CSCl 4152/6509
Natural Language Processing

28/29-Nov-2023 (10)

Lab 10:

Prolog Tutorial 2

Lab Instructor: Sigma Jahan and Mayank Anand

Faculty of Computer Science

Dalhousie University

CSCI 4152/6509




Lab Overview

e This is the second part of the Prolog tutorial

e We will first cover a more complex example of a bicycle
knowledge-base modeling, which illustrates how Prolog
can capture semantics

e The rest of the examples show use of Prolog in parsing
natural languages, including parsing with DCG grammars,
and PCFG in Prolog

28/29-Nov-2023 (10) CSCI 4152/6509 2




Step 1. Logging in to server timberlea

Login to the server timberlea

Change directory to csci4152 or csci6509
mkdir 1lablO

cd 1lablO

28/29-Nov-2023 (10) CSCI 4152/6509




A Review of Basic Elements of Prolog
Programs

e Constants; e.g.: 1.2, a, " string’
e Variables; e.g.: Long_name, X, Y123, X_Y

e _ (underscore) is a special, anonymous
variable

e Term expression or functional expression:
— expression of the form f(¢1,...,t,) where fis
an n-ary function symbol and ¢4, ..., t,, are
terms.

28/29-Nov-2023 (10) CSCI 4152/6509 4




Step 2: Bicycle Example

e Let us consider the following hierarchy of
bicycle parts:

bicycle
///ckmssisNback_assembly

front_assembly

/M frame /\
seat

handlebar wheel fork freewheel — wheel

/\ driving_gear m

hub rim spoke tyre hub rim spoke tyre

pedal crank chain_ring chain

28/29-Nov-2023 (10) CSCI 4152/6509 5




Bicycle Parts Database in Prolog

Predicate: bpart

o® o° o©

bpart (bicycle) . bpart (front_assembly) . bpart (handlebar) |
bpart (wheel) . bpart (hub). bpart (rim). bpart (spoke).

bpart (tyre) . bpart (fork). bpart (chassis). bpart (frame).
bpart (seat) . bpart (driving_gear) . bpart (pedal) .
(
(
(

bpart (crank) . bpart (chain_ring) . bpart (chain).
bpart (back_assembly) . bpart (freewheel). bpart (wheel).
bpart (hub) . bpart (rim). bpart (spoke). bpart (tyre).

e Also available on timberlea in directory:
"prof6509/public
as file bpart .prolog

28/29-Nov-2023 (10) CSCI 4152/6509 6




Listing Parts

Save the file bpart .prolog or copy it
Run Prolog and load the file:

swipl
["bpart.prolog’].

Now you can run several query examples:

?— bpart (fork).
?— bpart (roof) .
?— bpart (X) .

Remember to type semicolon (; ) after each answer in the last query
to list all answers.

Exit Prolog (halt .) and prepare another file

28/29-Nov-2023 (10) CSCI 4152/6509 7




Direct Part Relations

e Edit or copy the file part .prolog (from the same directory)

Predicate: part

o° o o©°

part (bicycle, front_assembly) .
part (bicycle, chassis) .
part (bicycle,back_assembly) .

part (front_assembly, handlebar).
part (front_assembly, wheel).
part (front_assembly, fork).

part (wheel, hub).
part (wheel, rim).
part (wheel, spoke).
part (wheel, tyre). ...and so on

28/29-Nov-2023 (10) CSCI 4152/6509




Predicate: component

e Finally, edit or copy component .prolog:

Predicate: component

o o o©°

component (X, X) :— bpart (X).
component (X,Y) :— part(X,2), component(Z,Y).

e After loading these files, you can try queries:

?— part (bicycle, chassis).
?— part (bicycle, hub).

?— part (bicycle, X).

?7— part (X,bicycle).

?— part(X,Y).

?— component (X, fork) .

?— component (chassis, X) .

