
Lab 7 p.1

Faculty of Computer Science, Dalhousie University 24/25-Oct-2023
CSCI 4152/6509 — Natural Language Processing

Lab 7: Using Twitter API with Python

Lab Instructor: Sigma Jahan and Mayank Anand
Location: Goldberg CS 134(u)/CS 143(g)
Notes author: Colin Conrad, Dijana Kosmajac, Vlado Keselj

Using Twitter API with Python
Important Note: This lab cannot be completed with a free Twitter account and the current Twitter API. It is not
required that students complete it. It is provided for information only.

Lab Overview

– Understand how Application Programming Interfaces (APIs) work
– Use the Tweepy package to extract tweets and profile information
– Clean text using Regex
– Export Tweets in a CSV format for later analysis

Step 1. Logging in to server timberlea

– Login to the server timberlea
As in previous labs, you should login to your account on the server timberlea.

– Change directory to csci4152 or csci6509
Change your directory to csci4152 or csci6509, whichever is your registered course. This directory
should have been already created in your previous lab.

– Create the directory lab7 and change your current directory to lab7:
mkdir lab7
cd lab7

Step 2: Register with Twitter API

So far, we have been using Python for data analysis which was already available to us through the NLTK package.
We are now going to learn about using Twitter API to collect a dataset for analysis. API (Application Programming
Interface), in a simple wording, is a software intermediary that allows two applications to talk to each other. APIs are
often provided by platforms that want developers to build apps for them. For instance, Twitter provides an API, but
so does Google Maps, Google Talk, Facebook, YouTube, AccuWeather, and many more. APIs let us bring outside
computing power into our apps, and they do this using web services. Most web services use the REpresentational
State Transfer (REST) protocol to provide the service. There are many resources on Internet where you can read
about the REST protocol.

In order to access the REST API, we will need a Twitter developer account.

About Twitter Developer Account: As mentioned, this lab requires that you have a developer Twitter account.
This has been a generally useful lab to show students how to collect their own data for a project, and how to use an
API of a social media company. However, we want to avoid making any kind of requirements for you to open a

October 24, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lab 7 p.2 CSCI 4152/6509

Twitter account and give out your private data if you do not want to, so we will first clarify the expectations and
different options that you have.

First, an IMPORTANT NOTE: You are not required to open a Twitter account if you do not want to in order to
get full marks for this lab. One option is just to write the code given in the lab and submit it, and also to submit a
note explaining that you prefer not to access Twitter for the lab, and that will be sufficient for full marks.

The second option if you do not have a Twitter account is that you get in touch with the instructor by email, and
we can send you access tokens that we generated, which you can use to access Twitter. Hopefully they will work,
but since it is not coming from your own account they may not work.

The third option is that you use your Twitter account. This is the best option if you want to fully experiment with
the lab and retrieve data from Twitter, but again, this is not required. Now, we will explain how to prepare your
account and prepare the access tokens for later use. If you have a chance, it is a good idea to do this preparation
ahead of the lab time, because you may need to wait for approval of your developer account. You should follow the
following steps:

1. To open a Twitter account, you should go to https://twitter.com and sign up for an account. You do
not have to use your real name, but you need to give your email address to verify developers account later. You will
also be required to give your mobile phone number to open a developers account.

2. To open a developer account, you should, while logged in Twitter, go to https://developer.twitter.
com and click on “Apply” to apply for a developer account. This will require that you have a verified mobile phone
number associated with the account. In further steps, you can choose “Academic”, “Student”, and other appropriate
parameters. You will not need to analyze or post data, or share with anyone, so you should not choose those options.
Once you submit the application, it is verified via email.

3. You should create your project, and give an app name. For example, you can name your project and app
NLPprj, choose use case “Student”, give a project description as the lab in the course, and you will obtain the API
Key and API Key Secret, which you should save in a text file. You should also save the Bearer Token which is
generated. Then, you should go to “Keys and Tokens” and generate the Access Token and Secret. For this, you may
need to got the Dashboard and click on an icon “keys and tokens”. Save Access Token and Access Token Secret
in you text file, and you should be ready for the lab.

If you want, you can keep open the last Twitter page so you can more easily copy the tokens later in the lab.

