
Lab 4 p.1

Faculty of Computer Science, Dalhousie University 3/4-Oct-2023
CSCI 4152/6509 — Natural Language Processing

Lab 4: Git and GitLab Tutorial

Lab Instructor: Sigma Jahan and Mayank Anand
Location: Goldberg CS 134(u)/CS 143(g)
Notes author: Vlado Keselj

Git and GitLab Tutorial

Lab Overview

You will learn or refresh your knowledge about:

– GitLab Web interface
– How to checkout projects in Git
– Adding and deleting files and directories to Git and GitLab
– Committing and pushing your changes
– Checking out previous commits
– Elements of collaborative work: creating branches
– Merging branches and resolving conflicts

Required operations and files to be submitted:

1. README.md file created in GitLab
2. directory lab4g and file id_rsa.pub in it
3. directory lab4g should contain explore.pl and Shakespeare__Hamlet-25k.txt, with the com-

mits for versions 1.0 and 1.1. of explore.pl
4. branch ada-main-program is created, have required commits, and merged later into master
5. branch bob-function-explore is created, have required commits, and merged later into master

What is GitLab?

Most software development companies use some system for source version control which enables efficient storage
and retrieval of different versions of the source code being developed and a way for different developers to
collaboratively work on it. By collaborative work, we mean that they can write and test code independently at the
same time, and there is a way to merge their changes easily in the final project. Git is an example of such version
control system, which is widely used and very popular. Another example of such system is Subversion, or SVN for
short. GitLab is a web-based system which is based on the Git source version control system and provides some
additional functionality in a web-app style, similarly to another popular on-line platform — GitHub. Both GitHub
and GitLab provide a Web interface to access and manage your Git repository.

GitLab is a Web-based DevOps platform, delivered as a single application, that provides a Git-repository manager
providing wiki, issue-tracking and CI/CD pipeline features, using an open-source license, and developed by GitLab
Inc. Continuous Integration (CI) is an established process to continuously provide integration of written code
provided by a team in a shared repository. Developers share the new code in a Merge Request, also called a Pull
Request. The request triggers a pipeline to build, test, and validate the new code prior to merging the changes
within the repository. Continuous Delivery (CD) ensures the delivery of CI validated code to the app by means

October 3, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lab 4 p.2 CSCI 4152/6509

of a structured deployment pipeline. In general, CI helps the developers to catch and reduce bugs early in the
development cycle, and CD moves verified code to the applications faster.

Some References

In this tutorial you should learn basic elements of Git and GitLab. For more information and tutorials on GitLab,
you can refer to the official documentation:

https://docs.gitlab.com/ee/README.html

The following is a great interactive on-line tutorial for basic Git operations:

https://learngitbranching.js.org

We rely on material developed for several tutorials provided at Dalhousie:

– “Tools of the Trade” tutorial by Alex Brodsky for CSCI 2134,
– “Git Command Line Basics” tutorial by Sarah Meng Li and Robert Hawkey for CSCI 3130, and
– contributions by Dijana Kosmajac.

We will now start a hands-on tutorial of working with the Dal FCS GitLab site, and also using your timberlea
account to work on a project using Git.

Step 1. Logging into DalFCS GitLab Website

The Faculty of Computer Science (FCS) at Dalhousie provides an open-source version of GitLab, which we will use
in this tutorial.

Open your Web browser and go to the Dalhousie FCS GitLab web site: https://git.cs.dal.ca You should
be able to see the Login screen, as shown in Figure 1. Login with your CSID login and password.

Figure 1: Dal GitLab login screen.

A user of GitLab can participate in different projects and have different roles in them. All participants of a project
are called members. The roles can be an Owner, Maintainer, Developer, Reporter, or Guest. We will refer to the
Dalhousie FCS GitLab installation as a repository of these projects, but we will also refer sometimes to your project
as the repository. Since we use the term course project as the part of your coursework, we hope that this will not
be confused with referring to the concept of GitLab project, which we will call sometimes a repository as well. It
should always be clear from the context to which concept we are referring to.

https://docs.gitlab.com/ee/README.html
https://learngitbranching.js.org
https://git.cs.dal.ca

CSCI 4152/6509 Lab 4 p.3

Since you can be a member of different projects in GitLab, you first need to find the project that is assigned to
you within the NLP course. This project has the same name as your CSID and it is within the NLP project group,
within this term (Fall 2023). In order to find it you can use the “Projects” or “Groups” menu option in the GitLab
Web interface, or directly type in the URL of the project. Once you find it, the browser should show the fol-
lowing URL: https://git.cs.dal.ca/courses/2023-fall/nlp-course/<your csid> where
<your csid> is your CSID. Figure 2 shows how the front page of this project should look like, approximately,
with some possible minor differences.

Figure 2: Front page of your GitLab NLP repository

Lab 4 p.4 CSCI 4152/6509

Step 2: Creating a README File in GitLab

Your course GitLab repository is empty at this moment, or at least it should be, and in this step we will see how
to create and edit a file directly through the GitLab Web interface. Using the web interface is not a common nor
recommended way to create and edit files in the repository but it can be handy in some cases. We will also learn
some elements of Markdown—a lightweight markup language, which is conveniently formatted into nice HTML
when viewing it.

