
Lecture notes for CSCI 6905:
Autonomous Robotics

September 2011

Thomas P. Trappenberg
Dalhousie University

1 Basic probability theory

A major milestone for the modern approach to machine learning is to acknowledge our
limited knowledge about the world and the unreliability of sensors and actuators. It is
then only natural to consider quantities in our approaches as random variables. While
a regular variable, once set, has only one specific value, a random variable will have
different values every time we ‘look’ at it (draw an example from the distributions).
Just think about a light sensor. We might think that an ideal light sensor will give us
only one reading while holding it to a specific surface, but since the peripheral light
conditions change, the characteristics of the internal electronic might change due to
changing temperatures, or since we move the sensor unintentionally away from the
surface, it is more than likely that we get different readings over time. Therefore,
even internal variables that have to be estimated from sensors, such as the state of the
system, is fundamentally a random variable.

A common misconception about randomness is that one can not predict values of
random values. Some values might be more likely than others, and, while we might
not be able to predict a specific value when drawing a random number, it is possible
to say something like how often a certain number will appear when drawing many
examples. We might even be able to state how confident we are with this number,
or, in other words, how variable these predictions are. The complete knowledge of a
random variable, that is, how likely each value is for a random variable x, is captured
by the probability density function pdf(x). We discuss some specific examples of
pdfs below. In these examples we assume that we know the pdf, but in may practical
applications we must estimate this function. Indeed, estimation of pdfs is at the heart
if not the central tasks of machine learning. If we would know the ‘world pdf’, the
probability function of all possible events in the world, then we could predict as much
as possible in this world.

Most of the systems discussed in this course are stochastic models to capture
the uncertainties in the world. Stochastic models are models with random variables,
and it is therefore useful to remind ourselves about the properties of such variables.
This chapter is a refresher on concepts in probability theory. Note that we are mainly
interested in the language of probability theory rather than statistics, which is more
concerned with hypothesis testing and related procedures.

1.1 Random numbers and their probability (density)
function

Probability theory is the theory of random numbers. We denoted such numbers by
capital letters to distinguish them from regular numbers written in lower case. A
random variable, X , is a quantity that can have different values each time the variable

Basic probability theoryvi |

is inspected, such as in measurements in experiments. This is fundamentally different
to a regular variable, x, which does not change its value once it is assigned. A random
number is thus a new mathematical concept, not included in the regular mathematics of
numbers. A specific value of a random number is still meaningful as it might influence
specific processes in a deterministic way. However, since a random number can change
every time it is inspected, it is also useful to describe more general properties when
drawing examples many times. The frequency with which numbers can occur is then
the most useful quantity to take into account. This frequency is captured by the
mathematical construct of a probability. Note that there is often a debate if random
numbers should be defines solely on the basis of a frequency measurement, or if there
they should be treated as a special kind of objects. This philosophical debate between
‘Frequentists’ and ‘Bayesians’ is of minor importance for our applications.

We can formalize the idea of expressing probabilities of drawing specific specific
values for random variable with some compact notations. We speak of a discrete
random variable in the case of discrete numbers for the possible values of a random
number. A continuous random variable is a random variable that has possible values
in a continuous set of numbers. There is, in principle, not much difference between
these two kinds of random variables, except that the mathematical formulation has
to be slightly different to be mathematically correct. For example, the probability
function,

PX(x) = P (X = x) (1.1)

describes the frequency with which each possible value x of a discrete variable X
occurs. Note that x is a regular variable, not a random variable. The value of PX(x)
gives the fraction of the times we get a value x for the random variable X if we
draw many examples of the random variable.1 From this definition it follows that
the frequency of having any of the possible values is equal to one, which is the
normalization condition ∑

x

PX(x) = 1. (1.2)

In the case of continuous random numbers we have an infinite number of possible
values x so that the fraction for each number becomes infinitesimally small. It is then
appropriate to write the probability distribution function as PX(x) = pX(x)dx, where
pX(x) is the probability density function (pdf). The sum in eqn 1.2 then becomes an
integral, and normalization condition for a continuous random variable is∫

x

pX(x)dx = 1. (1.3)

We will formulate the rest of this section in terms of continuous random variables.
The corresponding formulas for discrete random variables can easily be deduced by
replacing the integrals over the pdf with sums over the probability function. It is also
possible to use the δ-function, outlined in Appendix ??, to write discrete random
processes in a continuous form.