28/29-Nov-2023 (10) CSCI 4152/6509




Step 3: Using Prolog to Parse NL

Example: Let us consider a simple CFG to parse
the following two sentences: “the dog runs” and
“the dogs run”

The grammar is:

S —> NP VP N —> dog
NP -> D N N —> dogs
D —> the VP —> run

VP —> runs

28/29-Nov-2023 (10) CSCI 4152/6509 10




Difference Lists

Difference list is a way of representing a list as a difference between
two lists, e.g. the list

[the, dog]
can be represented as a difference of the following pairs of lists

[the, dog], []

[the, dog, runs, home], [runs, home]
[the, dog, runs], [runs]
[the,dog|R], R

28/29-Nov-2023 (10) CSCI 4152/6509

11




Using Difference Lists

s (S, R) :— np(S,I), vp(I, R).
np(sS,R) :— d(s,I), n(I,R).
d([the|R], R).

n([dog|R], R)

n([dogs|R], R)

vp ([run|R], R)

vp ([runs|R], R)

Save this in file parse.prolog. On Prolog prompt we type:

?— ['parse.prolog’].

% parse.prolog compiled 0.00 sec, 1,888 bytes
true.

?— s([the,dog, runs], []) .

true.

?— s([runs,the,dog], []) .

false.

28/29-Nov-2023 (10) CSCI 4152/6509

12




e Submit the file parse.prolog using the

Submit parse.prolog

nlp-submit command.

28/29-Nov-2023 (10)

CSCI 4152/6509

13




Step 4: Definite Clause Grammars (DCG)

Type this example in file dcg.prolog:

s2 ——> np, Vp.
np ——> d, n.

d —-—> [the].

n -—-—> [dog].

n -—--—> [dogs].
vp ——> [run].
vp ——> [runs].

DCG rules get translated into Prolog rules with difference

lists.

28/29-Nov-2023 (10)

CSCI 4152/6509

14




Type in the Prolog interpreter:

?— ['dcg.prolog’].
?— s2([the,dog, runs], []) .

?— s2([runs, the,dog], []) .

Submit the file dcg.prolog using the command
nlp—-submit.

28/29-Nov-2023 (10) CSCI 4152/6509

15




Step 5: Building a Parse Tree

DCG rules can contain arguments.

A parse tree can be built in the following way:

s(s(Tn, Tv)) ——> np(Tn), vp(Tv).
np (np (Td, Tn)) —--> d(Td), n(Tn).
d(d(the)) ——> [the].

n(n (dog)) —-—> [dog].
n(n(dogs)) ——> [dogs].

vp (vp (run) ) ——> [run].

vp (vp (runs) ) ——> [runs].

Save this program as file: dcg-ptree.prolog

28/29-Nov-2023 (10)

CSCI 4152/6509 16




In Prolog Interpreter:

At Prolog prompt, after we load the file, we type the query
and obtain a result as follows:

?— s(X, [the, dog, runs], []).
X = s(np(d(the),n(dog)),vp(runs)) .

Submit the file dcg-ptree.prolog using the command
nlp—-submit.

28/29-Nov-2023 (10) CSCI 4152/6509

17




Step 6: Handling Agreement

Prepare the following program in file: dcg-agr.prolog

s(s(Tn, Tv)) ——> np(Tn,A), vp(Tv,A).
np (np (Td, Tn) , A) ——> d(Td), n(Tn,A).
d(d(the)) ——> [the].

n(n(dog), sqg) —-—> [dog].
n(n(dogs),pl) ——> [dogs].

vp (vp (run) ,pl) ——> [run].

vp (vp (runs) , sg) ——> [runs].

This grammar will accept sentences “the dog runs” and “the
dogs run” but not “the dog run” and “the dogs runs”. Other
phenomena can be modeled in a similar fashion.