A README file is very common for projects in general, since, as its name suggests, it is something that users
unfamiliar with the project will first open to learn about the project. This is why there is a special button “Add
README” in GitLab to create such file. Click button “Add README”. ⇐ Click

A file named README.md will be opened for editing. Enter the following contents into it, almost all verbatim
except the four lines at the beginning where you need to add your information:

CSCI 4152/6509 Natural Language Processing (Fall 2023)
GitLab Course Repository

Student Details

Table example:

Student Name:	(enter your name)
CSID:	(enter your CSID)
Banner Number (B00 Number):	...
Dal E-mail Address:	...

Some Examples in MD (Markdown)

This is an example of an unordered list:

* The first item,

* The second item,

* and so on.

And this is how to create an ordered list:
1. The first item,
1. The second item (number 2 is generated even though

we type 1 again)
1. The third item and so on.

If we want to include some code, we can use the "pre" tag:
<pre>
$ ls -l
$ pwd
</pre>
or
<pre>$ ls -l</pre>
<pre>$ pwd</pre>

README.md

After typing the above content, you can click on the ‘Preview Markdown’ tab to see how the content looks when
formatted into HTML, and then you can click ‘Edit’ again to return to the previous view.

CSCI 4152/6509 Lab 4 p.5

Now, you should commit this change by clicking the blue button in the lower left corner ‘Create Commit. . . ’. New
window should appear with a ‘Commit Message’. You can leave the commit message as it is, or you can make it
more descriptive. Do not change the Target Branch (it should be main by default), and click the button ‘Commit’ to
save the changes into the repository; i.e., to ‘commit’ them. After that, when you go to the main project repository,
you should be able to see the contents of the README.md file nicely formatted in HTML. We will explain the
commit operations and the main branch later. It is possible that the default branch is named master, in which
case just call it ‘master‘ whenever we use the name ‘main‘. It is possible that the default main branch name, which
is usually ‘master’ or ‘main’, is customized on per user basis.

Submit: The file README.md must be created in the GitLab repository as described. If you finished the given instructions
it is submitted already.

Note: Even though we have shown how to edit a file directly using the GitLab Web interface, this should rarely, if
ever, be done. It is very convenient here to make the first edit of the README file because we can immediately see
how it looks on the web, however editing other files in this way should be avoided. As we will see later, the proper
way to work on the files is to create a branch and test the changes before making them generally available to the rest
of the team.

Now we will switch into working on a terminal by logging in into the timberlea server. You should keep your
browser open with the GitLab page so you can later check the new contents of your GitLab repository as you keep
updating it.

Repository Graph: At this point we can check the repository graph. We will check this at certain points in this
tutorial to verify that you executed certain steps as requested. You should see close to the top of your repository, just
under your CSID title, a link labeled ‘1 Branch’, which you should click. This will show active branches with all
commits, and now you should click the ling ‘Graph’ on the left-hand side. This should show a single vertex labeled
with the branch name ‘main’ and probably the message ‘Update README.md’, denoting the single commit, as
shown below:

main Update README.md

Step 3: Logging in to server timberlea

As in the previous labs, login to your account on the server timberlea using ssh or PuTTY command.

Change your directory to csci4152 or csci6509, whichever is your registered course. This directory should
have been already created in your previous lab.

Create the directory lab4 and change your current directory to be that directory.

Check that you are in the right directly by running the command:
pwd

The output should show a path that looks like this: your home directory/csci4152/lab4 or
your home directory/csci6509/lab4.

This is the directory where you should keep files from this lab.

Step 4: Using HTTPS Address in Git

Step 4-a: Find GitLab repository address

Our first step is to get a copy of your GitLab repository in our local directory. This operation in Git is called
clone because we are copying (i.e., cloning) not only the latest versions of the files, but also history of their
revisions in our local directory. The clone command requires the address of the remote repository and there
are two variations of address that we can use: we can clone using SSH from an address that looks like this

Lab 4 p.6 CSCI 4152/6509

git@git.cs.dal.ca:courses/2023-fall/nlp-course/<your csid>.git
or using HTTPS from an address that looks like this

https://git.cs.dal.ca/courses/2023-fall/nlp-course/<your csid>.git
where <your csid> needs to be replaced with your CSID. You can also find and copy any of these addresses
from your GitLab repository after clicking at the top blue button labeled as “Clone,” as shown in Figure 3.

Figure 3: Finding the Address of Your Repository

Any of these addresses, SSH or HTTPS, can be used to clone the repository. If we use the HTTPS option, then you
will need to enter CSID and password to clone the repository and also repeat it later for any git command that
communicates with the GitLab repository. A somewhat more convenient way is to use the SSH address, because we
can set up our SSH key in such way that we do not have to use the password each time, and instead we rely on the
private-public key authentication. We will test both of these addresses, but later we will continue working with the
SSH address.