1Probabilities are sometimes written as a percentage, but we will stick to the fractional notation.

| viiMoments: mean, variance, etc.

1.2 Moments: mean, variance, etc.

In the following we only consider independent random values that are drawn from
identical pdfs, often labeled as iid (independent and identically distributed) data. That
is, we do not consider cases where there is a different probabilities of getting certain
numbers when having a specific number in a previous trial. The static probability
density function describes, then, all we can know about the corresponding random
variable.

Let us consider the arbitrary pdf, pX(x), with the following graph:

µ x

p(x)

Such a distribution is called multimodal because it has several peaks. Since this is a
pdf, the area under this curve must be equal to one, as stated in eqn 1.3. It would be
useful to have this function parameterized in an analytical format. Most pdfs have to
be approximated from experiments, and a common method is then to fit a function to
the data. We can also view this approximation as a learning problem, that is, how can
we learn the pdf from data? We will return to this question later.

Finding a precise form of a pdf is difficult, and we became thus used to describing
random variables with a small set of numbers that are meant to capture some properties.
For example, we might ask what the most frequent value is when drawing many
examples. This number is given by the largest peak value of the distribution. It is often
more useful to know something about the average value itself when drawing many
examples. A common quantity to know is thus the expected arithmetic average of
those numbers, which is called the mean, expected value, or expectation value of the
distribution, defined by

µ =

∫ ∞
−∞

xp(x)dx. (1.4)

This formula formalizes the calculation of adding all the different numbers together
with their frequency.

A careful reader might have noticed a little oddity in our discussion. On the one
hand we are saying that we want to characterize random variables through some simple
measurements because we do not know the pdf, yet the last formula uses the pdf p(x)
that we usually don’t know. To solve this apparent oddity we need to be more careful
and talk about the true underlying functions and the estimation of such functions.
If we would know the pdf that governs the random variable X , then equation 1.4 is
the definition of the mean. However, in most applications we do not know the pdf, but
we can define an approximation of the mean from measurements. For example, if we
measure the frequency pi of values in certain intervals around values xi, then we can
estimate the true mean µ by

Basic probability theoryviii |

µ̂ =
1

N

N∑
i=1

xipi. (1.5)

It is a common practice to denote an estimate of a quantity by adding a hat symbol
to the quantity name. Also, not that we have use here a discretization procedure to
approximate random variable that can be continuous in the most general case. Also
note that we could enter here again the philosophical debate. Indeed, we have treated
the pdf as fundamental and described the arithmetic average like an estimation of
the mean. This might be viewed as Bayesian. However, we could also be pragmatic
and say that we only have a collection of measurements so that the numbers are the
‘real’ thing, and that pdfs are only a mathematical construct. We will continue with a
Bayesian description but note that this makes no difference at the end when using it in
specific applications.

The mean of a distribution is not the only interesting quantity that characterizes a
distribution. For example, we might want to ask what the median value is for which it
is equally likely to find a value lower or larger than this value. Furthermore, the spread
of the pdf around the mean is also very revealing as it gives us a sense of how spread
the values are. This spread is often characterized by the standard deviation (std), or its
square, which is called variance, σ2, and is defined as

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (1.6)

This quantity is generally not enough to characterize the probability function uniquely;
this is only possible if we know all moments of a distribution, where the nth moment
about the mean is defined as

mn =

∫ ∞
−∞

(x− µ)nf(x)dx. (1.7)

The variance is the second moment about the mean,

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (1.8)

Higher moments specify further characteristics of distributions such as terms with
third-order exponents (lie a quantity called skewness) or fourth-oder (such as a quantity
called kurtosis). Moments higher than this have not been given explicit names. Knowing
all moments of a distribution is equivalent to knowing the distribution precisely, and
knowing a pdf is equivalent to knowing everything we could know about a random
variable.

