
CSCI 2132
Software Development

Lecture 23:

Pointers and Arrays (Pointer Arithmetic)

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

29-Oct-2018 (23) CSCI 2132 1



Previous Lecture

• Review of matrial from Lab 7:
– Introduction to ‘make’ and Makefile
– Review of history of Version Control Systems

(rcs, cvs, Subversion, git)
– Introduction to git, github, and GitLab
• Review of pointers
• Finished statistics.c example

29-Oct-2018 (23) CSCI 2132 2



Using const to Protect Arguments

• Passing pointers as arguments is usually done for
function to make change to the caller variables
• Another reason: efficiency
• We may want to prevent accidental change to the

arguments
• Example:

void f(const int *p) {
/* The function is not allowed

to modify *p */
}

29-Oct-2018 (23) CSCI 2132 3



Pointers and Arrays

• In C, pointers and arrays are closely related
• Array name is a pointer to 0th element of the array
• This is why an array argument is passed as a pointer
• Example:

int a[10];
int *p = &a[0];

• Equivalent to:

int *p = a;

29-Oct-2018 (23) CSCI 2132 4



Pointer Arithmetic: Pointer + Integer

• We can add integer to a pointer:
– If p points to a[i], p+j points to a[i+j]

• Example:

1: int a[10] = {9};
2: int *p = &a[1];
3: (*(p+3))++;
4: printf("%d %d\n", a[1], a[4]);

• What is the output of this program?

29-Oct-2018 (23) CSCI 2132 5



Pointer Arithmetic: Subtraction

• We can subtract integer from a pointer:
– If p points to a[i], then p-j points to a[i-j]

• We can subtract pointers:
– If p points to a[i] and q points to a[j], then p-q is
j-i

• Example:

int a[10];
int *p = &a[0];
int *q = &a[5];
printf("%d\n", p-q);

• What is the output?

29-Oct-2018 (23) CSCI 2132 6



Pointer Comparison

• If pointers p and q point to elements of the
same array a[i] and a[j] then
– if i < j⇒ p < q

– if i == j⇒ p == q

– if i > j⇒ p > q

• What if we compare pointers or subtract
pointers that do not point to the elements of the
same array?

29-Oct-2018 (23) CSCI 2132 7



Pointer Comparison

• If pointers p and q point to elements of the
same array a[i] and a[j] then
– if i < j⇒ p < q

– if i == j⇒ p == q

– if i > j⇒ p > q

• What if we compare pointers or subtract
pointers that do not point to the elements of the
same array?
• Undefined behaviour

29-Oct-2018 (23) CSCI 2132 8



More Equivalent Statements

• a[2] = 4; and *(a+2) = 4;

• *(p+3) = 5; and p[3] = 5;

• Code:

int i;
for (i = 0; i < 10; i++)

a[i] = 0;

• and

for (p = a; p < &a[10]; p++)

*p = 0;

29-Oct-2018 (23) CSCI 2132 9



. . . continued

• Also equivalent loop:

for (p = a; p < a+10; p++)

*p = 0;

• A difference between array name and pointer: cannot
change array name value (i.e., array location)
• Note: ++ and -- have higher precedence than *

• I.e., *p++ means *(p++) rather than (*p)++

• Array parameters can be expressed as pointers, e.g.:
int max_array(int *a, int len);

29-Oct-2018 (23) CSCI 2132 10



Efficiency of Pointers vs. Arrays

• Pointer arithmetic has been generally more efficient
• However, modern compilers optimize subscripts to be as

efficient as pointer arithmetic
• Using subscripts requires using two variables: array

name and index
• Compilers usually do not do extensive optimization by

default
• Example: gcc -O3

29-Oct-2018 (23) CSCI 2132 11



Mergesort Revisited

• Let us look at a Mergesort algorithm implemented using
pointer arithmetic
• Fill-in-the-blanks code available at:
˜prof2132/public/mergesort2.c

29-Oct-2018 (23) CSCI 2132 12


