
CSCI 2132
Software Development

Lecture 35:

Shell Scripting

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

3-Dec-2018 (35) CSCI 2132 1

Previous Lectures

• Examples with writing and reading a binary file
• Shell Scripting: introduction, a basic example
• variables
• arithmetic operations, conditional expressions
• ‘if’ statement, ‘for’ loop
• ‘case’ statement
• Previous Lecture
• Final Exam Review

3-Dec-2018 (35) CSCI 2132 2

Case Statement Example

• Example:

#!/bin/bash
day=‘date | cut -f1 -d" "‘

case "$day" in
Mon|Wed|Fri)

echo 2132 lectures
;;

Tue|Thu)
echo no 2132 lectures
;;

Sat|Sun)
echo No lectures
;;

esac

3-Dec-2018 (35) CSCI 2132 3

Conditional Expression for Files

The following conditional expressions can be used on files:
[-e file] — true if file exists
[-f file] — true if file exists and is a regular file
[-d file] — true if file exists and is a directory file
[-r file] — true if file exists and is readable by the
current user
[-w file] — true if file exists and is writable by the
current user
[-x file] — true if file exists and is executable by the
current user

There has to be a space after [and before].

3-Dec-2018 (35) CSCI 2132 4

Exit Codes

• We can use exit command from a script
• Exit can take a numeric argument

– 0 is for normal exit
• If no value is provided, exit return exit code of

the last command
• Or 0 if no command was executed

3-Dec-2018 (35) CSCI 2132 5

Example: A backup script

• A script that takes two arguments: a source
and a destination directory

• Each file from the source directory is copied to
the destination directory

• Copies only regular files, and only if it does not
exist in the destination directory

• Prints the file names being copied

3-Dec-2018 (35) CSCI 2132 6

#!/bin/bash
if [! -d $1]; then
echo Source directory does not exist
exit 1

elif [! -d $2]; then
echo Destination directory does not exist
exit 1

fi

for filename in ‘ls $1‘
do
if [-f $1/$filename]; then
if [! -e $2/$filename]; then
cp $1/$filename $2/$filename
echo $filename

fi
fi

done

3-Dec-2018 (35) CSCI 2132 7

Additional Examples: Dynamically
Allocated Arrays

• We focus on dynamic array-based structures
• First example: Strings
• Important to remember to allocated +1

character for the null character
• Can use the standard C library functions for

strings

3-Dec-2018 (35) CSCI 2132 8

Example: concat

• Let us consider an example:
• Implement a function concat which takes two

strings as arguments and concatenates them
• Unlike strcat, the function concat will not

change any original strings, but create a new
dynamically allocated string (we need to
remember to free it later)

3-Dec-2018 (35) CSCI 2132 9

char* concat(const char *s1, const char *s2) {
char *result;

result = malloc(strlen(s1) + strlen(s2) + 1);
if (result == NULL) {
printf("Error: malloc failed in concat\n");
exit(EXIT_FAILURE);

}

strcpy(result, s1);
strcat(result, s2);
return result;

}

• Usage:
char *p;
p = concat("abc", "defg");
...
free(p);

3-Dec-2018 (35) CSCI 2132 10

Another String Example

• Write a C program to reverse words in a string
• A word is any sequence of non-white-space

characters
• Solution approach:

– Scan the string backward
– Copy words to a temporary buffer
– Copy back buffer to the string

• Fill-in-the blanks code:
reversewords.c-blanks

3-Dec-2018 (35) CSCI 2132 11

Reversing the Words, Revisited

• Another idea:
– Reverse the complete string
– Reverse each word within string once more

• Fill-in-the-blanks code available in

˜prof2132/public/
reversewords2.c-blanks

(in one line)

3-Dec-2018 (35) CSCI 2132 12

Dynamically Allocated Arrays

• Similarly to strings we can allocate arbitrary arrays; for example:

int *array, i;
array = (int*) malloc(n * sizeof(int));
if (array == NULL) {
...

}
for (i = 0; i < n; i++)
array[i] = 0;

...
free(array);

• or simpler

int *array;
array = (int*) calloc(n, sizeof(int));
if (array == NULL) { ... /* error */ }

3-Dec-2018 (35) CSCI 2132 13

Dynamically Allocated Arrays and
VLAs

• Using dynamic memory vs VLA
• VLAs are allocated and deallocated more

efficiently (on stack)
• Heap more appropriate for large arrays
• Heap appropriate for arbitrary lifespan
• Heap more appropriate for portability (C99)

3-Dec-2018 (35) CSCI 2132 14

Mergesort Using Dynamic Arrays

• Fill-in-the-blanks code available at:

˜prof2132/public/mergesort3.c-blanks

3-Dec-2018 (35) CSCI 2132 15

Dynamic Arrays: Resizable Arrays

• How to implement something like ArrayList in Java, or vector class in
C++?

• Pseudocode for adding elements:

If array is full
Resize the array to twice its current capacity

using realloc
Store the new element

• The main structure:

struct vector {
int *array;
int capacity;
int size;

}

3-Dec-2018 (35) CSCI 2132 16

Resizable Array Implementation:
dynamicarray.c-blanks

• Fill-in-the-blanks implementation can be found
at:

˜prof2132/public/
dynamicarray.c-blanks

(one line)

3-Dec-2018 (35) CSCI 2132 17

Dynamic Array: Time Complexity

• What can happend when push_back is called
regarding execution time?

• Why do we consider this a reasonably efficient
solution?

• Why we must be careful when determining
when to shrink the array?

• This provides a better explanation of behaviour
of the ArrayList in Java and the vector class in
C++

3-Dec-2018 (35) CSCI 2132 18