Step 3: Tweepy Package

Python has a package system which are essentially software libraries that extend basic Python functionality. For
example, there is the csv package used to manage files in the CSV format, which is one of the basic libraries of
Python and is maintained by the Python Software Foundation. Most packages however are maintained by a special
community of dedicated users of that package. For example, we saw the package Natural Language Toolkit (nltk),
then there is a library Tweepy (tweepy) for Twitter API access, Python Data Analysis Library (pandas) to better
manage data for data analysis, SciPy (scipy) with additional numerical functionality, and others. To help manage
these packages, the newer Python versions are shipped with a package manager called pip. You can read more
about the Tweepy package at its web site at: https://github.com/tweepy/tweepy

Tweepy should be already available on the timberlea server. We will check if it is available by starting our a
script, which we will call the Twitter-Profiler script. In the lab7 directory, create a file named
lab7-twitter-profiler.py and enter the following contents into it:

#!/local/bin/python
File: lab7-twitter-profiler.py
Twitter Profiler app. This is a simple script to configure the Twitter API

import tweepy # Comment: https://github.com/tweepy/tweepy

https://twitter.com
https://developer.twitter.com
https://developer.twitter.com
https://github.com/tweepy/tweepy

CSCI 4152/6509 Lab 7 p.3

import time

You can run this script using the command:

python lab7-twitter-profiler.py

or, you can make the script user-executable by setting the appropriate permissions, and run it using the command:

./lab7-twitter-profiler.py

If you do not get any error, it means that the tweepy package is available; otherwise you would get an error as
follows:

ModuleNotFoundError: No module named ’tweepy’

Installing tweepy as a root: The package tweepy is installed on timberlea, but if you are in a situation
that you need a Python package that is not installed on a server, there are ways to install it. If you have root
privileges, the most common way is to use those privileges to install it on the system by running a command like
this:

sudo pip install tweepy

The sudo command uses administrator (i.e., root) privileges, and the command pip is a command for installing
Python packages.

Installing tweepy as a user: If you are working on a system with many users, like timberlea, chances are
that you do not have root privileges, so you cannot install a package on the whole system. You can still install a
Python package locally, to be used only by you, and in a certain application. This set-up is called a local virtual
environment in Python. To install tweepy in a local virtual environment you would need to use the following
commands:

python -m venv .
source ./bin/activate
pip install tweepy

In this way, you could use the package tweepy even if it were not installed on the server as a whole.

Step 4: Create the Twitter-Profiler Script

Now, you can continue and complete the lab7-twitter-profiler.py script as follows:

#!/local/bin/python
File: lab7-twitter-profiler.py
Twitter Profiler app. This is a simple script to configure the Twitter API

import tweepy # https://github.com/tweepy/tweepy
import time

Twitter API credentials. (You do not have to type the rest of this
comment in your script.)

Lab 7 p.4 CSCI 4152/6509

The credentials below are just shown as an example. If you created
your own tokens you can use them here. If you do not have Twitter
account or tokens, you can check with instructor to obtain them.
The third option is that you do not run the script and write a note
why you could not use credentials in a file named: lab7-readme.txt

If you have credentials, fill them below as strings as follows:
consumer_key is the same as API Key
consumer_key = "FC1HCyMBei**********"
consumer_secret is API Key Secret
consumer_secret = "lLXBeSYowLHHDCJS***********"
access_key is Access Token
access_key = "2841901529-MAFxKe**********************"
access_secret is Access Token Secret
access_secret = "6QcxzJR**********************"

this function collects a twitter profile request and returns a
Twitter object
def get_profile(screen_name):

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
api = tweepy.API(auth)
try:

user_profile = api.get_user(screen_name=screen_name)
except:

user_profile = "broken"

return user_profile

s = get_profile("DalhousieU")
print(s)

If you run this script, and have valid credentials, you should get output that would start like this:

User(_api=<tweepy.api.API object at 0x7fd49835d490>, _json={’id’:
42391676, ’id_str’: ’42391676’, ’name’: ’Dalhousie University’,
’screen_name’: ’DalhousieU’, ’location’: ’Nova Scotia, Canada’,
’profile_location’: {’id’: ’bb176f7b6355d404’, ’url’:
’https://api.twitter.com/1.1/geo/id/bb176f7b6355d404.json’,
’place_type’: ’unknown’, ’name’: ’Nova Scotia, Canada’,
’full_name’: ’Nova Scotia, Canada’,
...

If you get simple output ‘broken’, it means that probably credentials did not work, or there was some other error.

