CSCI 2132 Software Development

Lecture 2:

Introduction to UNIX and Unix-like Operating Systems

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

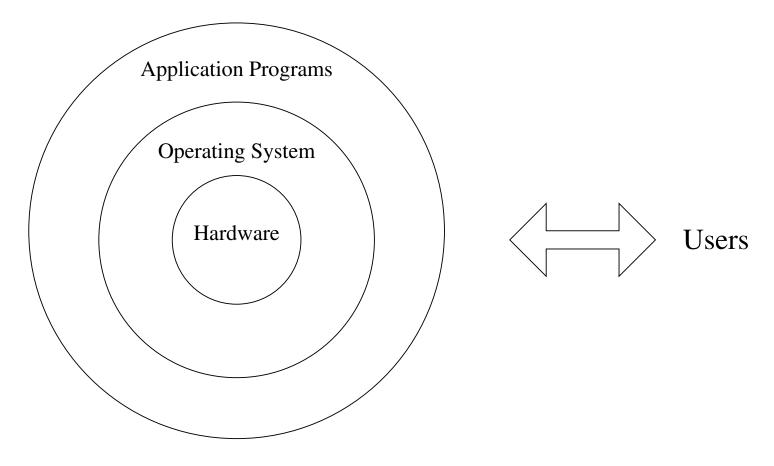
Previous Lecture

- Course Introduction
 - logistics and administrivia
 - important dates, course description
 - evaluation scheme and criteria
 - textbooks
 - lectures, exams, assignments, lab work
- Academic integrity policy
- Culture of respect
- Main learning objectives
- Motivation: Why UNIX, Why C
- Tentative list of course topics

Part 1: Unix Operating System

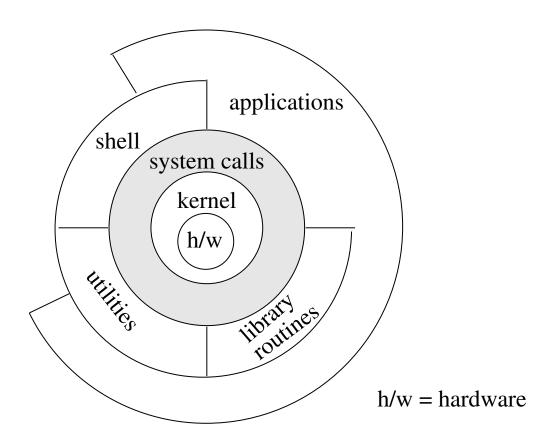
- Reading: Unix book, Chapter 1
- In the first part we will refresh our general knowledge about operating system,
- learn more details about the Unix-style operating systems
- learn about shell as a command-line interface
- learn about the file system
- learn about utilities and some tools used in software development

What is an Operating System?


 What are some main functions of an operating system?

Some Functions of an Operating System

- Provides an interface between application programs and the hardware
 - E.g., reads keyboard, writes to screen, writes and reads from disks, sends data to printer, communicates with network card, . . .
 - Hides the complexity of hardware interfaces from application programs
 - Protects the hardware from user mistakes and programming errors (to prevent crashes)
- Manages the hardware resources of the computer systems
 - CPU time, disk space, memory access, ...
- Protects user's programs and data from each other (security issues)
- Supports inter-process communications and sharing
- Provides resource sharing among users and processes


Overview of Unix-style Architecture

• The "Onion Skin Model" of Operating System

A more-detailed Onion-skin Model

Adapted from "Advanced Programming in the UNIX Environment" by W. Richard Stevens and Stephen A. Rago:

A Brief History of Unix: Multics

- Multics OS started in 1964, 5 years before Unix
- Developed by Ken Thompson, Dennis Ritchie, and others
- Collaboration of MIT, AT&T (Bell Labs), and GE for GE-645 computer
- Advances system with many features and an idea of "computing utility"
- Hardware did not keep up with sofware, so it was slow and expensive to run
- AT&T withdrew from the project and Ken Thompson started working on a new system

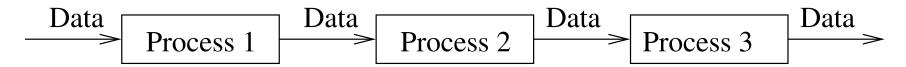
UNIX: Created in 1969 by Ken Thompson

Ken Thompson; Dennis Ritchie and Ken Thompson (sitting) at PDP-11

UNIX: 1969– Development

- 1969: Implemented for an old PDP-7 in assembly language on a GE system
- 1970-3: PDP-11, C language, reimplemented in C, pipes, called it UNIX (Brian Kernighan)
- 1973-9: Source code available to universities, PDP-11 machines, very popular, very quickly
- 1980s: Commercialization, System V, BSD, GNU (1985)
- 1991: Linux (by, Linus Tornvalds), or GNU/Linux, new code, distributions
- Other Unix/Linux-based OS's: Chrome, Android, MacOS, etc.

More Reading about UNIX History


- You can read a bit more about UNIX history in the book by Nemeth et al., Unix and Linux System Administration Handbook in the section 'A Brief History of System Administration'
- UNIX had many advanced features from early days, such as concurrent execution

Unix Philosophy

- Write programs that...
 - handle text streams; because that is a universal interface
 - work together; because then they can be easily combined
 - do one thing and do it well
- This allows for simple, elegant, and robust solutions
- Programs (utilities) can be combined into pipes
- A typical user is a programmer
 - can decompose problems into subproblems, used to concise syntax, understands data flow

The Concept of Pipeline

 Pipes are used to specify that the output of one process is to be used as the input to another process

• Example:

```
who | sort
```

- Symbol '∣' is called 'pipe'
- Related to every process having three default I/O channels: stdin, stdout, and stderr (standard input, standard output, standard error output)