
CSCI 4152/6509
Natural Language Processing

Lab 9:

Prolog Tutorial 1

Lab Instructor: Sigma Jahan and Mayank Anand

Faculty of Computer Science

Dalhousie University

21/22-Nov-2023 (9) CSCI 4152/6509 1

Lab Overview

• In this lab we will learn about the Prolog
programming language
• Introduction to Prolog

21/22-Nov-2023 (9) CSCI 4152/6509 2

Prolog in NLP

• Creation of Prolog was linked to NLP
• Over time it stayed related to NLP, e.g., in

Definite Clause Grammars
• Prolog backtracking makes it easy to

implement backtracking CFG parsers
• Prolog unification is directly related to

unification-based grammar formalisms
• Prolog and First-Order Predicate Calculus are

related to semantic processing

21/22-Nov-2023 (9) CSCI 4152/6509 3

Prolog: Programming in Logic

• PROLOG has unusual control flow
– built-in backtracking
• Program is a problem description rather than a

recipe
• Program paradigm known as declarative

programming
• Running a program is equivalent to proving a

theorem
• Based on the First Order Predicate Logic

21/22-Nov-2023 (9) CSCI 4152/6509 4

Prolog Origins

• Based on Mathematical Logic
– First-Order Predicate Logic
– use of Horn clauses
• Robinson 1965

– method for resolution for machine theorem proving
– two important concepts: Resolution, Unification
• Alain Colmerauer, 1970s

– Prolog—Programming in Logic
• Robert Kowalski et al., U. of Edinburgh
• An additional important Prolog concept:

– built-in backtracking

21/22-Nov-2023 (9) CSCI 4152/6509 5

Prolog as a Programming Language

• A few more characteristics:
• Running a program is equivalent to proving a theorem
• Output: values of variables found during a constructive

proof
• Program is a set of axioms
• No internal state, no side effects
• Automatic garbage collection
• Extensive use of lists
• Use of recursion

21/22-Nov-2023 (9) CSCI 4152/6509 6

Pros and Cons of Logic Programming

• Pros:
– Absence of side-effects
– No uninitialized or dangling pointers

(this should ensure more reliability, and easiness of
writing, debugging, and maintaining code)

– Built-in backtracking and unification
• Cons:

– Lack of libraries, development support tools
– Less portable, no interfaces to other languages
– An alternative programming pradigm (not mainstream)
• Pros and Cons similar to functional languages

21/22-Nov-2023 (9) CSCI 4152/6509 7

Comparison of Different Programming
Paradigms

• Let us consider the following problem and how it would be
solved in three different programming paradigms:
– Example problem:

Calculate GCD (Greatest Common Divisor) of two
numbers.

• Paradigms:
– Imperative programming
– Functional programming
– Logic programming

21/22-Nov-2023 (9) CSCI 4152/6509 8

Imperative programming: Recipe: to compute GCD of a
and b, check to see if a = b. If so, output one of them and
stop. Otherwise, replace the larger one with their
difference and repeat.

Functional programming: gcd(a, b) is: If a = b then a;
otherwise, it is gcd(min(a, b), |a− b|).

Logic programming: To prove that g is GCD of a and b,
either show that a = b = g, or find c and d such that c is
the smaller number of a or b, d is the absolute difference
of a and b, and g is GCD of c and d.

21/22-Nov-2023 (9) CSCI 4152/6509 9

Sample Programs

public static int GCD(int a, int b) { // Java
while (a != b) {

if (a > b) a = a - b;
else b = b - a;

}
return a;

}

(define GCD (a b) % Scheme
(if (= a b) a

(GCD (min a b) (abs (- a b)))))

21/22-Nov-2023 (9) CSCI 4152/6509 10

Sample Prolog Program

gcd(A,A,A). ; Prolog
gcd(A,B,G) :- A =\= B, C is min(A,B),

X is A - B, D is abs(X),
gcd(C,D,G).