Step 4-b: Clone Repository via HTTPS

Make sure that you are in the right directory by running the command
pwd

The output should be:
˜/csci6509/lab4

or
˜/csci4152/lab4

where ˜ is your home path directory. Now, you need to clone your GitLab repository using the command:
git clone https://git.cs.dal.ca/courses/2023-fall/nlp-course/<your csid>

where <your csid> is your CSID, as before. You will be prompted to enter your CSID and password, and after
that you should be informed that the repository is successfully cloned by showing 100% received objects. You
can verify that by using the command ls to see that a directory named <your csid> is created in your current
directory. You should then run the command:

cd <your csid>

to enter the copy of your repository, and using the command ls you can see that it contains the file README.md,
which you created using the GitLab web interface.

Step 5: Prepare and Submit Public Key

Step 5-a: Create Directory and Check Keys
We will create a directory named lab4g as a part of the GitLab repository where we will store some more files
that we will create in this lab. We name it differently than lab4 in order to distinguish it from the directory lab4,
which was previously created and which is not part of the GitLab repository. First, you need to make sure that you
are in your <your csid> directory, which is part of the Git project, as left in the previous step. If you use the

CSCI 4152/6509 Lab 4 p.7

command pwd, you should get the output that looks like:
˜/csci6509/lab4/<your csid>

or
˜/csci4152/lab4/<your csid>

Now, to create the directory, run the command:
mkdir lab4g

and make that directory your current directory:
cd lab4g

Now we need to prepare the public and private ssh key. It is possible that you created those keys before, so first
check whether they are there using the command:

ls ˜/.ssh/

If the command lists the files id_rsa and id_rsa.pub then the keys were created before; if not, then we need
to generate them. Before we generate the keys, it is important that you understand the following security note.

Security note about attaching a password to a private key: From the security perspective, it is generally
recommended to always have a good password attached to a private key; however, this is not required and in many
situations it is more convenient not to have a password. We will assume in further instructions that you do not attach
a password to the private key. If you prefer to create a password, you can do it—the only difference is that you will
need from time to time enter your password, which we will not assume in the lab notes, and if you want to make it a
bit more convenient you will need to use an ssh agent. In any case, you should know what are trade-offs in risks
and convenience in using password or not. If you attach a password to your private-public key pair, it means that
whenever you use your private key you need to enter the password. In this way, if someone gets a copy of your
private key, they still can not use it until they get the password, so it is more secure. On the other hand, we use the
private-public ssh key here in order to have password-less communication with GitLab, so having a password in a
way defeats the purpose of using a public key for access. We assume that you will keep your private key secret,
and that guarantees that no one else can access your GitLab repository identifying as you. You should remember
that you must not share your private key and make sure others do not have access to it (e.g., via file permissions,
backups, etc.).

If you are interested in the way to have a password attached to a key and not to have to type it often, you can look
into using an ssh agent. It is used by running a command at the beginning of your login session to timberlea
where you need to type your key password, and during that session you do not need to retype it.

Step 5-b: Generate Keys If Needed
Now, going back to key generation, if we need to generate the keys, we will use the following command:

ssh-keygen -t rsa

You should respond by pressing the Enter key to all questions: first, keep the file names as default offered names,
and on the prompt for password, just press an Enter in order not to use the password. If you prefer, you can use the
password, but then you will need either to type it for many git operations, or you will need to use an ssh agent, as
we stated in the note above.

The ssh-keygen command generates two files: id_rsa contains your private key, and you should keep it
confidential and not share with anyone; and id_rsa.pub contains your public key, which you can share, and
which we will use to provide password-less access to GitLab when accessing it from your timberlea account.
You can check again that the key files are indeed generated by typing:

ls ˜/.ssh/

Now you should copy the public key file ˜/.ssh/id_rsa.pub into your current directory, which should be
lab4g. You can do it using the command:

cp ˜/.ssh/id_rsa.pub .

Step 5-c: Adding Files in Git

Lab 4 p.8 CSCI 4152/6509

We are now going first to commit the file to our local Git repository. In Git, we first need to add any files that we
want to commit to the so-called staging area by using the command ‘git add’ and then we use ‘git commit’
to commit; i.e., to save files into our local Git repository. The commit command requires a log message, and in order
to prevent an editor to be automatically opened to enter this message, we will provide it in the command line. To do
all this, use the following two commands:

git add id_rsa.pub
git commit -m’Commit id_rsa.pub’

Our public key file is submitted to our local git repository, and now we need to ‘push’ it to the remote GitLab
repository. This git operation is called push and we run it using a ‘git push’ command. The remote GitLab
repository address is saved and known as ‘origin’, and our current branch is ‘main’, so we are going to use these in
the command without more explanation about them at the moment. Run the following command and be ready to
enter your CSID and password:

git push -u origin main

Enter your CSID and password at the following prompts:
Username for ’https://git.cs.dal.ca’: <your csid>
Password for ’https://<your csid>@git.cs.dal.ca’: <your password>

You should see a short report from git showing that 100% of objects are written to the repository.

Now, go to your Web browser window, which should have the GitLab site still open and logged in, and you should
be able to find your public key file there. First, if you reload the page you should now see the directory lab4g
and when you open it there should be a file named id_rsa.pub, which you should also open. The file should
start with ssh-rsa and then followed by a long seemingly random string of letters and digits, which encode
information of your public ssh key. With this, you successfully fished the Step 5.

Submit: The directory lab4g and the file id_rsa.pub should be submitted in your GitLab repository by this time.

