
CSCI 2132
Software Development

Lecture 8:

Introduction to C

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

21-Sep-2018 (8) CSCI 2132 1

Previous Lecture

• Filename substitution (wildcards)
• Regular expressions

– basic regular expressions
– grep, filters

21-Sep-2018 (8) CSCI 2132 2

Some Interesting grep Options

• These are some interesting grep options that
can be used:
-n: Output lines preceded by line numbers
-i: Ignores case
-v: Output lines that don’t match
-w: Restricts matching to whole words only

21-Sep-2018 (8) CSCI 2132 3

Grep Variations

• grep : the standard grep
• grep -F (or fgrep) : searching for fixed

strings
• grep -E (or egrep) : support for extended

regular expressions

21-Sep-2018 (8) CSCI 2132 4

Extended Regular Expressions (ERE)

• Include matacharacters: ? + | () {

• These metacharacters can still be used with a
backslash; e.g., \?

• Back-referencing; e.g., (...)\1
• Further extension: PCRE — Perl-Compatible

Regular Expressions

21-Sep-2018 (8) CSCI 2132 5

Examples of Extended Regular
Expressions

• [0-9]?[0-9][a-z]+
• (Mon|Wed|Fri)+
• (.)(.).*\2\1
• ([0-9]{3},}{2,5}[0-9]{3}

21-Sep-2018 (8) CSCI 2132 6

C Programming Language

• C is originally invented as a language for
writing an operating system and other system
software by Denis Ritchie

• C optimizes for machine efficiency at the
expense of increased implementation and
debugging time

• A central difficulty in C programming:
programmers must do their own memory
management

• C assumes that you know what you are doing
21-Sep-2018 (8) CSCI 2132 7

Writing a Simple Program

• hello.c — the first C program from K&R

#include <stdio.h>

int main() {
printf("hello, world\n");
return 0;

}

• We can type this program using emacs

21-Sep-2018 (8) CSCI 2132 8

Compiling and Running a Simple C
Program

• gcc hello.c — to compile the program
• ls -l — to verify output in a.out

• ./a.out — to run the output
• You can explore Emacs and other tools about

how to do this faster

21-Sep-2018 (8) CSCI 2132 9

From Source Code to Executable

• Three steps:
– Preprocessing (by a preprocessor): modifies the

program by following preprocessor directives
– Compiling (by a compiler): translates modified code

into object code (machine instructions)
– Linking (by a linker): combines object code and

additional code and produces an executable program
• gcc automatically executes these three steps
• Other approach to running programs: interpretation (e.g.,

shell scripts, Perl, Python)

21-Sep-2018 (8) CSCI 2132 10

General Form of a Simple Program

directives
int main() {
statements

}

or

directives
int main(void) {
statements

}

21-Sep-2018 (8) CSCI 2132 11

Hello-world Example

#include

int main() {

printf("hello,

return

} Statements

Preprocessor directive

End of function main

<stdio.h>

0;

world\n");

Function main

21-Sep-2018 (8) CSCI 2132 12

Functions

• Building blocks from which C programs are constructed
• A function is a group of statements given a name
• Library functions: functions provided as a part of the C

implementation; e.g., printf
• Main function: the function that is called automatically

when the program is executed
• int main() or int main(void) means that main

returns an integer value, and does not take any
parameters

• Nested functions not allowed by standard, but gcc allows
them

21-Sep-2018 (8) CSCI 2132 13

Statement

• A command to be executed when the program
runs

• Must end with a semicolon
• Examples:

printf("hello, world\n");
return 0;

21-Sep-2018 (8) CSCI 2132 14

Printing Strings

• printf can print to the standard output a string
literal—a series of characters enclosed between " and "

• Newline character: \n
• Examples:

printf("hello, ";
printf("world\n");
printf("hello, \nworld\n");

• Similar to Java, string literals can include other escape
sequences: \t, \r, \\, \a, \b, \f, \v, \’, \", \ooo,
\xHH, and \?.