21/22-Nov-2023 (9) CSCI 4152/6509 11

Step 1. Logging in to server timberlea

• Starting the hands-on part of the lab
• Login to the sever timberlea
• Change directory to csci4152 or csci6509
• mkdir lab8
• cd lab8

21/22-Nov-2023 (9) CSCI 4152/6509 12

Step 2: Running Prolog

• Run SWI Prolog using command: swipl
• To exit Prolog type: halt.
• Run Prolog again
• Access to helpful documentation: help.
• First chapter of the manual: help(1).
• Help on a specific command: help(halt).
• Command to load a program is [’file’].

but we first need to write a program

21/22-Nov-2023 (9) CSCI 4152/6509 13

Step 3: GCD Program

• Exit Prolog
• Prepare the file named gcd.prolog with the

following contents:

gcd(A,A,A).
gcd(A,B,G) :- A =\= B, C is min(A,B),

X is A - B, D is abs(X),
gcd(C,D,G).

21/22-Nov-2023 (9) CSCI 4152/6509 14

Running GCD Program

• Save the file and suspend (or exit) the editor
• Run the Prolog interpreter (command ‘swipl’).
• Load the program using the command:
[’gcd.prolog’].

• There should be no errors reported, otherwise
you need to exit the interpreter and fix the
program.
• In Prolog interpreter type: gcd(24,36,X).

and then: ;

21/22-Nov-2023 (9) CSCI 4152/6509 15

Submission

• Submit the file gcd.prolog using
nlp-submit command
• It will be marked as a part of the next

Assignment

21/22-Nov-2023 (9) CSCI 4152/6509 16

Step 4: Prolog syntax

21/22-Nov-2023 (9) CSCI 4152/6509 17

Constants

Constants in Prolog start with a lowercase letter,
e.g.,

bill
car

21/22-Nov-2023 (9) CSCI 4152/6509 18

Numbers

Numbers (integer or float) are used in Prolog as
constants. e.g.,

5
7.1

21/22-Nov-2023 (9) CSCI 4152/6509 19

Variables

Variable names start with an uppercase letter or
an underscore (‘ ’).

e.g.,

X
T1
_a

21/22-Nov-2023 (9) CSCI 4152/6509 20

Anonymous variable

_ is a special, anonymous variable; two
occurrences of this variable can represent
different values, with no connection between
them.

21/22-Nov-2023 (9) CSCI 4152/6509 21

Predicate

A predicate can be considered a function. It is
written as a string starting with a lowercase
character, followed by (, followed by a list of
arguments separated by commas, and followed
by), e.g.,

happy(george)
father(george,X)

21/22-Nov-2023 (9) CSCI 4152/6509 22

Facts

A fact is a statement that a given predicate for given arguments is true:

happy(bill).
parent(bill,george).

These facts should be understood as: “happy(bill) is true”,
“parent(bill,george) is true”.

If a fact contains a variable, it means that the predicate is true for any
value of the variable, e.g.,

isFactor(X,X).

should be understood “for any value of X, isFactor(X,X) is true”

21/22-Nov-2023 (9) CSCI 4152/6509 23

Rules

A rule corresponds to the following form of a logical formula:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q

where n ≥ 1, and p1, ..., pn, q are predicates for some arguments, e.g.,

happy(bill) :- jogging(bill),rested(bill).

should be understood: “if jogging(bill) is true, and rested(bill) is true,
then happy(bill) is true”. Notice that , corresponds to ∧, and :-
corresponds to⇐

Rules usually contain variables. It means that the logical formula is true
for any values of the variables, e.g.,

older(Y,X) :- isChild(X), isAdult(Y).

should be understood: “for any X and Y, if isChild(X) is true, and
isAdult(Y) is true, then older(Y,X) is true”.

21/22-Nov-2023 (9) CSCI 4152/6509 24

Prolog program

• a Prolog program is a collection of facts and
rules
• it is called a knowledge base.

For example:

older(Y,X) :- isChild(X), isAdult(Y).
isChild(bill).
isChild(jane).
isAdult(rob).

21/22-Nov-2023 (9) CSCI 4152/6509 25

Querying Prolog knowledgebase

A query is typed after the Prolog prompt ?-

• A query without a variable:

?- isChild(bill).

means “Is isChild(bill) true?”
• A query with a variable:

?- older(X,jane).

means “List all values of X such that older(X,jane) is true”

?- older(A,B).

means “List all pairs of values of A and B, such that older(A,B) is true”

21/22-Nov-2023 (9) CSCI 4152/6509 26

Step 5: Roland and Franklin Example

• Type a ‘roland and franklin’ example in a file named
prog1.prolog with the following contents:

hare(roland).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

• After loading the file, on Prolog prompt, type:

faster(roland,franklin).