We will now explain the script a bit more: The import statements are used to import tweepy and time libraries. The
time library makes it so that we can interpret time data structures, which is very helpful for interpreting tweets.

The consumer key and other variables are the keys and tokens that are used by the Twitter API in order to be
allowed to access Twitter and get data. We talked about how to get these keys and tokens from the Twitter developer
interface.

We can take a look at the following function:

CSCI 4152/6509 Lab 7 p.5

def get_profile(screen_name):
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
api = tweepy.API(auth)
try:

user_profile = api.get_user(screen_name=screen_name)
except:

user_profile = "broken"

return user_profile

The auth variable contains the OAuth object for logging into the Twitter API using your Twitter account credentials.
The auth.set access token handles the other part of the Twitter OAuth process, which gets you into the
API. Finally, the api variable saves the API session for use in the Python script. With this, we can use Tweepy and
access Twitter’s API securely. If you are interested about the OAuth standard used to access Twitter API, you can
read more about in the Wikipedia page.

Step 5: Interpret Something Useful

We have code that works, but its output is very messy and not user readable. This is simply the Twitter API data.
When you print Tweepy’s Twitter API object, you will receive a lot of JSON, which is the format that the API uses
to dump data.

Let’s try modifying the script to only show some relevant features. Modify the end of the
lab7-twitter-profiler.py to something like this:

s = get_profile("DalhousieU")
print(s)
print("Name: " + s.name)
print("Location: " + s.location)
print("Description: " + s.description)

So, you the first ‘get profile’ is the old line, you comment out the ‘print(s)’ line, and you add the three
lines as shown. If you run the script again, you should get output similar to this:

Name: Dalhousie University
Location: Nova Scotia, Canada
Description: This is #DalhousieU - Atlantic Canada’s leading
research-intensive university, just steps from the ocean.

That is a bit more usable. How did we change this? When the Twitter API creates a REST query, it makes a JSON
request. JSON (JavaScript Object Notation) is widely adopted format for transferring web data. To get the raw
JSON object directly, you can use s. json property, instead of accessing individual attributes.

The problem is that Python is not designed to interpret JSON. Tweepy is a library designed specifically to transform
JSON data into a Python-readable Twitter object. This is why we are able to simply state s.location and receive
the location. As you likely know, this is not normally allowed in Python.

Try tinkering with this. You can learn more about the Twitter profile object here: https://developer.
twitter.com/en/docs/tweets/data-dictionary/overview/user-object

You should create the file lab7-readme.txt by now. You can make a comment in it if you accessed Twitter
API successfully, or if not, describe briefly the issue.

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object

Lab 7 p.6 CSCI 4152/6509

Submit: Submit the program lab7-twitter-profiler.py and the file lab7-readme.txt using the submit-nlp
command.

Step 6: Retrieving a User’s Tweets

So far, we have managed to get Python to print a given user’s profile information. What about collecting user tweets?
This is surprisingly simple because of how the Tweepy library structures the data. Recognizing that each user is a
Twitter user object, it follows that a users’ tweets must likewise be in some way related to that object. Profiles and
tweets have what is often called a “one-to-many” relationship, where there are many tweets to a given user.

To search for ways to collect tweets, we can look at the Twitter API documentation. Take a quick look and try to see
what is going on: https://developer.twitter.com/en/docs/tweets/timelines/overview

The docs say that we should use the user timeline function to access a users’ tweets. Immediately, we might
think that the simplest way to do this is to call the user timeline function on the user object. However, this
will not work, as the user timeline function is a call to the Twitter API object, not the user object. This is what
is implied when the documentation requires a screen name or id to make the call.

It makes more sense to create a separate get tweets function that takes the screen name as input and returns
the user tweets. Let us try something like the following:

First, copy the previous lab7-twitter-profiler.py script into a new file called: lab7-tweets.py
using command:

cp -a lab7-twitter-profiler.py lab7-tweets.py

(We use the -a option with cp in order to preserve user-executable permission on the file.)
Now, you should edit the file lab7-tweets.py in the following way: First, replace the first part:

#!/local/bin/python
File: lab7-twitter-profiler.py
Twitter Profiler app. This is a simple script to configure the Twitter API

import tweepy # https://github.com/tweepy/tweepy
import time

with the following:

