledge

OO features are an add-on, rather than

built-in

competing popular languages

not a steep learning curve, but a long one

(which is not necessarily a weakness)

CSCI 4152/6509, Vlado Keselj Lecture 4 15 / 26

Perl in This Course

Examples in lectures, but you are expected to learn
used features by yourself

Labs will cover more details
Finding help and reading:

I Web: perl.com, CPAN.org, perlmonks.org,
. . .

I man perl, man perlintro, . . .
I books: e.g., the “Camel” book:

“Learning Perl, 4th Edition” by Brian D. Foy;
Tom Phoenix; Randal L. Schwartz (2005)

CSCI 4152/6509, Vlado Keselj Lecture 4 16 / 26

Testing Code

Login to timberlea

Use plain editor, e.g., emacs

Develop and test program

Submit assignments

You can use your own computer, but
code must run on timberlea

CSCI 4152/6509, Vlado Keselj Lecture 4 17 / 26

Perl File Names

Extension ‘.pl’ is common, but not

mandatory

.pl is used for programs (scripts) and basic

libraries

Extension ‘.pm’ is used for Perl modules

CSCI 4152/6509, Vlado Keselj Lecture 4 18 / 26

“Hello World” Program

Choose your favorite editor and edit hello.pl:

print "Hello world!\n";

Type “perl hello.pl” to run the program,

which should produce: Hello world!

CSCI 4152/6509, Vlado Keselj Lecture 4 19 / 26

Another way to run a program

Let us edit again hello.pl into:

#!/usr/bin/perl

print "Hello world!\n";

Change permissions of the program and run it:

chmod u+x hello.pl

./hello.pl

CSCI 4152/6509, Vlado Keselj Lecture 4 20 / 26

Simple Arithmetic

#!/usr/bin/perl

print 2+3, "\n";

$x = 7;

print $x * $x,"\n";

print "x = $x\n";

Output:

5

49

x = 7

CSCI 4152/6509, Vlado Keselj Lecture 4 21 / 26

Direct Interaction with Interpreter

Command: perl -d -e 1

Enter commands and see them executed

‘q’ to exit

This interaction is through Perl debugger

CSCI 4152/6509, Vlado Keselj Lecture 4 22 / 26

Syntactic Elements

statements separated by semi-colon ‘;’

white space does not matter except in strings

line comments begin with ‘#’; e.g.
a comment until the end of line

variable names start with $, @, or % (‘sigils’):
$a — a scalar variable
@a — an array variable
%a — an associative array (or hash)
However: $a[5] is 5th element of an array @a, and
$a{5} is a value associated with key 5 in hash %a

the starting special symbol is followed either by a name
(e.g., $varname) or a non-letter symbol (e.g., $!)

user-defined subroutines are usually prefixed with &:
&a — call the subroutine a (procedure, function)

CSCI 4152/6509, Vlado Keselj Lecture 4 23 / 26

Example Program: Reading a Line

#!/usr/bin/perl

use warnings;

print "What is your name? ";

$name = <>; # reading one line of input

chomp $name; # removing trailing newline

print "Hello $name!\n";

use warnings; enables warnings — recommended!
chomp removes the trailing newline from $name if there is one. However,
changing the special variable $/ will change the behaviour of chomp too.

CSCI 4152/6509, Vlado Keselj Lecture 4 24 / 26

Example: Declaring Variables

The declaration “use strict;” is useful to force more strict verification of the
code. If it is used in the previous program, Perl will complain about variable
$name not being declared, so you can declare it: my $name

We can call this program example3.pl:
#!/usr/bin/perl

use warnings;

use strict;

my $name;

print "What is your name? ";

$name = <>;

chomp $name;

print "Hello $name!\n";

CSCI 4152/6509, Vlado Keselj Lecture 4 25 / 26

Perl Program for Counting Lines

#!/usr/bin/perl

program: lines-count.pl

while (<>) {

++$count;

}

print "$count\n";

CSCI 4152/6509, Vlado Keselj Lecture 4 26 / 26

