
CSCI 4152/6509
Natural Language Processing

Lab 1:

FCS Computing Environment, Perl Tutorial 1

Faculty of Computer Science

Dalhousie University

12/13-Sep-2023 (1) CSCI 4152/6509 1

Lab Overview

• An objective: Make sure that all students are familiar with
their CSID and how to login to the timberlea server

• Refresh your memory about Unix-like Command-Line
Interface

• Introduction to Perl
• Note 1: If you do not know your CSID, you can look it up

and check its status at: https://csid.cs.dal.ca
• Note 2: Replace <your csid> with your CSID

(Dalhousie CS id, which is different from your Dalhousie
id)

12/13-Sep-2023 (1) CSCI 4152/6509 2

Lab Evaluation

• The lab will be evaluated as a part of the Assignment 1
(A1) with the same submission deadline as the
assignment, which will be at least one week after the lab.

• Files to be submitted by the end of the lab are:
1. hello.pl
2. lab1-example2.pl
3. lab1-example5.pl
4. lab1-task1.pl
5. lab1-task2.pl

12/13-Sep-2023 (1) CSCI 4152/6509 3

Step 1: Logging in to server timberlea

• You can choose Windows, Mac or Linux environment in
some labs

• Windows: you will use PuTTY program
• On Mac: open a Terminal and type:
ssh <your csid>@timberlea.cs.dal.ca
(instead of <your csid> use your CS userid)

• On Linux: similarly to Mac, you open the terminal and
type the same command:
ssh <your csid>@timberlea.cs.dal.ca

12/13-Sep-2023 (1) CSCI 4152/6509 4

Running PuTTY

• If you use Windows, then one option is to use PuTTY to
login to the timberlea server

• Double-click the PuTTY icon, and the following window
should appear:

12/13-Sep-2023 (1) CSCI 4152/6509 5

12/13-Sep-2023 (1) CSCI 4152/6509 6

Fingerprints of the Current timberlea Keys
ED25519 SHA256:/myX/hSyWyz/q/l4P9mxPAcwhfGr2gpEoh743dA0uJM
ECDSA SHA256:9ruRg3IIm01a54gXqUDJHu+Ss34c57tA5a3encCp4qM
RSA SHA256:X92KGKagx2NZ2L18ew4dEHqXPu2CEyeYsk2fb7JD99Q

• If you want to compare with the fingerprints that you obtain.
• We will go over a review of some Linux commands next.

12/13-Sep-2023 (1) CSCI 4152/6509 7

Review of Some Linux Commands

Step 2: pwd
man pwd

Step 3: mkdir csci4152 or mkdir csci6509 ls
chmod go-rx csci6509

or
chmod go-rx csci4152

Step 4: cd csci6509 or cd csci4152
• Make directory lab1 and change your current directory to it.

12/13-Sep-2023 (1) CSCI 4152/6509 8

Step 5: Using emacs prepare hello.pl
Use an editor: emacs or some other (e.g., vi, pico . . .)
emacs hello.pl

Prepare the following program:

#!/usr/bin/perl

print "Hello world!\n";

hello.pl

Step 6: Running a Perl program
perl hello.pl

Another way to run the program:
chmod u+x hello.pl
./hello.pl

This ends a brief introduction into the FCS server environment.

12/13-Sep-2023 (1) CSCI 4152/6509 9

Perl Tutorial

• Next few labs will go over a basic Perl tutorial
• Perl is a useful programming language for string-based

text processing
• More details about Perl connection with NLP is covered in

lectures
• We will not cover more advanced features, such as

Object-Oriented style in Perl
• You already wrote and ran a simple Perl program
hello.pl

12/13-Sep-2023 (1) CSCI 4152/6509 10

Finding More Help about Perl

• From Unix-style command line (e.g., timberlea):
man perl, man perlintro, . . .

• Many Web resources: perl.com, CPAN.org,
perlmonks.org, . . .

• Books: e.g., the “Camel” book:
“Learning Perl” by Brian D. Foy; Tom Phoenix; Randal L.
Schwartz (latest seems to be 8th edition, Aug 2021)

or “Beginning Perl” by Simon Cozens
https://www.perl.org/books/beginning-perl

12/13-Sep-2023 (1) CSCI 4152/6509 11

Step 7: Basic Interaction with Perl

• You can check the Perl version on timberlea by
running ‘perl -v’ command; e.g.:

perl -v

This is perl 5, version 32, subversion ...

