
CSCI 2132
Software Development

Lecture 15:

Testing, Arrays in C

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

10-Oct-2018 (15) CSCI 2132 1



Previous Lecture

• Characters type (char)
• Type conversions: implicit and explicit
• typedef and sizeof keywords
• Software Development Life Cycle (SDLC)
• Waterfall model
• Rapid prototyping model

10-Oct-2018 (15) CSCI 2132 2



Software Testing and Debugging

• There will always be bugs (software errors)
– obvious bugs, but also
– sometimes nontrivial question:

Is it a “bug” or a “feature” ?
• Testing: used to detect bugs
• Debugging: used to remove bugs

10-Oct-2018 (15) CSCI 2132 3



Software Testing

• Motivation
– Ensuring robust software
– Maintain reputation
– Lower cost: Fixing a bug before release is

always cheaper than after release
– May be critical for security and privacy

reasons, etc.
• There are job positions in testing

– Software engineer in testing

10-Oct-2018 (15) CSCI 2132 4



What do We Test?

• Whether a program works
• In other words: whether it meets the

specification
• Specification contains:

– A description of input
– A description of output
– A set of conditions
– Specifying what the output should be given

input and conditions

10-Oct-2018 (15) CSCI 2132 5



How do We Test?

• Mindset
– How to make the program fail?

• Typical test cases
– Regular cases
– Boundary cases
– Error cases

10-Oct-2018 (15) CSCI 2132 6



Types of Testing

• White box testing
– Use internal knowledge of implementation to

guide the selection of test cases
– To achieve maximum code coverage

• Black box testing
– Use specification to guide the selection of test

cases
– To achieve maximum coverage of cases

given in the specification

10-Oct-2018 (15) CSCI 2132 7



Debugging

• Debugging: a methodical process of finding and
reducing bugs, or defects, in a computer program

• The key step: Identifying where things go wrong
– Track program state
∗ Current location in the program
∗ Current values of variables
∗ Numbers of iterations through a loop

– Find when expected program state does not match
actual program state

10-Oct-2018 (15) CSCI 2132 8



Printf Debugging

• Idea: Use printf statement to print
– Values of variables
– Program location

• Example:

printf("Entering the second loop\n");

10-Oct-2018 (15) CSCI 2132 9



Strategies of printf Debugging

• The linear approach
– Start at the beginning of the program adding printf’s
– Until you reach the bug (state where your printout

differs from what you expect)
• Binary search

– Select half-way point
– Determine if the bug has occurred
– If yes, look in the first half
– If no, look in the second half

10-Oct-2018 (15) CSCI 2132 10



Disadvantages of printf Debugging

• Time consuming for large programs
– Modify program
– Recompile
– Rerun

• Possibly need to remove printf statements
afterwards

10-Oct-2018 (15) CSCI 2132 11



Sometimes a Better Approach: Use a
Debugger

• Debugger — a tool that helps in debugging a program by
running it in a controlled and transparent way

• Debugger usually provide ways to
– step through the program
– inspect variables
– inspect wider program state (e.g., stack)
– and some other functionallity

• Debuggers are frequently integrated into IDEs

10-Oct-2018 (15) CSCI 2132 12



GNU Project Debugger: gdb

• A symbolic, or source-level, debugger
• A program that allows programmer to

– Access another program’s state as it is
running

– Map the state to source code (variable
names, line numbers, etc.: we need to
compile with -g option)

– View variable values
– Set breakpoints

10-Oct-2018 (15) CSCI 2132 13



Breakpoints

• Internal pausing places in a program
• Breakpoints allow programmers to

– Print values of variables
– Step through code
– Resume running the program until the next

breakpoint

10-Oct-2018 (15) CSCI 2132 14



Commands

• Covered in more details in the Lab on gdb
• Notes about some commands

– break line_number

– break function_name

– next: executes the next statement (function
call = 1 statement)

– step: executes the next statement, stepping
into functions

10-Oct-2018 (15) CSCI 2132 15



Basic Operations

• Set breakpoints
• Examine variables at breakpoints or trace

through code
• Until the bug is found
• Strategy: linear or binary search
• Advantage: No recompiling

10-Oct-2018 (15) CSCI 2132 16



Arrays

• Reading: C book, Chapter 8
• Scalar types learned so far

– composed of a single element
• Aggregate types:

– composed of multiple elements
– In C: arrays and structures

10-Oct-2018 (15) CSCI 2132 17



One-Dimensional Arrays

• One-dimensional array is
– a fixed sequence of elements of the same

type
• Syntax:
type name[size];

• Example:
int a[40];

• Unlike Java: cannot use new for dynamic
allocation

10-Oct-2018 (15) CSCI 2132 18



Allocation of C Arrays

• Arrays allocation on stack
– Remember process memory layout:

code, data, stack, and heap
• In Java: arrays allocation in heap
• Java 6 (proposed in 2006) introduced ‘escape

analysis’
• Effectively, compiler analyzes whether a Java

array can be allocated on stack
• Efficiency reasons

10-Oct-2018 (15) CSCI 2132 19



Array Length

• Array length is frequently defined as a macro
constant

• Example

#define N 40

• Then we declare the array:

int a[N];

• To access the elements of the array, we use:
a[0], a[1], . . .a[N-1]

10-Oct-2018 (15) CSCI 2132 20



Array Boundaries not Checked in C

• Subscript out of range is not checked
• Example: defining array as

int a[N];

• and then accessing: a[N]
– Leads to an error, which will go undetected by

the compiler

10-Oct-2018 (15) CSCI 2132 21



Array Initialization

• Example:

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• Size can be determined implicitly; e.g.:

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• If initializer is shorter, the other elements get 0; e.g.:

int a[10] = {1, 2, 3};

• assigns 0 to the rest of elements
• Another useful example, to set all elements to 0:

int a[10] = {0};

10-Oct-2018 (15) CSCI 2132 22