Repository Graph: As explained before, you can check your repository graph on the GitLab website. It should
look similarly as the graph shown below:

main Comit id_rsa.pub

Update README.md

Step 6: Setting up SSH Key in GitLab

We will now continue from the end of your previous step, where you had your GitLab repository open in your browser.
You should find again the file id_rsa.pub there, in the directory lab4g, and open the file id_rsa.pub by
clicking on it. In the top-right corner, you should be able to notice an icon with a little clipboard and a square over
it, and if you hover over it with your mouse, it should show the tooltip “Copy file contents”. Click it, and in this
way you will have the contents of the file id_rsa.pub saved in your computer clipboard buffer (same as if you
pressed Ctrl-C for ‘copy’).

Click on the icon in the top right corner of the GitLab page, which represents your avatar. If you already set up
your avatar (e.g., photo of you), it should be shown here, or by default it will show a person’s profile shadow. After
clicking on it, you should see a pull-down menu and you should click on “Preferences” on it. Now, on the left menu,
you should see the “SSH Keys” option, and you should click on it. You will se a textbox under the “Key” label,
with an explanation above that starts with “Add and SSH key for secure. . . ”. Click on the box and press Ctrl+V
combination to paste the key. You should remove any possible empty lines around the key, so that the key remains
by itself in one line. When you remove these empty lines, the button below with the label “Add key” should become
blue. You can modify the Title field if you want, and then you can click the blue button “Add key”. With this you
have set up your SSH key in GitLab and should be able now to work with the repository from your timberlea
account without a need to enter your CSID and password frequently.

CSCI 4152/6509 Lab 4 p.9

Step 7: Clone with SSH

Go back to the timberlea terminal, in other words click on your terminal window, where you are logged in the
timberlea server. You should check your working directory using the command pwd. You are probably in the
directory with path ending with /lab4/<your csid>/lab4g. We need to be now in the directory lab4, and
you can achieve this with the command: cd ../..

Rename your previously cloned directory named <your csid> to <your csid>-https using the command:
mv <your csid> <your csid>-https

In this way, it will not conflict with a new cloned copy with the same name, which we will make using the SSH
address. Clone the repository using the SSH command as follows:

git clone git@git.cs.dal.ca:courses/2023-fall/nlp-course/<your csid>.git

Assuming that you have set up your SSH key correctly, this command should run without prompting you for a
password, and after executing it you should see the directory named <your csid> in your current directory. If
you run the command ls you should actually see two directories <your csid> and <your csid>-https.
You can now delete your previously cloned directory <your csid>-https by using the command:

rm -rfv <your csid>-https

Be careful to run exactly the above command! You must be always very careful with the command rm in order
not to remove a directory that you do not want to remove.

Step 8: Preparing Files explore.pl and Shakespeare

One useful function of Git, as well as other source version control systems, is that it keeps history of various versions
of source files, so in a case that we want to go back and retrieve older version of a file or set of files we can easily do
it. We do need to make a decision when to take these snapshots of the files and commit them, because only the
committed versions can be retrieved later. In this step we are going to explore this functionality.

Make sure that you are in your main directory of your cloned project; i.e., in the directory path that ends with
lab4/<your csid>. Type in the command:

ls -la

and you should see an output like this (approximately, and ignoring two lines for . and .. entries):
drwx------. 8 <your csid> <your csid> 14 Feb 2 08:58 .git
drwx------. 2 <your csid> <your csid> 3 Feb 1 22:36 lab4g
-rw-------. 1 <your csid> <your csid> 5 Feb 2 08:58 README.md

You should remember that we created the file README.md and the directory lab4g. The hidden directory .git is
the directory where our local repository is stored and you should not edit it directly. Git also keeps there information
about our remote repository at GitLab and its address. Git is a distributed source version control system, which
means that our local repository keeps the files history, but this history is also kept at the remote repository. We do
not generally have to have a remote repository and we can have more than one. We can save and retrieve files to and
from each of them separately. For comparison, Subversion (or SVN) is a centralized system where we work only
with a working copy of the files and the history is kept only at one central repository, which can be either remote or
local.

Change your directory to lab4g. Let us assume that you want to start working on a Perl program to be used to ex-
plore a textual file by providing an interface to print all lines containing a given word. We open our emacs editor (or
any other editor to modify files on the timberlea server) and prepare the following file named explore.pl.
If you prefer not to type, the file is available on timberlea and you can copy it with the following command:
cp ˜prof6509/public/lab4-1-explore.pl explore.pl

(Be sure to be in the lab4g directory before copying!)
The file content is as follows:

Lab 4 p.10 CSCI 4152/6509

#!/usr/bin/perl

my $fname = shift;
open(F, $fname) or die;
my @lines = <F>; close F;
print "File $fname loaded.\n";

while (1) {
print "Enter a search word (0 to exit): ";
my $w = <>; chomp $w;
last if $w =˜ /ˆ\s*0\s*$/;
&explore($w);

}

sub explore {
my $w = shift;
print "TODO: exploring $w\n";

}

explore.pl

Save the file (remember that its name is explore.pl) and make it user-executable (in other words use the
command chmod u+x explore.pl). Copy also a file for testing with the command:

cp ˜prof6509/public/Shakespeare__Hamlet-25k.txt .

which is some first 25 kilobytes of the famous Shakespeare play “Hamlet”. Run the command:
./explore.pl Shakespeare__Hamlet-25k.txt

to test your program. Remember that you can use Tab key after typing ./expl to complete the command name,
and again use Tab key after typing Shake to complete file name, so that you do not have to type it completely. This
feature is called auto-completion in the bash shell and if you are not familiar with it you may read about it on the
Internet. After running the above command you can try some words, like ‘hamlet’, but the program is not finished
and will not do much. You should also test entering ‘0’ in order to finish the program.