21-Sep-2018 (8) CSCI 2132 15

Comments

• /* comments (one or more lines) */
• Example:

/* Name: hello.c
Purpose: prints hello, world
Authors: K&R

*/

• C99 standard: // comments (to the end of line)

21-Sep-2018 (8) CSCI 2132 16

Variables

• Types
– Each variable must have a type

• Examples
– int — integers
– float — floating-point numbers
– double — floating-point with double precision
– char — characters

• We will see later how to build more complex types

21-Sep-2018 (8) CSCI 2132 17

Declarations

• Variables must be declared before use
• Syntax: type name;
• Examples:

int height;
float profit;

• In C89 or earlier, declarations must precede statements
in any block of code

• No such restrictions in C99

21-Sep-2018 (8) CSCI 2132 18

Operators

• A rich and powerful set of operators was one of the
strong novelties of C

• Some operators (in increasing precedence):
– parentheses ()
– unary + and -, ++, --
– binary *, /, %
– binary + and -

– comparison: <, <= >, >=
– equality: == and !=

– assignment: =, +=, -=, *=, /=, %=,

21-Sep-2018 (8) CSCI 2132 19

Printing Variables

• Printing an integer:
printf("Height: %d\h", height);

• Printing a floating-point number:
– printing with a default value of 6 decimal

digits:
printf("Profit: %f\n", profit);

– printing 2 digits after the decimal point:
printf("Profit: %.2f\n", profit);

21-Sep-2018 (8) CSCI 2132 20

Initialization

• Variables may have a random value if declared
and not initialized

• Declare and initialize in one step:

int height = 8;
double profit = 1030.56;
float profit = 1030.56f;
char c = ’A’;
char b = ’\n’;

21-Sep-2018 (8) CSCI 2132 21

Reading Input: scanf

• Reading an int value:
scanf("%d", &height);

• Reading a float value:
scanf("%f", &profit);

• Reading a double value:
scanf("%lf", &precise_profit);

• Reading an char value:
scanf("%c", &ch);

21-Sep-2018 (8) CSCI 2132 22

Defining Names for Constants

• Macro definition (preprocessor directive):
#define PI 3.14159f

• or simply
#define PI 3.14159

• Preprocessor will replace each occurrence of token PI
with the number

• A macro definition:
– does not define a variable
– is oblivious about the content of the replacement

• Macro replacement can be any sequence of tokens

21-Sep-2018 (8) CSCI 2132 23

Example: Expression as a Macro

• The value of a macro can be an expression:
#define RECIPROCAL_OF_PI (1.0/3.14159)

• Important to remember to put parentheses () around if
using an expression

• Example:
double pi = 1.0 / RECIPROCAL_OF_PI;

• What would happen if we did not have parentheses?
• Convention: uppercase letters are used for constants

being defined as macros

21-Sep-2018 (8) CSCI 2132 24

Identifiers

• Names for variables, functions, macros, etc.
• May contain letters, digits, and underscores
• Must begin with a letter or underscore
• It is good idea to avoid using underscore as the

starting character for now

21-Sep-2018 (8) CSCI 2132 25

Example

• Suppose that we write a program for a cashier working in
a retail store

• When a customer pays certain amount for a product of
certain price, before HST, we want to calculate the
balance to be returned to the customer.

• Design:
– Read price, payment, calculate, print the result
– HST can be defined as a macro constant, also called

symbolic constant

21-Sep-2018 (8) CSCI 2132 26

#include <stdio.h>

#define HST 0.15

int main() {
double price, payment, balance;

printf("Enter price: ");
scanf("%lf", &price);

printf("Enter payment: ");
scanf("%lf", &payment);

balance = payment - price * (1.0 + HST);
printf("Balance to be returned to customer:"

" %.2f\n", balance);
return 0;

}

21-Sep-2018 (8) CSCI 2132 27