In case the distribution function is not given, moments have to be estimated from
data. For example, the mean can be estimated from a sample of measurements by the
sample mean,

x̄ =
1

n

n∑
i=1

xi, (1.9)

and the variance from the sample variance,

s2
1 =

1

n

n∑
i=1

(x̄− xi)2. (1.10)

| ixExamples of probability (density) functions

We will discuss later that these are the appropriate maximum likelihood estimates
of these parameters. Note that the sample mean is an unbiased estimate while the
sample variance is biased. A statistic is said to be biased if the mean of the sampling
distribution is not equal to the parameter that is intended to be estimated. It can be
shown that E(s2

1) = 1
nσ

2, and we can therefore adjust for the bias with a different
normalization. It is hence common to use the unbiased sample variance

s2
2 =

1

n− 1

n∑
i=1

(x̄− xi)2, (1.11)

as estimator of the variance.
Finally, it is good to realize that knowing all moments uniquely specifies a pdf. But

the reverse is also true, that is, and incomplete list of moments does not uniquely define
a pdf. Note that the all higher moments are zero for the Gaussian distributions, which
means that the mean and variance uniquely define the distribution. This is however not
the case for other distributions, and the usefulness of reporting these statistics can then
be questioned.

1.3 Examples of probability (density) functions
There is an infinite number of possible pdfs. However, some specific forms have been
very useful for describing some specific processes and have thus been given names. The
following is a list of examples with some discrete and several continuous distributions.
Most examples are discussed as one-dimensional distributions except the last example,
which is a higher dimensional distribution.

1.4 Bernoulli distribution
A Bernoulli random variable is a variable from an experiment that has two possible
outcomes: success with probability p; or failure, with probability (1− p).

Probability function:
P (success) = p;P (failure) = 1− p

mean: p
variance: p(1− p)

1.4.1 Multinomial distribution

This is the distribution of outcomes in n trials that have k possible outcomes. The
probability of each outcome is thereby pi.

Probability function:
P (xi) = n!

∏k
i=1(pxii /xi!)

mean: npi
variance: npi(1− pi)

An important example is the Binomial distribution (k = 2), which describes the the

Basic probability theoryx |

number of successes in n Bernoulli trials with probability of success p. Note that the
binomial coefficient is defined as

(
n
x

)
=

n!

x!(n− x)!
(1.12)

and is given by the MATLAB function nchoosek.

x

P(x)

np

Probability function:

P (x) =

(
n
x

)
px(1− p)n−x

mean: np
variance: np(1− p)

1.4.2 Uniform distribution

Equally distributed random numbers in the interval a ≤ x ≤ b. Pseudo-random
variables with this distribution are often generated by routines in many programming
languages.

x

p(x)

Probability density function:
p(x) = 1

b−a
mean: (a+ b)/2
variance: (b− a)2/12

1.4.3 Normal (Gaussian) distribution

Limit of the binomial distribution for a large number of trials. Depends on two pa-
rameters, the mean µ and the standard deviation σ. The importance of the normal
distribution stems from the central limit theorem outlined below.

µ

σ

x

p(x)

Probability density function:

p(x) = 1
σ
√

2π
e

−(x−µ)2

2σ2

mean: µ
variance: σ2

1.4.4 Chi-square distribution

The sum of the squares of normally distributed random numbers is chi-square dis-
tributed and depends on a parameter ν that is equal to the mean. Γ is the gamma

| xiCumulative probability (density) function and the Gaussian error function

function included in MATLAB as gamma.