Step 9: Commit Files explore.pl and Shakespeare

Let us say that you decided that you did enough work today and you would like to save what you have in your
local, but also your remote repository. Other than having an additional backup copy, another benefit of saving it in a
remote repository is that you can later clone the project at your home computer, or a laptop and continue working
there. This is easier that copying around the files directly from timberlea. In order to do this, we first need to
add the files to Git, as we did with id_rsa.pub, if you remember. We decide that we want to save in Git the files
explore.pl and Shakespeare__Hamlet-25k.txt so we run the following command:

git add explore.pl Shakespeare__Hamlet-25k.txt

If you want to check which files are staged; i.e., ‘added’ to be committed in the next commit, you can issue the
command:

git status

The output may vary depending on what exactly you were doing, but it should look something like this:

On branch main
Your branch is up to date with ‘origin/main’.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

CSCI 4152/6509 Lab 4 p.11

new file: Shakespeare__Hamlet-25k.txt
new file: explore.pl

Untracked files:
(use "git add <file>..." to include in what will be committed)

explore.pl˜

You may or may not have the file explore.pl˜. This file is a backup file created by emacs, so we will not worry
about it and we will not add it to the Git for saving. Commit these files locally by running the command:

git commit -m’explore.pl version 1.0’

If you did not set your name and email, the commit command may respond with the following output:

Your name and email address were configured automatically based
on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly. Run the
following command and follow the instructions in your editor to edit
your configuration file:

git config --global --edit

After doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

If you want to set your name and email for Git to use, you can use the above commands to do it.

Let us suppose that after this we realized that we could have written a comment line to describe the file name and
the version, and we do that by inserting in the file explore.pl a line like the red line below:
#!/usr/bin/perl
explore.pl, version 1.1

my $fname = shift;
. . .
Now, we save the file, add it to git and commit it using the commands:

git add explore.pl
git commit -m’explore.pl version 1.1’

Step 10: Explore Previous Commits

We see now how we can save several historical versions of the file that we are working on. To see this history, run
the command:

git log

and we can see the history of our commits. The term commit here refers to a snapshot of set of files saved using a
commit command. The history log is run through the program less so we can browse through it by pressing Space
bar to page down, or key ‘b’ (for back) to go page up. We exit the viewing by pressing the key ‘q’ (quit). In order to
go back in time, we can checkout any of the committed versions. To use a very direct way to checkout a previous
version, we will first notice the lines in the ‘git log’ output that start with the word commit and are followed by a
long sequence of hexadecimal digits. These are SHA-1 checksums of the commits and they uniquely identify the
commits. You can use them to bring back any earlier commit. The command to bring back an earlier commit is ‘git

Lab 4 p.12 CSCI 4152/6509

checkout’ and instead of giving the full SHA-1 checksum, you can use only a few hexadecimal digits at the start.
For example, if you see the following line in the ‘git log’ output:
commit 67bbc0e4ce0c969a1e888259e8001a519563f620
with the commit that you want to bring back, then you can issue the command

git checkout 67bb

using only the first four digits, and it will probably work. If it does not work than you need to use more digits, or all
of them. If the command is successful you will see an appropriate output with a line at the end that looks like:
HEAD is now at 67bbc0e explore.pl version 1.0
which means that we have now the previous version of the program explore.pl. You can browse it using the
command ‘more explore.pl’ to see indeed that this is an older version of the program. In case that we need,
we can save somewhere this older version, but generally we should not be working on this older checkout, but
instead bring back the newest version with the command:

git checkout main

You can take a look and check that your file explore.pl is the newest, version 1.1, contents.

Step 11: Push Changes to GitLab

All these changes and versions of the file explore.pl are saved in your local Git repository and they are not yet
visible in your remote GitLab repository. If you want, you can check in your Web browser your GitLab repository
and you will see that it does not contain the explore.pl file nor the start of the Hamlet that we saved. Your Web
browser is still showing the page for setting up the SSH keys, so you will need to navigate back to the project page,
and then enter the lab4g directory.

In order to save this in the remote repository, we need to push the changes using the command:
git push -u origin main

Run this command in your timberlea terminal. You should get the output that looks something like this:
Counting objects: 11, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (9/9), done.
Writing objects: 100% (9/9), 12.42 KiB 3.11 MiB/s, done.
Total 9 (delta 1), reused 0 (delta 0)
To git.cs.dal.ca:courses/2023-fall/nlp-course/<your csid>.git

eb98362..2347063 main -> main
Branch ’main’ set up to track remote branch ’main’ from ’origin’.