• If you use the official Perl documentation from
perl.com documentation site, choose the
right version.

• Test your assignment programs on timberlea
if you developed them somewhere else.

12/13-Sep-2023 (1) CSCI 4152/6509 12

Executing Command from
Command-Line

• You can execute Perl commands directly from
the command line

• Example, type:
perl -e ’print "hello world\n"’

• and the output should be: hello world

• A more common way is to write programs in a
file

12/13-Sep-2023 (1) CSCI 4152/6509 13

Write Program in a File: Example 1

• hello.pl should be already in the directory
• Run the program using: perl hello.pl
• You can also run it directly
• First, make it executable:

chmod u+x hello.pl

and then you can run it using:
./hello.pl

• Submit the program hello.pl using the
command submit-nlp as described in notes

12/13-Sep-2023 (1) CSCI 4152/6509 14

Direct Interaction with an Interpreter

• Not common to use, but available
• Command: perl -d -e 1
• Enter Perl statements, for example:

print "hello\n";
print 12*12;

• To learn more about debugger: command ‘h’
• Enter ‘q’ to exit debugger
• Learning more from the command line:
man perldebug

12/13-Sep-2023 (1) CSCI 4152/6509 15

Syntactic Elements of Perl

• statements separated by semi-colon ‘;’
• white space does not matter except in strings
• line comments begin with ‘#’; e.g.
a comment until the end of line

• variable names start with $, @, or %:
$a — a scalar variable
@a — an array variable
%a — an associative array (or hash)
However: $a[5] is 5th element of an array @a, and
$a{5} is a value associated with key 5 in hash %a

• the starting special symbol is followed either by a name
(e.g., $varname) or a non-letter symbol (e.g., $!)

• user-defined subroutines are usually prefixed with &:
&a — call the subroutine a (procedure, function)

12/13-Sep-2023 (1) CSCI 4152/6509 16

Step 8: Example Program 2

• Enter the following program as lab1-example2.pl:

#!/usr/bin/perl
use warnings;

print "What is your name? ";
$name = <>;
chomp $name;
print "Hello $name!\n";

• ‘use warnings;’ enables warnings — recommended!
• chomp removes the trailing newline from $name if there is one.

However, changing the special variable $/ will change the behaviour
of chomp too.

• Test lab1-example2.pl and submit it

12/13-Sep-2023 (1) CSCI 4152/6509 17

Example 3: Declaring Variables

The declaration “use strict;” is useful to force more strict
verification of the code. If it is used in the previous program, Perl will
complain about variable $name not being declared, so you can declare
it with: ‘my $name’
We can call this program lab1-example3.pl:

#!/usr/bin/perl
use warnings;
use strict;

my $name;
print "What is your name? ";
$name = <>;
chomp $name;
print "Hello $name!\n";

12/13-Sep-2023 (1) CSCI 4152/6509 18

Example 4: Declare a variable and assign its value in
the same line

#!/usr/bin/perl
use warnings;
use strict;

print "What is your name? ";
my $name = <>;
chomp $name;
print "Hello $name!\n";

12/13-Sep-2023 (1) CSCI 4152/6509 19

Step 9: Example 5: Copy standard input to standard
output

We can call this program lab1-example5.pl

#!/usr/bin/perl
use warnings;
use strict;

while (my $line = <>) {
print $line;

}

The operator <> reads a line from standard input, or—if the Perl script is
called with filenames as arguments—from the files given as arguments.

12/13-Sep-2023 (1) CSCI 4152/6509 20

Try different ways of running this program:

• Reading from standard input, which by default is the keyboard:

./lab1-example5.pl

In this case the program will read the lines introduced from the
keyboard until it receives the Ctrl-D combination of keys, which
ends the input.

• Reading the content of files, whose names are given as arguments of
the script
Create two simple text documents a.txt b.txt with a few arbitrary
lines each (you can use a text editor to do that).
Then run the Perl script with the names of these files are arguments:

./lab1-example5.pl a.txt b.txt

Submit: Submit the program ‘lab1-example5.pl’ using:
submit-nlp

12/13-Sep-2023 (1) CSCI 4152/6509 21

Variables: Summary

• Variable names with sigils:
– $a — scalar,
– @b — array,
– %c — hash

• Variable declarations:
my $a = 1;

• Variable declarations not required by default
• use strict; requires variable declarations
• use strict; is a good idea for larger projects
• Arbitrary identifies can be used for variable names, as in:
$count @pages12a %phone_book_1

