
Lecture 28 p.1

Faculty of Computer Science, Dalhousie University 9-Nov-2018
CSCI 2132 — Software Development

Lecture 28: Structures and Dynamic Memory Allocation

Location: Chemistry 125 Instructor: Vlado Keselj
Time: 12:35 – 13:25

Previous Lecture

– prj-dec2bin and stack example
– Compilation of large programs
– make utility (started)
– make utility
– Using gdb with multi-file programs
– Structures (started)

The following piece of code declares a structure that can be used to store a student record:

struct student {
int number;
char name[26];
char username[11];

} x, y;

Here we assume that a student number is an integer. In this declaration, student is the tag of this structure type. A
tag is optional, but with a tag, we can use “struct tag variable_name;” to declare more variables of this
structure type after this type definition, as shown below. This declaration also defined two variables, x and y, of
the type struct student. This variable list is optional since we can just declare the type struct student
and use it later to define variables.

Now let us make use of the tag to declare another structure variable, a pointer and an array:

struct student z, *p, first_year[200];

To access a member of the structure, we can use the dot operator (.). For example, if we wish to assign values to
the members of the variable z defined above, we can write:

z.number = 123456;
strcpy(z.name, "John King");

November 9, 2018, CSCI 2132 http://web.cs.dal.ca/˜vlado/csci2132/

http://web.cs.dal.ca/~vlado/csci2132/

Lecture 28 p.2 CSCI 2132

Slide notes:
Example Code
x.number = 123;
strcpy(x.name, "Dennis Ritchie");
strcpy(x.username, "dritchie");
y = x;

#define PRINT \
printf("number:%d\nname:%s\nusername:%s\n\n", \
x.number, x.name, x.username); \
printf("number:%d\nname:%s\nusername:%s\n\n", \
y.number, y.name, y.username);

PRINT
x.number = 456;
strcpy(x.name, "Ken Thompson");
strcpy(x.username, "kthompson");
PRINT

There is another operator called arrow operator (->), and it is the shorthand for using dereference and dot operators
on a pointer to a structure. Read the following piece of code, in which p and z are variables defined above:

p = &z;
(*p).number = 222333;

The second line of the code is equivalent to:

p->number = 222333;

Structure can also be used as function parameters. It is however not always a good idea to pass a large structure
by value to a function: This requires the copying of the values of all the members of the structure argument to
corresponding members of the structure parameter, which is time-consuming. To address this efficiency issue, we
often pass pointers to structures to a function. We will see how to do this soon when implementing linked lists.

23 Dynamic Memory Allocation
When we implement dynamic data structures, as the number of data elements stored in these data structures
changes during program execution, we need acquire and free blocks of memory during program execution. Dy-
namic memory allocation makes this possible.

In C, dynamic memory allocation is done using functions defined in stdlib.h. The function for acquiring a
block of memory is malloc:

void* malloc(size_t size);

This function returns a pointer to an unused memory block of size bytes, or the NULL pointer if the system is out
of memory. In this prototype, void * is a “generic” pointer, which is just a memory address. To use malloc
properly, we need always check whether it succeeded in allocating a block of memory, and write code similar to:

int *p = (int*) malloc(10000*sizeof(int));
if (p == NULL) {

CSCI 2132 Lecture 28 p.3

... /* Error */
}

To free a block of dynamically allocated memory that the program no longer uses, we use another function called
free:

void free(void *ptr);

This frees the memory block pointed to by ptr. This function can be used only for memory allocated by malloc.
You cannot use it to free memory that is not dynamically allocated. After executing this function, ptr will become
a dangling pointer: free does not change the value of ptr itself. It still points to the memory block that is freed. In
our programs, we should never access memory that has been freed, as they might be used to store some other data
that we have no knowledge of.

If we use dynamic memory allocation improperly, our programs may create garbage, which is a memory block
that is no longer accessible to a program. This can happen if we have a pointer that is the only pointer pointing
to a dynamically allocated block of memory, and we then make it point to another variable without freeing this
memory block first. C does not do automatic garbage collection, which is a feature of Java. This is because
automatic garbage collection undermines the time and space efficiency of programs, and since efficiency is the top
priority of C, programmers are required to do garbage collection themselves by freeing blocks of memory when
our program no longer accesses them. A program that leaves behind garbage has a memory leak, and we must
always avoid memory leaks.

	Dynamic Memory Allocation
	Heap (Free Store)
	Additional Allocation Functions

	Linked Lists in C
	Linked List Example: Student Database
	Merge Sort with Linked Lists

	File Manipulation
	Streams and Files
	Opening and Closing a File
	Formatted I/O with a File
	Character I/O with a File
	Reading and Writing Blocks to Files and Other Functions

	Shell Scripting
	Shell Programs (Scripts)
	Shell Variables
	Arithmetic Operations
	Conditional Expressions
	Control Structures

