
CSCI 2132
Software Development

Lecture 5:

File Permissions

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

14-Sep-2018 (5) CSCI 2132 1



Previous Lecture

• Files and Directories
• Pathnames
• Commands for managing and navigating directory

structure
• Commands: cat, logout, exit, ls, dirname, basename,

pwd, cd, mkdir, rmdir, mv, rm, tree
• File manipulation commands
• File permissions:

– users, groups
– checking permissions

14-Sep-2018 (5) CSCI 2132 2



A Note About SVN

• SVN (Subversion) — Software Versioning and Revision
Control System

• A simplified view:
– Backups — creating backups in a repository
– Historical — “time machine”, labeled versions
– Collaborative — different users can contribute and

merge changes

files, directories

files, directories

files, directoriesSVN Repository

Working Copy 1

Working Copy 2

Working Copy 3

14-Sep-2018 (5) CSCI 2132 3



SVN Checkout (‘svn co’ or ‘svn checkout’)

• SVN checkout command is used to create an initial
working copy

SVN Repository

SVN Repository

files, directories

Working Copy 1

svn co

(svn checkout)

14-Sep-2018 (5) CSCI 2132 4



‘svn add’ command

• We can create new files in the working copy, but they are
ignored by SVN

• With ‘svn add’ we add files and directories to an SVN
internal list, i.e., we “mark” them not to be ignored

• The SVN repository does not know that we added files
yet

SVN Repository

Working Copy

svn add

new file

14-Sep-2018 (5) CSCI 2132 5



‘svn commit’ command

• ‘svn commit’ will save changes to the repository

SVN Repository

files, directories

Working Copy

svn commit

• Changes are saved to the SVN repository
• Local working copy stays (you can delete it if you want,

SVN repository does not need to know)
• Remember that you must provide a log message:

‘svn commit -mmessage’

14-Sep-2018 (5) CSCI 2132 6



‘svn update’ command

• It is possible that someone, or yourself, made new
changes in the repository and your working copy has old
versions of the files

• ‘svn update’ will update your local copy according to the
changes in the repository

SVN Repository

files, directories

Working Copy

svn update

• It is a good idea to run ‘svn update’ if you did not modify
the working copy in a long time

14-Sep-2018 (5) CSCI 2132 7



‘svn rm’ and ‘svn mv’

• If we remove or rename an SVN-marked file
using ‘rm’ or ‘mv’, SVN will complain about it
and will not remove or rename the file in the
respository

• Use ‘svn rm’ to remove a file and remove it
form the SVN internal list of marked files

• Use ‘svn mv’ to rename or move a file
• Changes will take affect at the next commit

14-Sep-2018 (5) CSCI 2132 8



SVN Troubleshooting

• Do not interrupt an SVN operation (unless it takes very
long time)

• Helpful commands: ‘svn info’, ‘svn status -v’, ‘svn log -v’
• A working copy can be recognized by the hidden .svn

directory
• A way to resolve a problem is to move or remove working

copy, and make a new checked out working copy
• If you allow SVN to save your password, you can remove

the record with:
rm ˜/.subversion/auth/svn.simple/*

14-Sep-2018 (5) CSCI 2132 9



SVN and Git

• There are many Version Control Systems
• Git and SVN are probably the most popular
• Both are open-source, with a lot of similarities and some

differences
• ‘svn co’ is similar to ‘git clone’
• ‘svn add’ is similar to ‘git add’
• ‘svn commit’ is similar to ‘git commit’ + ‘git push’
• ‘svn update’ is simlar to ‘git pull’
• We will cover git in more details later

14-Sep-2018 (5) CSCI 2132 10



A Short Note about ‘wc’

• You used ‘wc’ command in the lab
• wc stands for “word count”
• It prints the number of characters, words, and

lines
• Options ‘-c’, ‘-w’, and ‘-l’ can be used to print

only one of those numbers
• Example: wc -c file1

• Concepts: command, arguments, options or
flags

14-Sep-2018 (5) CSCI 2132 11



A Short Note about Pipelines

• You were asked in the Lab to create a pipeline
• The concept of the pipeline, which belongs to

the pipe-filter software architectural pattern
• Use pipe symbol ‘|’ to connect commands to

create pipeline in the Unix command-line
interface

• If filename can be specified as the input file,
use it only with the first command

14-Sep-2018 (5) CSCI 2132 12



Back to Permissions. . .