Some numbers in the above output will likely be different.

Now, go to your browser window and reload the view of your repository. It is possible that your browser is still at
the page with your SSH key, so you would need to use Menu in the left-top corner go to your projects, and find your
course repository. If you open the directory lab4g you will see the new files as shown in Figure 4. If you click
the link marked with the red rectangle in the left part of Figure 4, then you can see the file explore.pl with the
latest changes labeled as shown in the right part of the same figure.

Figure 4: GitLab view of the files and latest changes

CSCI 4152/6509 Lab 4 p.13

Submit: The directory lab4g in GitLab repository should now also contain the files explore.pl and
Shakespeare__Hamlet-25k.txt and there should be at least two versions of the file explore.pl (ver-
sions 1.0 and 1.1) saved in separate commits as described in the lab.

Repository Graph: If you again look for the repository graph on GitLab, it should look similarly to the following,
except for the comments to the right that were added here:

main

Update README.md

Comit id_rsa.pub

explore.pl version 1.0

explore.pl version 1.1

added explore.pl and Shakespeare in lab4g

updated explore.pl version 1.1

Step 12: Creating Branches: Directories Preparation

Another important functionality of the source version control is collaboration between multiple people on the same
project. Until now, we worked on a single line of changes, which is by default called the main branch. Since it was
a single branch, there was no particular reason to call it a branch actually. If several people work on their copies of
the files and frequently commit their changes to the main branch, we can see that we could easily end in a chaotic
situation with conflicting changes made on various versions of the files. In order to address this, an important rule in
working with Git collaboratively is that each developer should start with a copy of the main branch, and thus create
a new sequence of commits on which they can work independently, and this sequence of commits is then called a
new branch. Only once they finish implementing the feature they are working on, and they are sure that it passes all
tests and seem to work well, they should merge the branch back into the main branch. Git is quite good in merging
changes, but in some cases where a conflict is generated, it allows us to jump in, fix the conflict, and continue with
the merge.

We will go through an exercise of simulating this working environment using your GitLab project. Let us say that
one person named Ada starts working on a Perl program. It is the very program explore.pl that we already used
in this lab. In order to remember that the person’s name is Ada, we are going to change the name of the directory
that contains our cloned repository to that name. Make sure that you are in the directory lab4 and change the name
of your cloned directory <your csid> with the command:

mv <your csid> ada

Ada did the work that we did so far, which means that she wrote the main framework of the program and some
functionality, but the function explore still needs to be written. At this point, Bob joins Ada’s team and offers
that he writes the function explore and maybe starts some work on the project documentation. Ada adds Bob to
the GitLab team, and Bob now creates his own clone of the project. To simulate this, you should be in the lab4
directory and run the following commands:

git clone git@git.cs.dal.ca:courses/2023-fall/nlp-course/<your csid>.git
mv <your csid> bob

You can check with the command ls that the directory lab4 now contains two subdirectories: ada and bob.

Step 13: Creating Ada’s Branch

Ada would like to make some more changes to the program, but she remembers that Bob is now working on the
project too, so she needs to create her own branch to work on it. The branches have names and in some projects
developers follow a convention that they start the branch name with their userid, so Ada decides to call her branch
ada-main-program since she will be working on improving the main program.

Note: The convention of starting a branch name with the developer’s userid is used in some projects, but this is
not a universal convention. There could be more than one developer working on the branch so this would not be

Lab 4 p.14 CSCI 4152/6509

convenient. More frequently, companies have convention to label the branch with a bug report id, and similar. It
is also important to remember that branch names may or may not be case sensitive depending on a system where
developer is working. We will follow a convention here that the branch names are lowercase with words separated
by a minus character.

In order to simulate Ada’s operations, you do the following: First, go to the Ada’s cloned repository:
cd ada

Check that you have the latest update of the main branch:
git checkout main
git pull

There may be a warning about this command, but we will ignore it here.

Create and checkout a new branch named ada-main-program. This can be done with two commands:
git branch and git checkout but we are going to do it with one command as follows:

git checkout -b ada-main-program

Verify that the branch is created and it is your current branch by running the command:
git branch

You will see an asterisk * next to your current branch.

Ada can now work on explore.pl and other files if needed, without worry that the changes will collide with
changes that Bob is making, or that Bob will get some incomplete copy of explore.pl that is in the middle of
changes. Change your current directory so that you are in the directory lab4g in Ada’s cloned copy. You will
probably need to run the command:

cd lab4g

Ada decides to improve explore.pl by writing code to handle the case when the user forgets to give a file name.
For example, of we type:

./explore.pl

the program will simply die without much explanation. Ada addresses this by adding the following code at the
beginning of the file, and updating the file version number as follows:
#!/usr/bin/perl
explore.pl, version 1.2

if ($#ARGV == -1) {
die "Usage: $0 filename\n";

}

my $fname = shift;
. . . (the rest of the file)
This modified file is also available as ˜prof6509/public/lab4-ada-explore.pl on timberlea if you
want to make sure that you modified it correctly. If we run

./explore.pl

we should get a more informative message about how to use our program. You can notice in the code the use of a
special Perl variable $0 which is assigned the program name in the way it was called. Ada is quite happy with this
change and for now decides to save it locally and also to push it to the remote GitLab repository. As we saw before,
she first need to add the file and then commit it with some useful log message as follows:

git add explore.pl
git commit -m’Ada: added usage message’

In order to push this branch to the remote GitLab repository, known with a short name as origin to git, we need
to run the following command:

CSCI 4152/6509 Lab 4 p.15

git push --set-upstream origin ada-main-program

The option --set-upstream needs to be done only once per new branch, we do not have to specify anything
after git push later. Actually the option --set-upstream is not necessary in this case, but it makes some
later commands shorter.