ν x

p(x)

Probability density function:
p(x) = x(ν−2)/2e−x/2

2ν/2Γ(ν/2)
mean: ν
variance: 2ν

1.4.5 Multivariate Gaussian distribution

We will later consider density functions of a several random variables, x1, ..., xn. Such
density functions are functions in higher dimensions. An important example is the
multivariate Gaussian (or Normal) distribution given by

p(x1, ..., xn) = p(x) =
1

(
√

(2π))n
√

(det(Σ)
exp(−1

2
(x− µ)TΣ−1(x− µ)).

(1.13)
This is a straight forward generalization of the one-dimensional Gaussian distribution
mentioned before where the mean is now a vector, µ and the variance generalizes to
a covariance matrix, Σ = [Cov[Xi, Xj]]i=1,2,...,k;j=1,2,...,k which must be symmetric
and positive semi-definit. An example with mean µ = (1 2)T and covariance Σ =
(1 0.5; 0.5 1) is shown in Fig,1.1.

1.5 Cumulative probability (density) function and the
Gaussian error function

We have mainly discussed probabilities of single values as specified by the probability
(density) functions. However, in many cases we want to know the probabilities of
having values in a certain range. Indeed, the probability of a specific valuer of a
continuous random variable is actually infinitesimally small (nearly zero), and only
the probability of a range of values is finite and has a useful meaning of a probability.
This integrated version of a probability density function is the probability of having a
value x for the random variable X in the range of x1 ≤ x ≤ x2 and is given by

P (x1 ≤ X ≤ x2) =

∫ x2

x1

p(x)dx. (1.14)

Note that we have shortened the notation by replacing the notation PX(x1 ≤ X ≤ x2)
by P (x1 ≤ X ≤ x2) to simplify the following expressions. In the main text we often
need to calculate the probability that a normally (or Gaussian) distributed variable
has values between x1 = 0 and x2 = y. The probability of eqn 1.14 then becomes a
function of y. This defines the Gaussian error function

1√
2πσ

∫ y

0

e−
(x−µ)2

2σ2 dx =
1

2
erf(

y − µ√
2σ

). (1.15)

The name of this function comes from the fact that this integral often occurs when
calculating confidence intervals with Gaussian noise and is often abbreviated as erf .

Basic probability theoryxii |

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Fig. 1.1 Multivariate Gaussian with mean µ = (1 2)T and covariance Σ = (1 0.5; 0.5 1).

This Gaussian error function for normally distributed variables (Gaussian distribution
with mean µ = 0 and variance σ = 1) is commonly tabulated in books on statistics.
Programming libraries also frequently include routines that return the values for spe-
cific arguments. In MATLAB this is implemented by the routine erf, and values for
the inverse of the error function are returned by the routine erfinv.

Another special case of eqn 1.14 is when x1 in the equation is equal to the lowest
possible value of the random variable (usually −∞). The integral in eqn 1.14 then
corresponds to the probability that a random variable has a value smaller than a certain

| xiiiFunctions of random variables and the central limit theorem

value, say y. This function of y is called the cumulative density function (cdf),2

P cum(x < y) =

∫ y

−∞
p(x)dx, (1.16)

which we will utilize further below.

1.6 Functions of random variables and the central limit
theorem

A function of a random variable X ,

Y = f(X), (1.17)

is also a random variable, Y , and we often need to know what the pdf of this new
random variable is. Calculating with functions of random variables is a bit different to
regular functions and some care has be given in such situations. Let us illustrate how
to do this with an example. Say we have an equally distributed random variable X as
commonly approximated with pseudo-random number generators on a computer. The
probability density function of this variable is given by

pX(x) =

{
1 for 0 ≤ x ≤ 1,
0 otherwise. (1.18)

We are seeking the probability density function pY (y) of the random variable

Y = e−X
2

. (1.19)

The random number Y is not Gaussian distributed as we might think naively. To cal-
culate the probability density function we can employ the cumulative density function
eqn 1.16 by noting that

P (Y ≤ y) = P (e−X
2

≤ y) = P (X ≥
√
− ln y). (1.20)

Thus, the cumulative probability function of Y can be calculated from the cumulative
probability function of X ,

P (X ≥
√
− ln y) =

{∫ 1√
− ln y

pX(x)dy = 1−
√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise.
(1.21)

The probability density function of Y is the the derivative of this function,

pY (y) =

{
1−
√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise. (1.22)

The probability density functions of X and Y are shown below.

