Natural Language Processing CSCI 4152/6509 — Lecture 1 Course Introduction

Instructors: Vlado Keselj Time and date: 16:05 – 17:25, 5-Sep-2023 Location: Rowe 1011

CSCI 4152/6509

(Advanced Topics in) Natural Language Processing

Time: Lec: Tue-Thu 16:05–17:25 Labs: Tue 17:35–19:55 (u) and Wed 17:35–19:55 (g) Location: Lec: Rowe 1011. Labs: Goldberg CS134(u) / Goldberg CS143(g) Instructor: Vlado Keselj (Vlado Kešelj, pron. \approx Vlado Keshel) e-mail: vlado@cs.dal.ca or vlado@dnlp.ca URL: http://web.cs.dal.ca/~vlado/csci6509 E-mail list: nlp-course@lists.dnlp.ca

くぼう くほう くほう

Main References

- Required Textbook: "Speech and Language Processing" by Daniel Jurafsky and James Martin, 2013.
- Recommended Textbooks
 - "Introduction to Natural Language Processing" by Jacob Eisenstein, 2019.
 - "Natural Language Processing with Python" by Steven Bird, Ewan Klein, Edward Loper, O'Reilly, 2009 (on-line version free)
 - "Learning Perl, 6th Edition" by Randal L. Schwartz, et al., 2011.
- and more Related Books listed on the web site:
 - "Foundations of Statistical Natural Language Processing" by Manning and Schuetze, 1999.
 - ..., more listed on the web site

Evaluation

32% Assignments (theory and programming)

32% Final exam

on core material

- 10% Class Presentation and Participation
- 26% Project Report

Academic Integrity Policy

- Please read the given handout (also available at the course web site)
- Suspected cases of plagiarism are referred to Academic Integrity Officers, and may lead to serious consequences
- Plagiarism is defined as "the presentation of the work of another author in such a way as to give one's reader reason to think it to be one's own"
- Fully reference sources in your assignments and reports
- Write in your own words
- You can look at other code, but do not cut-and-paste!
- Discussing assignments verbally is likely not an issue, but do not discuss it in writing or typing

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dalhousie Culture of Respect

- We believe that inclusiveness is fundamental to education and learning.
- Every person has a right to be respected and safe.
- Misogyny and disrespectful behaviour on campus, wider community, and social media is not acceptable. We stand for equality and hold ourselves to a higher standard.
- Take an active role:
 - Be ready: do not remain silent
 - Identify the behaviour, avoid labeling or name-calling
 - Appeal to principles, particularly with friends, co-workers or similar
 - Set limits
 - Find an ally and be an ally, lead by example
 - Be vigilant

Tentative Course Schedule

Core Material

- Introduction to NLP
- O Stream-based Text Processing
- O Probabilistic Approach to NLP
- O Syntactic Processing
- Inification-based NLP and Semantics
- 2 Course Review
- Student Presentations

Introduction to Natural Language Processing

- Reading: Chapter 1 of Jurafsky and Martin [JM]
- How to define NLP?
- 1. Direct definition
 - What is a natural language?
 - What are other kinds of languages?
- 2. NLP applications
- 3. NLP as a research area

Some NLP Applications

- machine translation
- speech analysis and generation systems
- spell checking and grammatical correction
- conversational agents (e.g., chat bots)
- document generation (or computer support in document writing)
- text classification, summarization, mining
- information retrieval and information extraction
- question answering
- support applications, such as: stemming, POS tagging, semantic tagging, and partial parsing
- natural language programming code generators, query generators

NLP as a Research Area

- relatively old (as old as CS), but still very active
- can be seen as a part of AI
- related to several other areas, such as:
 - Programming and Formal Languages
 - Information Retrieval
 - Machine Learning
 - Text Mining
- Some important conferences and journals:
 - ACL Association of Computational Linguistics, NAACL, EACL, HLT, AAAI, ...
 - Computational linguistics, Natural Language Engineering,
- Check "NLP Research Links" on the course web site
- Useful research site: http://aclweb.org/anthology_new/

. . .

Short History of NLP

before computers

1947-54 pioneers and foundational insights

1954–66 decade of optimism ("look ma no hands"), two camps: symbolic and stochastic

1966 ALPAC report in US (negative report on MT research)

1980 emergence of various systems and approaches:

• stochastic paradigm, logic-based, NLU...

1990–2000 stochastic NLP, Web, unification-based NLP 2000–2012 "The rise of Machine Learning"

2012– Deep Learning approaches

NLP Methodology Overview

- Knowledge-driven and symbolic approaches using crafted rules
 - older methodology, scalability issues, appropriate for more controlled language formats
 - example applications: information extraction
 - methodology: rules and direct coding, regular expressions, unification-based methods, etc.
- Data-driven and stochastic approaches using machine learning
 - newer, scalable, for open-ended applications
 - example applications: classification, clustering
 - methodology: probabilistic models, Bayesian classifiers, neural networks, deep learning, fuzzy methods, etc.

イロト 不得 トイヨト イヨト

Levels of NLP

- **phonetics:** physical sounds
- phonology: sound system (phonemes) of a spoken language
- Image: morphology: word structure
- syntax: inter-word structure up to sentence structure
- Semantics: meaning up to the sentence level
- pragmatics: "speaker's meaning" extended from the literal sentence meaning
- discourse: units larger than an utterance (e.g., inter-sentence meaning, references)

イロト 不得下 イヨト イヨト 二日

Phonetics and Phonology

- Levels of processing related to speech
- **Phonetics:** is computer processing concerned with physical sounds of language; performed using signal processing methodology. It can be divided into speech generation and speech analysis.
- **Phonology:** is linguistic processing of the sounds of spoken language; higher level than phonetics, mainly concerned with elementary sound units of a language called *phonemes*.

A B F A B F

Morphology

- **Morphology:** is level of processing concerned with the structure of words in a language.
- Morphological process word transformation
- Main morphological processes
 - 1. Inflection
 - 2. Derivation
 - 3. Compounding
- Example of morphological processing: stemming

Syntax

- **Syntax:** is concerned with the sentence structure, i.e., the rules for arranging words within a sentence. One of the main tasks is *parsing*, which is the task of producing a parse tree given a sentence as the input.
- Grammar set of rules for deriving syntactic structure
- Different types of parse trees: Context-free parse trees and dependency parse trees

Semantics

- **Semantics:** is interpreting literal meaning of language up to the sentence level.
- Lexical semantics: semantics of words
- Building semantic representation of larger structures
- Methodology: neural networks, FOPC (first-order logic), unification
- Example resources: WordNet, SentiNet

A B M A B M

Pragmatics and Discourse

- **Pragmatics:** is concerned with intended, practical meaning of language.
 - Example: "Could you print this document?"
- **Discourse:** is concerned with language structure beyond sentence level; such as inter-sentence relations, references, and document structure.
 - Examples: turn taking, speech acts

.

NLP is Generally Hard

- NLP problems were tackled since 1950s
 - progress has been surprisingly slow and difficult
- Some external evidence of why NLP would be hard:
 - Turing test (imitation game)
 - Evidence from neuro-science:
 - "A defining difference between man and non-human primates has been found in the circuitry of brain cells involved in language, according to researchers at the Medical College of Georgia."

Some Computational Reasons that NLP is Hard

1. highly ambiguous

- not easy to program disambiguation
- 2. vague (the principle of minimal effort)
 - not easy to program the context and a priori knowledge
- 3. universal (domain independent)
 - not easy to program general knowledge representation

All of these require reasoning (inference)