• Variable name can be a sigil and a special character, and such
variables are usually special, such as:
$_ — the default variable

12/13-Sep-2023 (1) CSCI 4152/6509 22

Example 6: Default variable

Special variable $_ is the default variable for many commands,
including print and expression while (<>), so another version of
the program lab1-example5.pl would be:

#!/usr/bin/perl
while (<>) { print }

This is equivalent to:

#!/usr/bin/perl
while ($_ = <>) { print $_ }

Even shorter version of the program would be:

#!/usr/bin/perl -p

12/13-Sep-2023 (1) CSCI 4152/6509 23

Variable Types

• The main variable types:
1. Scalars

– numbers (integers and floating-point)
– strings
– references (similar to pointers)

2. Arrays of scalars
3. Hashes (associative arrays) of scalars

• Difference between numbers, strings, and references is
not declared but inferred from context

12/13-Sep-2023 (1) CSCI 4152/6509 24

Scalar Variables

• Variable name starts with $ followed by:
1. a letter and a sequence of letters, digits or underscores,

or
2. a special character such as punctuation or digit

• Scalar variable contains a single scalar value such as a
number, string, or reference (a pointer)

• We generally do not worry whether a number is integer,
float, or string containing a number; e.g.:
$a = 5.5; # $a contains a float number 5.5
$b = " $a "; # $b is a string " 5.5 "
print $a+$b; # $b converted to number

output: 11

12/13-Sep-2023 (1) CSCI 4152/6509 25

String Literals and Operators

• We will over over string literals and main operators
• String literals:

– single-quoted strings preserve strings as they are
almost always (except \’)

– double-quoted strings replace (interpolate) characters
like \n (newline) and variable values like " $a "

– back-quoted strings are an advanced feature to execute
a system command and use output in a string; e.g.,
‘ls‘

• We will not look into back-quoted strings now
• A string can span multiple lines

12/13-Sep-2023 (1) CSCI 4152/6509 26

Single-Quoted String Literals

print ’hello\n’; # produces ’hello\n’
print ’It is 5 o\’clock!’; # ’ has to be escaped
print q(another way of ’single-quoting’);

no need to escape this time
print q< and another way >;
print q{ and another way };
print q[and another way];
print q- and another way with almost

arbitrary character (e.g. not q)-;
print ’A multi line

string (embedded new-line characters)’;
print <<’EOT’;

Some lines of text
and more $a @b

EOT

12/13-Sep-2023 (1) CSCI 4152/6509 27

Double-Quoted String Literals

print "Backslash combinations are interpreted in
double-quoted strings.\n";

print "newline after this\n";
$a = ’are’;
print "variables $a interpolated in double-quoted

strings\n";
produces "variables are interpolated" etc.

@a = (’arrays’, ’too’);
print "and @a\n";
produces "and arrays too" and a newline

print qq{Similarly to single-quoted, this is also
a double-quoted string, (etc.)};

12/13-Sep-2023 (1) CSCI 4152/6509 28

Numerical Operators

• basic operations: + - * /

• transparent conversion between int and float
• additional operators:
** (exponentiation), % (modulo), ++ and --
(post/pre inc/decrement, like in C/C++, Java)

• can be combined into assignment operators:
+= -= /= *= %= **=

12/13-Sep-2023 (1) CSCI 4152/6509 29

String Operators

• . is concatenation; e.g., $a.$b
• x is string repetition operator; e.g.,
print "This sentence goes on"." and on" x 4;
produces:

This sentence goes on and on and on and on
and on

• assignment operators:
= .= x=

• string find and extract functions:
index(str,substr[,offset]), and
substr(str,offset[,len])

12/13-Sep-2023 (1) CSCI 4152/6509 30

Comparison operators

Operation Numeric String
--
less than < lt
less than or equal to <= le
greater than > gt
greater than or equal to >= ge
equal to == eq
not equal to != ne
compare <=> cmp
--

Example:

print ">".(1==1)."<"; # produces: >1<
print ">".(1==0)."<"; # produces: ><

12/13-Sep-2023 (1) CSCI 4152/6509 31

Remember: Operators cause conversions between
numbers and strings

Example:

my $x=12;

print $x+$x;
print $x.$x;

print ">".($x > 4)."<";
print ">".($x gt 4)."<";

12/13-Sep-2023 (1) CSCI 4152/6509 32

Remember: Operators cause conversions between
numbers and strings

Example:

my $x=12;

print $x+$x; #produces 24
print $x.$x; #produces 1212

print ">".($x > 4)."<"; # produces: >1<
print ">".($x gt 4)."<"; # produces: ><

12/13-Sep-2023 (1) CSCI 4152/6509 33

Step 10: Simple Task 1

Create a Perl script named lab1-task1.pl
that prints to the standard output 20 times the
following line repeated:

Use \n for a new line.