• We will now continue with the topic of file
permissions

14-Sep-2018 (5) CSCI 2132 13



Octal Representation of Permissions

• Permissions can be represented with 9 bits:

user︷︸︸︷
rwx

group︷︸︸︷
rwx

other︷︸︸︷
rwx

• For practical reasons octal system is used
• For example, what permissions are

represented by octal number 750?

14-Sep-2018 (5) CSCI 2132 14



Checking Permissions

• Command: ls -l

• Note: a few more useful ls options: -a -t -r
• Example:

$ echo test > tmpfile.txt
$ ls -l tmpfile.txt

-rw-r--r-- 1 vlado csfac 5 Sep 13 11:21 file.txt

14-Sep-2018 (5) CSCI 2132 15



Changing Permissions

• Command: chmod mode files
• chmod — changing file mode bits
• Some examples:

– chmod 664 file.txt
– chmod og-r file.txt
– chmod u+x,og+r file.txt
– chmod u=rw,og= file.txt
– chmod a+r file.txt
– chmod -R u+r+w+X dir1

• Note: a is used for ‘all’

14-Sep-2018 (5) CSCI 2132 16



Changing Owner and Group of a File

• Examples:
– chown newuser file.txt

– chown -R newuser files dirs

– chgrp newgroup file.txt

– chgrp -R newgroup files dirs

• -R is used for directory recursive change

14-Sep-2018 (5) CSCI 2132 17



Effective UserID and GroupID

• How does the system decide access
permission for a process?

• Each process has an effective UserID and
GroupID, as well as real UserID and GroupID

• Example: our shell has our UserID and a
GroupID

• How are processes assigned effective userids
and groupids?

14-Sep-2018 (5) CSCI 2132 18



Changing Effective GroupID and
UserID

• newgrp newgroup
– changes into newgroup (logs into new group)

• su newuser
– changes effective user
– needs to be superuser (root user)

• Additional permission bits: setuid, setgid, and
sticky bit bits

14-Sep-2018 (5) CSCI 2132 19



Reading

• Reading: UNIX book, Ch1 and Ch2 to page 51,
so far

• The book contains tutorials on vi and emacs

14-Sep-2018 (5) CSCI 2132 20



Redirection and Pipes

• The three standard channels: standard input,
standard output, standard error output

• Modifying channels: redirection and pipes

14-Sep-2018 (5) CSCI 2132 21



Output Redirection

• Remember what we learned about: stdin, stdout, stderr
• Redirecting the standard output of a program into a file:
command > filename

• Creates a file (filename) if it does not exist
• Example: ls lab1 > listing

• Important: ‘>’ redirection deletes previous file contents
• To append a file with new content use ‘>>’
• Example: ls lab1 >> listing

• Creates a file (‘listing’) if it does not exist, as well

14-Sep-2018 (5) CSCI 2132 22



Input Redirection

• Redirects the standard input from a file into a process
• Useful in testing
• Syntax: command < filename

• Example: sort < names.txt
– sorts names in a file names.txt and prints out

• Example 2:
sort < names.txt > names-sorted.txt

• Example 3: mail csusername < HelloWorld.java

• Example 4: mail full@email < HelloWorld.java

14-Sep-2018 (5) CSCI 2132 23



Error Redirection

• Standard error output is not redirected by >
• Syntax (bash specific):
command 2> filename

• Cannot be a space between ‘2’ and ‘>’
• Example: rm x 2> error

• If file x does not exist, it will produce an error message
• >> can be used to append output:
command 2>> filename

14-Sep-2018 (5) CSCI 2132 24



More About Redirection

• File descriptors of stdin, stdout, and stderr are 0, 1, and
2, respectively

• That is where 2 comes from in error redirection
• Similarly we can use 0 and 1 in input and output

redirection:
command 0< filename
command 1> filename

• These are equivalent to previous redirections

14-Sep-2018 (5) CSCI 2132 25