The Prolog interpreter will simply respond with the answer
‘true.’ and print the prompt again.

Try faster(X,franklin). and faster(X,Y). and you

21/22-Nov-2023 (9) CSCI 4152/6509 27

will see that the interpreter will print the correct assignments
for the variables X and Y.

21/22-Nov-2023 (9) CSCI 4152/6509 28

Step 6: Taking Courses

• Let us program the following rule:
– If a student X is taking a course Y, and the course Y has

lecture on a day D, then X is busy on D.
• In our database of facts, we will add the following facts:

– a student named ‘joe’ is taking a course named ‘nlp’
– ‘nlp’ has a lecture on ‘friday’
• We will see how Prolog infers that ‘joe’ is busy on ‘friday’
• You can notice how we use lowercase letters for constants

21/22-Nov-2023 (9) CSCI 4152/6509 29

Taking Courses Code

• Instead of starting a new file, you can simply add the
following code to the file ‘prog1.prolog’

busy(X,D) :- taking_course(X,Y), haslecture(Y,D).
taking_course(joe,nlp).
haslecture(nlp,friday).

• Try in Prolog interpreter (do not type ‘?-’ part):
?- busy(joe,friday).
?- busy(X,friday).
?- busy(joe,Y).
?- busy(X,Y).

• Remember to type ‘;’ after each answer

21/22-Nov-2023 (9) CSCI 4152/6509 30

Step 7: Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records) are expressed
as terms or predicates.

As an example, add the following line to prog1.prolog:

person(john,public,’123-456’).

In the Prolog interpreter, try: ?- person(john,X,Y).

An empty list is: [] and is used as a constant.

A list is created as a nested term using special predicate . (dot).
Example: .(a, .(b, .(c, [])))

21/22-Nov-2023 (9) CSCI 4152/6509 31

List Notation

We can use predicate ‘is_list’ to check that this is a list:

?- is_list(.(a, .(b, .(c, [])))).

A better way to write lists:

.(a, .(b, .(c, []))) is the same as [a,b,c]

This is also equivalent to:

[a | [b | [c | []]]]

or

[a, b | [c]]

21/22-Nov-2023 (9) CSCI 4152/6509 32

Programming with Lists

A frequent Prolog expression is: [H|T]
where H is head of the list, and T is the tail, which is another list.

Example with testing membership of a list:

Add the following code to prog1.prolog:

member(X, [X|_]).
member(X, [_|L]) :- member(X,L).

Try the following query in the interpreter:

?- member(a, [b,a,c]).
Yes

21/22-Nov-2023 (9) CSCI 4152/6509 33

More Queries with Predicate member

?- member(2, [1,3,4,5]).
No
?- member(X, [1,2,3,4,5]).
X = 1;
X = 2; ...and so on

Submit the file prog1.prolog using the command nlp-submit.

21/22-Nov-2023 (9) CSCI 4152/6509 34

Step 8: Arithmetic in Prolog

• Terms can be constructed using arithmetic function symbols
(declared to be infix), e.g.:
X+3, X-Y, 5*4

• Special predicate is forces evaluation of the right-hand side part,
e.g.:

?- X = 5*3.
X = 5*3 ;
yes
?- X is 5*3.
X = 15 ;
yes

21/22-Nov-2023 (9) CSCI 4152/6509 35

Example: Calculating Factorial

factorial(0,1).
factorial(N,F) :- N>0, M is N-1,
factorial(M,FM), F is FM*N.

After saving in factorial.prolog and loading to Prolog:

?- [’factorial.prolog’].
% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes
?- factorial(6,X).

X = 720 ;

Submit the file factorial.prolog using the command submit-nlp.

21/22-Nov-2023 (9) CSCI 4152/6509 36

Step 9: Task

Prepare and submit two files, as described in notes.

21/22-Nov-2023 (9) CSCI 4152/6509 37