28/29-Nov-2023 (10) CSCI 4152/6509 18




Prolog Interpreter

Try parsing the following sentences in Prolog interpreter:
the dogs run

the dog run

the dogs runs

the dog runs

Submit the file dcg-agr.prolog using the command
nlp—-submit.

28/29-Nov-2023 (10) CSCI 4152/6509

19




Step 7: PCFG in Prolog
Embedded Code

We can embed additional Prolog code using braces, e.g.:
s (T) -——> np(Tn), vp(Tv), {T = s(Tn,Tv) }.

and so on, is another way of building the parse tree.

28/29-Nov-2023 (10) CSCI 4152/6509 20




Expressing PCFGs in Prolog

Let us consider the following example of a PCFG:

S - NPVP /1 VP — VNP /5 N — time /5
NP — N /4 VP — VPP /5 N — arrow /.3
NP - NN /2 PP — PNP /1 N — flies /.2
NP - DN /4 D — an /1
V — like /.3 P — like /1
vV — flies /.7

The probabilities can be passed as an additional argument, and
calculated using embedded code:

s(T,P) --> np(T1,Pl), vp(T2,P2),

(T = s(T1,T2), P is Pl x P2 * 1}.
np(T,P) ——> n(T1,P1l), {T = n(Tl), P 1s P1 * 0.4}.
and so on.

28/29-Nov-2023 (10) CSCI 4152/6509

21




e Submit the file dcg-pcfg.prolog using the command

nlp—-submit

28/29-Nov-2023 (10)

Submit: dcg-pcfg.prolog

CSCI 4152/6509

22




Step 8: An Extended Example

e Start with a copy of the previous example:
cp dcg—agr.prolog dcg—agr2.prolog
e Let us implement a rule for ‘-s‘ inflection

e Remove the rules:

n(n(dogs),pl) ——> [dogs].
vp (vp (runs) , sqg) ——> [runs].

e and add the following rules:

n(n(Npl),pl) ——> [Npl],
{ atom_concat (Nsg, ’'s’, Npl), n(_,sqg, [Nsg]l, [])
vp (vp (Vsg) ,sg) ——> [Vsg],

{ atom_concat (Vpl, ’'s’, Vsqg), vp(_,pl, [Vpl],[])

28/29-Nov-2023 (10) CSCI 4152/6509

b

'

23




In the Prolog Interpreter
e Try new grammar in the interpreter:
?— s (T, [the,dog, runs], []) .

e You should obtain a proper parse tree

e Remember to type semicolon (;) if you do not get a prompt after
answer

e Try also sentences ‘the dogs run’, ‘the dog run’, and ‘the dogs runs’
e We could now add more words, for example:

n(n(dog),sg) —-—> [dog].
n(n(cat),sg) —-—> [cat].

e However, there is a more compact way to do this:
e Remove rules:

n(n(dog),sg) —-—> [dog].
vp (vp (run),pl) ——> [run].

28/29-Nov-2023 (10) CSCI 4152/6509

24




Using a Word List

e Add the following rules:

n(n((xX),sqg) ——> [X], { member (X, [dog, cat]) }.
vp (vp (X) ,pl) ——> [X], { member (X, [run, walk]) }.

e Try parsing sentences ‘the dog runs’, ‘the cat runs’, ‘the dogs walk’,
‘the cat walks” and similar

e The predicate ‘member’ is predefined predicate in SWI-Prolog, but in
case that it is not and you get an error, you can define it by adding the
following two rules:

member (X, [X|_]).
member (X, [_|L]) :— member (X, L).

e Add the nouns ‘turtle’ and ‘rabbit’ and VPs ‘swim’ and ‘craw!’ to the
grammar
e Try parsing more sentences

28/29-Nov-2023 (10) CSCI 4152/6509 25




e Submit the file dcg-agr2.prolog using the command

nlp—-submit

Submit: dcg-agr2.prolog

End of the Lab.

28/29-Nov-2023 (10)

CSCI 4152/6509

26