#!/local/bin/python
File: lab7-tweets.py
Retrieving user tweets

import tweepy, time, csv

This is a simple description update, we import one more package csv, and show how to combine several packages
in one import statement. After this we will leave everything that we had before, except deleting the following
bottom part of the file:

s = get_profile("DalhousieU")
print(s)
print("Name: " + s.name)
print("Location: " + s.location)
print("Description: " + s.description)

https://developer.twitter.com/en/docs/tweets/timelines/overview

CSCI 4152/6509 Lab 7 p.7

After deleting this part, we will first define a new function get tweets for retrieving tweets of a user. It has a lot
of similarity to the get profile function, so you may want to start by copying get profile function below
itself, and by editing it. The function get tweets should look as follows:

this function collects twitter profile tweets and returns a Tweet
object
def get_tweets(screen_name):

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_key, access_secret)
api = tweepy.API(auth)
try:

https://developer.twitter.com/en/docs/tweets/timelines/overview
describes user_timeline
tweets = api.user_timeline(screen_name=screen_name, count=20)

except:
tweets = "broken"

return tweets

After this function, add a couple line of code to test the script as follows:

t = get_tweets("DalhousieU")
print(t)

If you run the program with valid credentials, you should see the output in the JSON format, which looks as
follows:

[Status(_api=<tweepy.api.API object at 0x7f3ce58be6d0>,
_json={’created_at’: ’Mon Oct 25 21:00:14 +0000 2021’,
’id’: 1452741818211311619, ’id_str’: ’1452741818211311619’, ’text’:
’Here are 4 things you should experience this fall in Nova Scotia,
according to @DalStudentLife \U01F383 \U01F33D \u2615 \U01F342
https://t.co/OSEUqTC5Ty’, ’truncated’: False, ’entities’:
{’hashtags’: [], ’symbols’: [], ’user_mentions’:
[{’screen_name’: ’DalStudent Life’, ’name’: ’Dal Student Life’,
...

This result looks like a big mess of API Tweet results, but it is a good sign, because it means that our script is
working. However, it needs to be further refined.

When using Tweepy, each tweet is an object in itself, complete with a series of properties which can be accessed.
Our results currently give us a list of 20 Tweets, each with a lot of data. We can organize our data better by
accessing just the text property of the tweets. Let us modify the code to loop through the data and give use the
tweet content. Let us modify the code in the file lab7-tweets.py by commenting out the last print statement,
and introducing a for-loop to print text of the tweets. The bottom of the file should now look like this:

t = get_tweets("DalhousieU")
#print(t)
for tweet in t:

print(tweet._json["text"] + ’\n’)

You can run the program, and if you implemented this correctly and have valid credentials, the program should
produce a short list of tweets which looks as follows:

Lab 7 p.8 CSCI 4152/6509

Here are 4 things you should experience this fall in Nova Scotia,
according to @DalStudentLife \U01F383 \U01F33 \U01F33D \u2615
\U01F342 https://t.co/OSEUqTC5Ty

Interested in being #DalBound next year? Register for our November 6th
virtual Open House and: Explore student\u2026 https://t.co/jWwaicohHu

This week, learn about Amyl Ghanem, an associate professor in the
Department of Process Engineering and Applied Sci

Our #DalUnited Way campaign starts today. Consider donating to this
worthy community cause. Our goal this year is t\u2026 https://t.co/g0yhnLaxbC

@mycampusgps Gorgeous photos!

\U01F642\U01F643 You won’t want to miss the ’Happiness in Troubled
Times’ virtual symposium, put on by @DAL_FASS. The event takes
...

Submit: Submit the program lab7-tweets.py using the submit-nlp command.

Step 7: Exporting Tweets to a CSV File

So far, we have managed to develop a script that collects a given user’s tweets. However, the program currently
only prints the tweets that we find. We may want to save the tweets in a bit more structured format in a CSV file
(comma-separated-values file which can be easily imported into a spreadsheet program like Excel).