Repository Graph: You can check now the repository graph on GitLab and it should be as follows (without some
comments here that we added):

main

Update README.md

Comit id_rsa.pub

explore.pl version 1.0

explore.pl version 1.1

ada−main−program Ada: added usage message

added explore.pl and Shakespeare in lab4g

updated explore.pl version 1.1

explore.pl version 1.2

Step 14: Creating Bob’s Branch

Let us now see how Bob is doing. Go to his directory lab4g which you can do with the command:
cd ../../bob/lab4g

Have in mind that this command depends on your current directory, so do not follow it blindly, but frequently check
in which directory you are by using the commands pwd and ls.

Bob would like to start working on the function explore so knowing well how to work with Git, he also first
makes sure he has the newest version of the main branch with the following commands, which you will do now:

git checkout main
git pull

We can see that Bob will notice that Ada created her branch, but his work is not yet affected by it. Bob continues
and creates his own branch and checks it out using the command:

git checkout -b bob-function-explore

and now he can work on the file explore.pl. Bob decides to make two main changes to the file. First, he updates
the version number. He realizes that this may later conflict with what Ada is doing, so he adds a short bob note by
it. After that he implements properly the function explore by replacing the previous version with the changes
below:
#!/usr/bin/perl
explore.pl, version 1.2 bob
...

... (the previous code is here)
Bob wrote this function
sub explore {

my $w = shift;
print "Lines containing $w:\n";
for (@lines) {

print if /\b$w\b/i;
}

}
You can also find the version of the explore.pl file the way it should look at this point on timberlea in
˜prof6509/public/lab4-bob-explore.pl. Before saving the file, Bob should test the file, and so should
you. Run the program with:

./explore.pl Shakespeare__Hamlet-25k.txt

Lab 4 p.16 CSCI 4152/6509

and try entering different words, for example hamlet, the, Denmark, and finish with 0.

Bob also decides to start working on documentation for the project, so he edits the file report.txt and adds
the following two lines: (Again, you are simulating Bob, so go on and create and save report.txt with the
following two lines.)

The Manual for explore.pl

report.txt

Save the file. At this point, Bob is happy with his contribution so far, and decides to save his branch and push it to
the remote GitLab repository, so he issues the following commands:

git add explore.pl report.txt
git commit -m’Bob: added explore function, some documentation’
git push --set-upstream origin bob-function-explore

If we forget at any point what was the exact name of our branch (as Bob just did), we can always check it with
‘git branch’.

Repository Graph: You can check now the repository graph on GitLab and it should be as follows (without some
comments here that we added):

main

Update README.md

Comit id_rsa.pub

explore.pl version 1.0

explore.pl version 1.1

Ada: added usage message

added explore.pl and Shakespeare in lab4g

updated explore.pl version 1.1

explore.pl version 1.2ada−main−program

Bob: added explore funct... explore.pl version 1.2 bob, report.txtbob−function−explore

We can also browse the repository and see that there are all three branches saved, the main one, the Ada’s, and the
Bob’s one.

Step 15: Ada Merges Her Branch

We will go now and see what Ada is doing and simulate her actions. Change your directory to the Ada’s lab4g
and do a git pull to have the latest changes:

cd ../../ada/lab4g
git pull

After this command Ada can notice that there a Bob’s branch in the repository.

Ada decides that it is time to make her changes part of the main copy, and this is done by merging her branch with
the main branch. In software development in general, it is important that the merge with the main branch is done
only once we are sure that our changes work well; i.e., they pass testing and they do not break some other parts of
the code. In order to do the merge, Ada checks out the main branch and then merges her ada-main-program
branch with the following commands:

git checkout main
git merge ada-main-program

This merge operations should go smoothly and you should get the output like this approximately:
Updating 2347063..0616dbf

CSCI 4152/6509 Lab 4 p.17

Fast-forward
lab4g/explore.pl | 6 +++++-
1 file changed, 5 insertions(+), 1 deletion(-)

You can check the explore.pl file and you can see that Ada’s changes are now updated in it, even though we are
in the main branch. In order to save this merge in the remote repository as well, Ada finally runs:

git push -u origin main

Repository Graph: You can check now the repository graph on GitLab and it should be as follows (without some
comments here that we added). We can notice in the graph that the Ada’s branch and the main branch are merged
into one. It was an easy merge because Ada’s branch was derived directly from the main branch with some changes,
so the main branch only had to “catch up” with the Ada’s branch. This kind of merge where a branch simply needs
to “catch up” with another branch is called a “fast forward” merge. You may have noticed this term in the output of
the previous Git merge command.