The number 20 should be defined as a variable
within the script.

12/13-Sep-2023 (1) CSCI 4152/6509 34

File Header Comment

• Since this is the first program that you created and not only copied, you should
start to use required file header comment in the following format:

#!/usr/bin/perl
CSCI4152/6509 Fall 2022
Program: lab1-task1.pl
Author: Vlado Keselj, B00123456, vlado@dnlp.ca
Description: The program is a part of Lab1 required submissions.

• Use your name, Banner number, and email.
• You can copy the same description.
• You can use course number for which you are registered.
• Your code should follow this comment.

Submit: Submit the program ‘lab1-task1.pl’ using: submit-nlp

12/13-Sep-2023 (1) CSCI 4152/6509 35

What is true and what is false — Beware

print ’’ ?’true’:’false’;
print 1 ?’true’:’false’;
print ’1’ ?’true’:’false’;
print 0 ?’true’:’false’;
print ’0’ ?’true’:’false’;
print ’ 0’ ?’true’:’false’;
print 0.0 ?’true’:’false’;
print "0.0" ?’true’:’false’;
print ’true’ ?’true’:’false’;
print ’zero’ ?’true’:’false’;

12/13-Sep-2023 (1) CSCI 4152/6509 36

What is true and what is false — Beware

print ’’ ?’true’:’false’; #false
print 1 ?’true’:’false’; #true
print ’1’ ?’true’:’false’; #true
print 0 ?’true’:’false’; #false
print ’0’ ?’true’:’false’; #false
print ’ 0’ ?’true’:’false’; #true
print 0.0 ?’true’:’false’; #false
print "0.0" ?’true’:’false’; #true
print ’true’ ?’true’:’false’; #true
print ’zero’ ?’true’:’false’; #true

The false values are: 0, ’’, ’0’, or undef
True is anything else.

12/13-Sep-2023 (1) CSCI 4152/6509 37

<=> and cmp

$a <=> $b and $a cmp $b return the sign of $a - $b in a sense:

-1 if $a < $b or $a lt $b,
0 if $a == $b or $a eq $b, and
1 if $a > $b or $a gt $b.

Useful with the sort command

@a = (’123’, ’19’, ’124’);
@a = sort @a; print "@a\n"; # 123 124 19
@a = sort {$a<=>$b} @a; print "@a\n"; # 19 123 124
@a = sort {$b<=>$a} @a; print "@a\n"; # 124 123 19
@a = sort {$a cmp $b} @a; print "@a\n"; # 123 124 19
@a = sort {$b cmp $a} @a; print "@a\n"; # 19 124 123

12/13-Sep-2023 (1) CSCI 4152/6509 38

Boolean Operators

Six operators: && and
|| or
! not

Difference between && and and operators is in precedence: && has a
high precedence, and has a very low precedence, lower than =, ,
Similarly for others

$x = $a || $b; #better construction
$x = ($a or $b); #requires parenthesis

Can be used for flow control (short-circuit) - for this purpose or is
better than ||

some_func $a1, $a2 or die "some_func returned false:$!";
some_func($a1, $a2) ||

die "some_func returned false:$!";

12/13-Sep-2023 (1) CSCI 4152/6509 39

Range Operators

.. - creates a list in list context,

For example:

@a = 1..10; print "@a\n"; # out: 1 2 3...

• The range operator is quite convenient in the list context.

• If the range operator is used in a scalar context, it behaves as a
so-called flip-flop boolean variable. It is a more complex and advanced
feature that we will not cover.

• Perl also has ... as a range operator, which differs from .. only in a
scalar context.

