
Fall 2018 (Sep4-Dec4)
Faculty of Computer Science

CSCI 2132 — Software Development

Assignment 7

Due: Friday, Nov 30, 2018 by midnight
Worth: 65 marks (= 10 + 15 + 10 + 15 + 15)

Instructor: Vlado Keselj, CS bldg 432, 902-494-2893, vlado@dnlp.ca

Assignment Instructions:

Solutions to this assignment must be submitted through SVN, in a similar way as for the
previous assignment, unless specified differently by a question. The solutions to practicum
questions must also be submitted via the practicum web site.

1) (10 marks) Briefly describe the malloc function, how it works, and its time efficiency.
Describe briefly the free function, how it works, and its time efficiency.

Record and submit your answer via SVN in the file: CSID/a7/a7q1.txt where CSID
is your CSID and it is your main SVN directory for the course.

2) (15 marks) Submit the answer to this question as a C file named a7q2.c, which includes
definitions of the required functions below. The file must be submitted via SVN in the
pathname: CSID/a7/a7q2.c where CSID is your CSID and it is your main SVN directory
for the course.

The file must be valid C code that can be compiled and tested with other code.

Let us assume that the following structure is used to create a linked list:

struct node {

int val;

struct node *next;

};

a) (5 marks) Write a recursive function list_sum_r with the following prototype:

int list_sum_r(struct node *head);

which returns 0 if the parameter head is NULL, and otherwise it returns the sum of all
elements of the list that starts with the head pointer.

1



b) (5 marks) Write a non-recursive version of the function in a), called list_sum_i with
the same prototype:

int list_sum_i(struct node *head);

and the same result.

c) (5 marks) Write a function list_reverse with the following prototype:

struct node * list_reverse(struct node *head);

that reverses the list and returns the pointer to the new head of the list.

3) (10 marks) Make sure that you complete the Lab 9 as required. There is a set of files that
need to be submitted in this lab in your GitLab project directory “git/csci2132/lab9”.

4) (15 marks) Your task in this question is to write a C program named I.c according to the
specifications below. You will submit the program using SVN in the pathname CSID/a7/I.c
where CSID is your CSID and the name of your main SVN directory for the course. You
will also need to submit the program as a part of the Practicum 5. The Practicum 5 link is
available at the course web site.

Problem description: You should be familiar with the program sort that can sort lines of
a textual file in various ways using the keys. A simple sort will just sort lines alphabetically,
or to be more precise in the ASCII order using the characters in the line and using the
lexicographic order.

In some situations, we may want to keep several lines together and we do not want to
break them in sorting. For example we can indicate that a line continues into the next line
by using the backslash character at the very end of the line. Your task is to write a sorting
program that sorts lines in such way that the continued lines are not broken. The continued
lines should be sorted and compared to each other as long strings using the function strcmp.

Since there is not specified limit on the number of lines or the length of one line, it is
recommended that you use malloc and realloc functions to allocate for each continued line
exactly as much memory as required. You can read all continued lines into a linked list, then
sort the list, and print them from the list.

Input: The standard input includes an arbitrary text. There are no specified limitations to
the number of of lines or the length of lines.

Output: Your program must keep continued lines in a group, where any line continues to
the next line if there is the backslash character at the very end of the line, and the program
must printed the continued lines in a sorted order. Of course, the continued line can be
mixed with single lines that are not part of any group.

2



You can find more details and sample input and output of the problem at the practicum
site.

a) [10 marks] Functionality: To satisfy this requirement, your program must satisfy the
program requirements as specified and pass the practicum testing.

b) [5 marks] Implementation: To receive these marks, the program must be implemented
in the following way, and it will be marked by a marker. You are required to write a
head comment that includes your name, date of the program, the course and assignment
number, and a short description of the program. The program should follow the organization
presented in the class.

The program should use an appropriate indentation. Each block should have a consis-
tent indentation, which can be any number of spaces you choose, between 2 and 8. You can
choose a reasonable brace placement style (for example, see
https://en.wikipedia.org/wiki/Indentation_style). K&R style would be recommended,
but any other known style is acceptable as well. Your program lines should not be longer
than 80 characters.

The program should use allocation functions (such as malloc and realloc,) to be flexible
about line length and allocate the appropriate amount of memory. It is preferable that you
use linked list and merge sort, but it is acceptable if you use array-based sorting, as long as
you do not use more memory than minimally required by the program.