Update README.md

Comit id_rsa.pub

explore.pl version 1.0

explore.pl version 1.1

Ada: added usage message

added explore.pl and Shakespeare in lab4g

updated explore.pl version 1.1

explore.pl version 1.2

Bob: added explore funct... explore.pl version 1.2 bob, report.txt

ada−main−program
main

bob−function−explore

Step 16: Bob Merges His Branch

Now, we are going to simulate Bob’s actions: First go to his lab4g directory:
cd ../../bob/lab4g

Bob decides as well that he should merge his changes into the main branch. He first makes sure that his main
branch is up to date with respect to the remote repository, so he needs to checkout this branch and run a pull
command:

git checkout main
git pull

Bob notices that the main branch was changed. Since Bob is happy with his changes to the project, he would like
now to merge his branch into the main branch, and he does it with the following command:

git merge bob-function-explore

This operation will not go without issues since, as we may remember, Bob and Ada both made edits to the ‘version’
line of the program explore.pl. If nothing else, there is no way that Git can tell which of these lines should be
kept in the program. Because of this, the output of the last operation will look something like this:
CONFLICT (content): Merge conflict in lab4g/explore.pl
Automatic merge failed; fix conflicts and then commit the result.

We can see in the output that Git was not able to merge different versions of the file explore.pl and suggests
that we resolve this conflict manually, also giving some instructions about how to proceed after that.

Since the file explore.pl is the cause of the conflict, Bob needs to edit this file. In a way, we are lucky it is
only this file, otherwise, we would need to edit several files in the conflict. Open the explore.pl file and we
should see the contents as shown below (without colors). We will mark with red color the lines that Bob (meaning
you) should delete, and with blue a minor change to be made. After this you should save the file:

Lab 4 p.18 CSCI 4152/6509

#!/usr/bin/perl
<<<<<<< HEAD

explore.pl, version ���:
1.3

1.2

if ($#ARGV == -1) {
die "Usage: $0 filename\n";

}

((((
(=======

explore.pl, version 1.2 bob
>>>>>>> bob-function-explore

my $fname = shift;
open(F, $fname) or die;
my @lines = <F>; close F;
print "File $fname loaded.\n";

while (1) {
print "Enter a search word (0 to exit): ";
my $w = <>; chomp $w;
last if $w =˜ /ˆ\s*0\s*$/;
&explore($w);

}

Bob wrote this function
sub explore {

my $w = shift;
print "Lines containing $w:\n";
for (@lines) {

print if /\b$w\b/i;
}

}

explore.pl

If you take a look at the file, you see that Git left a labeled part of conflict showing the part coming from the ‘HEAD’
which is the latest commit in the main branch, and the part coming from the Bob’s branch. It is up to Bob now to
decide what to do about it, and he accepts the new code implemented by Ada with the usage message, and removes
the old code coming from his branch. He also consolidates the version number by setting it to 1.3. You can also see
how this file should look like after editing in timberlea at
˜prof6509/public/lab4-bob-resolve-explore.pl.

Bob now needs to commit this change and the merge is complete. Type the following commands:
git add explore.pl
git commit -m’Bob: conflict resolved’

We can verify that we have the newest version of the explore.pl file and the file report.txt should also be
there.

Finally, Bob pushes these changes to the remote GitLab repository with:
git push -u origin

We can go now to Ada’s lab4g directory and make sure that she has the latest update as well:

CSCI 4152/6509 Lab 4 p.19

cd ../../ada/lab4g
git pull

Submit: The three branches should be up to date in GitLab by this point with appropriate merges.

Repository Graph: If you check again the repository graph on GitLab, it should look like this. Again, we have
some added comments below. If you made mistakes and added some additional commits to GitLab, you will not
be able to remove them, so that is okay. You should make sure that you had three branches, you had a merged as
described, and appropriate versions committed as instructed.

Update README.md

Comit id_rsa.pub

explore.pl version 1.0

explore.pl version 1.1

Ada: added usage message

added explore.pl and Shakespeare in lab4g

updated explore.pl version 1.1

explore.pl version 1.2

Bob: added explore funct... explore.pl version 1.2 bob, report.txtbob−function−explore

Bob: conflict resolvedmain

ada−main−program

We are finished with this lab. At this point in practice Ada and Bob would probably delete their branches, which are
sometimes called feature branches as there were used to implement certain features. You must not delete these
branches because they need to be checked by the marker to verify that you finished the lab completely. Just for your
information, a merged branch can be deleted with the command git branch -d branchName. A merged
branch can also be deleted on the GitLab web site.

Actually, the merge operation can also be done on the GitLab web site. For simplicity reasons you were instructed
to make branch merge in command line, but in practice there could be more rules around it. For example, it is
usually agreed in a project that when a developer wants her or his branch to be merged to the main branch, they
need to create a “merge request” on GitLab, also called “pull request” (PR) on GitHub. In this request, he or she
will also invite some other developers to review the changes. If everything looks agreeable, someone else other
than the branch developer should make the merge. Once the merge is finished, everyone in the project should pull
the latest main branch. There is also an operation called rebase using which they could apply changes from the
current main branch to their feature branches, if they want, but we will not cover that feature.

This is the end of Lab 4.

	Git and GitLab Tutorial