12/13-Sep-2023 (1) CSCI 4152/6509 40

Control Structures

• Unconditional jump: goto
• Conditional:

– if-elsif-else and unless

• Loops:
– while loop
– for loop
– foreach loop

• Restart loop: ‘next’ and ‘redo’
• Breaking loop: ‘last’

12/13-Sep-2023 (1) CSCI 4152/6509 41

If-elsif-else

if (EXPRESSION) {
STATEMENTS;

} elsif (EXPRESSION1) { # optional
STATEMENTS;

} elsif (EXPRESSION2) { # optional additional elsif’s
STATEMENTS;

} else {
STATEMENTS; # optional else

}

Other equivalent forms, e.g.:

if ($x > $y) { $a = $x }
$a = $x if $x > $y;
$a = $x unless $x <= $y;
unless ($x <= $y) { $a = $x }

12/13-Sep-2023 (1) CSCI 4152/6509 42

While Loop

while (EXPRESSION) {
STATEMENTS;

}

• last is used to break the loop (like break in C/C++/Java)
• next is used to start next iteration (like continue)
• redo is similar to next, except that the loop condition is not evaluated
• labels are used to break from non-innermost loop, e.g.:

L:
while (EXPRESSION) {

... while (E1) { ...
last L;

} }

12/13-Sep-2023 (1) CSCI 4152/6509 43

next vs. redo

#!/usr/bin/perl

$i=0;
while (++$i < 5) {

print "($i) "; ++$i;
next if $i==2;
print "$i ";

} # output: (1) (3) 4

$i=0;
while (++$i < 5) {

print "($i) "; ++$i;
redo if $i==2;
print "$i ";

} # output: (1) (2) 3 (4) 5

12/13-Sep-2023 (1) CSCI 4152/6509 44

For Loop

for (INIT_EXPR; COND_EXPR; LOOP_EXPR) {
STATEMENTS;

}

Example:

for (my $i=0; $i <= $#a; ++$i) { print "$a[$i]," }

12/13-Sep-2023 (1) CSCI 4152/6509 45

Foreach Loop
Examples:

@a = (’lion’, ’zebra’, ’giraffe’);
foreach my $a (@a) { print "$a is an animal\n" }

or use default variable
foreach (@a) { print "$_ is an animal\n" }

more examples
foreach my $a (@a, ’horse’) { print "$a is animal\n"}

foreach (1..50) { print "$_, " }

for can be used instead of foreach as a synonym.

12/13-Sep-2023 (1) CSCI 4152/6509 46

Subroutines

sub say_hi {
print "Hello\n";

}

&say_hi(); # call
&say_hi; # call, another way since we have no params
say_hi; # works as well

(no variable sign = sub, i.e., &)

12/13-Sep-2023 (1) CSCI 4152/6509 47

Subroutines: Passing Parameters
When a subroutine is called with parameters, a parameter array @_
within the subroutine stores the parameters.

The parameters can be accessed as $_[0], $_[1] but it is not
recommended:

sub add2 { return $_[0] + $_[1] } #not recommended

print &add2(2,5); # produces 7

12/13-Sep-2023 (1) CSCI 4152/6509 48

Subroutines: Passing Parameters (2)
Recommended: copy parameters from @_ to local variables:

• using shift to get and remove elements from the array @_
With no arguments, shift within a subroutine takes @_ by default
(outside of a subroutine, shift with no arguments takes by default the
array of parameters of a script @ARGV)

sub add2 {
my $a = shift;
my $b = shift;
return $a + $b;

}

• or copy the whole @_ array

sub add2 {
my ($a, $b) = @_;
return $a + $b; }

12/13-Sep-2023 (1) CSCI 4152/6509 49

Subroutines: Passing Parameters (3)
You can define a subroutine that will work with variable number of
parameters.

Example:

sub add {
my $ret = 0;
while (@_) { $ret += shift }
return $ret;

}
print &add(1..10); # produces 55

12/13-Sep-2023 (1) CSCI 4152/6509 50

Step 11: Simple task 2

Create a Perl script named lab1-task2.pl that defines a subroutine
conc. The subroutine takes two parameters and returns a string that is
the concatenation of the two parameters, but such that the two input
parameters are ordered alphabetically in the resulting string, i.e., the
input parameter that is first in the alphabetical order appears first in the
output string of the joined parameters.
• E.g., conc(’ccc’,’aaa’) and conc(’aaa’, ’ccc’) should
both return: aaaccc
• Add the following lines to the script:

print &conc(’aaa’,’ccc’);
print "\n";
print &conc(’ccc’,’aaa’);
print "\n";

• Remember to add a file header comment
• Test the program test2.pl and submit it

12/13-Sep-2023 (1) CSCI 4152/6509 51

This is the end of Lab 1.

12/13-Sep-2023 (1) CSCI 4152/6509 52