When allocating memory, you should start with allocation of certain memory size, and
whenever you need more memory, you should use realloc to double the memory size. Once
you know the exact memory size that you need, you should again use realloc to shrink the
block to the exactly needed memory size.

5) (15 marks) Your task in this question is to write a C program named J.c according to the
specifications below. You will submit the program using SVN in the pathname CSID/a7/J.c
where CSID is your CSID and the name of your main SVN directory for the course. You
will also need to submit the program as a part of the Practicum 5. The Practicum 5 link is
available at the course web site.

Problem description: We covered in class generation of all permutations of numbers 1,
2, . . .n. However, as we noticed, the generated permutations were not lexicographically
ordered. For example, for n = 4 the generated permutations were:

1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 3 2

...

3



while the lexicographically ordered permutations would be:

1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

...

If you are not familiar with lexicographic order, we can define it in the following way: We
compare two sequences of numbers (or letters, or other comparable elements), from the start
and keep doing it while the sequence elements are equal. When we come across the first
elements that are different, we decide that sequences compare in the same way as those two
elements. In the above example, when we compare sequences (1,4,3,2) and (1,4,2,3), we see
that the sequences differ first time at the third position, and the sequence with 2 at the third
position should come before the sequence with 3 at third position; i.e., the order should be
(1,4,2,3) and then (1,4,3,2).

You should write a program that generates permutations in the lexicographically ordered
way. The program must have two modes of operation, in one the program must produce
all permutations, and in other it must produce only the permutation that comes at certain
position in the permutations list.

Method: You should base your method on the algorithm covered in class. If you remember
the algorithm (one version) from Lecture 19 was:

1: IF k == n-1 THEN print A

2: ELSE

3: Permute(A, k+1, n)

4: FOR i = k+1 TO n-1 DO

5: swap A[k] with A[i]

6: Permute(A, k+1, n)

7: swap A[k] with A[i] /* swap back */

In order to get lexicographic order, in the step 5, you should not just swap A[k] and A[i],
but you need to rotate all elements from A[k] to A[i], by moving A[k + 1] into A[k], A[k + 2]
into A[k + 1], and so on, until you move A[i] into A[i− 1], and finally move the old value of
A[k] into A[i]. Similarily in the step 7 you need to reverse this rotation.

Input:

Each line of input contains two integers m and n. The input ends with integers 0 and
0. Other than the final two numbers, n is always the positive integer. If the first number m
is 0, you program must print all permutations of numbers 1, 2, . . . , n in the lexicographic
order. If the number m is positive, then your program must print only the m’th permutation

4



of numbers 1, 2, . . . , n in the lexicographic order. If the number m is so large that you run
out of permutation, your program should not print anything.

Output: For each par of numbers m and n in the input, your program should first produce
the line that looks as follows:
If n is 0, the line should be:
End of output

otherwise, if m is 0, the line should be:
Permutations of n:
otherwise, the line should be:
Permutation of n number m:

After that, if m = 0 and n > 0 the program must produce all permutations as specified,
one permutation per line; or if m > 0 only the specified permutation, or no permutations at
all if m is larger than the number of permutations, and if both m and n are zero, then the
program should end.

You can find more details and sample input and output of the problem at the practicum
site.

a) [10 marks] Functionality: To satisfy this requirement, your program must satisfy the
program requirements as specified and pass the practicum testing.

b) [5 marks] Implementation: To receive these marks, the program must be implemented
in the following way, and it will be marked by a marker. You are required to write a
head comment that includes your name, date of the program, the course and assignment
number, and a short description of the program. The program should follow the organization
presented in the class.

The program should use an appropriate indentation. Each block should have a consis-
tent indentation, which can be any number of spaces you choose, between 2 and 8. You can
choose a reasonable brace placement style (for example, see
https://en.wikipedia.org/wiki/Indentation_style). K&R style would be recommended,
but any other known style is acceptable as well. Your program lines should not be longer
than 80 characters.

The program should use the above method, although alternative methods are also ac-
ceptable if they are correct and equally or more efficient. If the input requires that you print
only one permutation, the program should not continue generating unnecessary permutations
internally, but move to the next case.

5