We will write a script by making a copy of the previous script using the command:

cp -a lab7-tweets.py lab7-tweets-csv.py

and modify the start of the new file as follows:

#!/local/bin/python
File: lab7-tweets-csv.py
Save tweets to a csv file

import tweepy, time, csv

We see that the script imports the csv library, which we did not use until now. Now, we will modify the bottom
part of the script so that it does not simply prints tweets, but so that it saves each tweet into one row of a csv file.
In addition to the text of a tweet, we might also want some other information, such as the id of the tweet, and the
user who wrote it. We should also make sure to add a header for the csv file at the very beginning. The new end of
a script should look something like this (just a draft):

with open (’lab7-tweets.csv’, ’w’) as outfile:
writer = csv.writer(outfile)
writer.writerow([]) # will insert feature names here
for tweet in t:

writer.writerow([]) # write feature values here

You should now got the end of the script and delete the following part:

CSCI 4152/6509 Lab 7 p.9

t = get_tweets("DalhousieU")
#print(t)
for tweet in t:

print(tweet._json["text"] + ’\n’)

and replace it with the following code:

we list here some interesting Twitter profiles whose tweets we want to collect
profiles = ["DalhousieU", "google", "msdev", "CBCNS"]

we open csv file for writing
with open(’lab7-tweets.csv’, ’w’) as outfile:

writer = csv.writer(outfile)
write header row with interesting features
writer.writerow(["id","screen_name","created_at","text"])
for profile in profiles:

t = get_tweets(profile)
for tweet in t:

writer.writerow([tweet.id,tweet.user.screen_name,
tweet.created_at,tweet.text.encode("utf-8")])

another way to write this row is
tweet = tweet._json
writer.writerow([tweet["id"],tweet["user"]["screen_name"],
tweet["created_at"],tweet["text"].encode("utf-8")])

If you implemented this correctly and have valid credentials, you can run the script and it should create a lab7-tweets.csv
file which would look as follows:

id,screen_name,created_at,text
1452741818211311619,DalhousieU,2021-10-25 21:00:14+00:00,"b’Here are 4 things...
1452720376467922948,DalhousieU,2021-10-25 19:35:02+00:00,b’Interested in bein...
1452666499047559180,DalhousieU,2021-10-25 16:00:57+00:00,"b’This week, learn ...
...

The CSV file should include 20 latest tweets from each of the profiles: Dalhousie University, Google, Microsoft,
and CBC Nova Scotia news. You can open it also in Excel format for better viewing. One issue with Excel is that
the first column will be converted to numbers instead of treating them as strings.

Submit: Submit the program lab7-tweets-csv.py and the file lab7-tweets.csv using the submit-nlp com-
mand, or by uploading at the course web site. If you do not have Twitter credentials and cannot create the
lab7-tweets.csv file, you can download it from the course web site under the ’Misc’ label, or you can use
this short URL: https://vlado.ca/nlp/misc using the common userid and password communicated on
the class email list.

Step 8: Processing with NLTK

We have saved the CSV file with tweets collected from Twitter, or you can download it from the above site. Now,
we will look at a short exercise to extract some information from collected data. You should start a new Python
script called lab7-hashtags.py and start it as follows:

#!/local/bin/python
File: lab7-hashtags.py

https://vlado.ca/nlp/misc

Lab 7 p.10 CSCI 4152/6509

Find tweet hashtags and tokens

import csv, nltk

with open (’lab7-tweets.csv’, ’r’) as infile:
reader = csv.reader(infile,quotechar=’"’)
for row in reader:

print(row)

You can run the script and you should see the output like this:

[’id’, ’screen_name’, ’created_at’, ’text’]
[’1452741818211311619’, ’DalhousieU’, ’2021-10-25 21:00:14+00:00’,
"b’Here are 4 things you should experience this fall in Nova Scotia,
according to @DalStudentLife \\xf0\\x9f\\x8e\\x83 \\xf0\\x9f\\x8c
...

This is just an initial test. You should continue writing the lab7-hashtags.py file by replacing the print(row)
command with some other commands to analyze tokens. Use the NLTK library to extract word tokens from each
tweet (no tweet cleaning necessary). Print to the standard output unique word tokens per account. Then from each
token list per account extract hashtags and print them as well. The output should look like this:

DalhousieU:

* unique tokens: Here, are, things, ...

* hashtags: #DalBound, #DalUnited, ...
Google:

* unique tokens: Hi, Shanaya, Without, ...

* hashtags:
msdev:
...

The order of the tokens and hashtags is not important, but they must print all of them and they should not be repeated.
you can notice that in the sample of Google tweets we did not find any hashtags, so we did not print any.

Submit: Submit the program lab7-hashtags.py using the submit-nlp command, or by uploading at the course
web site.

This is the end of Lab 7.

	Using Twitter API with Python