2Note that this is a probability function, not a density function.

Basic probability theoryxiv |

-0.5 0 0.5 1 1.5

0

0.5

1

0 0.5 1

0

1

2

3

4

p
 (

x)
X

p
 (

y)
Y

yx

Y=e-X 2

A special function of random variables, which is of particular interest it can approx-
imate many processes in nature, is the sum of many random variables. For example,
such a sum occurs if we calculate averages from measured quantities, that is,

X̄ =
1

n

n∑
i=1

Xi, (1.23)

and we are interested in the probability density function of such random variables. This
function depends, of course, on the specific density function of the random variablesXi.
However, there is an important observation summarized in the central limit theorem.
This theorem states that the average (normalized sum) of n random variables that are
drawn from any distribution with mean µ and variance σ is approximately normally
distributed with mean µ and variance σ/n for a sufficiently large sample size n. The
approximation is, in practice, often very good also for small sample sizes. For example,
the normalized sum of only seven uniformly distributed pseudo-random numbers is
often used as a pseudo-random number for a normal distribution.

1.7 Measuring the difference between distributions

An important practical consideration is how to measure the similarity of difference
between two density functions, say the density function p and the density function
q. Note that such a measure is a matter of definition, similar to distance measures
of real numbers or functions. However, a proper distance measure, d, should be zero
if the items to be compared, a and b, are the same, it’s value should be positive
otherwise, and a distance measure should be symmetrical, meaning that d(a, b) =
d(b, a). The following popular measure of similarity between two density functions
is not symmetric and is hence not called a distance. It is called Kulbach–Leibler
divergence and is given by

dKL(p, q) =

∫
p(x) log(

p(x)

q(x)
)dx (1.24)

=

∫
p(x) log(p(x))dx−

∫
p(x) log(q(x))dx (1.25)

This measure is zero if p = q. This measure is related to the information gain or
relative entropy in information theory.

| xvDensity functions of multiple random variables

1.8 Density functions of multiple random variables

So far, we have discussed mainly probability (density) functions of single random
variables. As mentioned before, we use random variables to describe data such as
sensor readings in robots. Of course, we often have then more than one sensor and
also other quantities that we describe by random variables at the same time. Thus, in
many applications we consider multiple random variables. The quantities described by
the random variables might be independent, but in many cases they are also related.
Indeed, we will later talk about how to describe various types of relations. Thus, in
order to talk about situations with multiple random variables, or multivariate statistics,
it is useful to know basic rules. We start by illustrating these basic multivariate rules
with two random variables since the generalization from there is usually quite obvious.
But we will also talk about the generalization to more than two variables at the end of
this section.

1.8.1 Basic definitions

We have seen that probability theory is quite handy to model data, and probability
theory also considers multiple random variables. The total knowledge about the co-
occurrence of specific values for two random variables X and Y is captured by the

joined distribution: p(x, y) = p(X = x, Y = y). (1.26)

This is a two dimensional functions. The two dimensions refers here to the number
of variables, although a plot of this function would be a three dimensional plot. An
example is shown in Fig.1.2. All the information we can have about a stochastic system
is encapsulated in the joined pdf. The slice of this function, given the value of one
variable, say y, is the

conditional distribution: p(x|y) = p(X = x|Y = y). (1.27)

A conditional pdf is also illustrated in Fig.1.2 If we sum over all realizations of y we
get the

marginal distribution: p(x) =

∫
p(x, y)dy. (1.28)

If we know some functional form of the density function or have a parameterized
hypothesis of this function, than we can use common statistical methods, such as
maximum likelihood estimation, to estimate the parameters as in the one dimensional
cases. If we do not have a parameterized hypothesis we need to use other methods, such
as treating the problem as discrete and building histograms, to describe the density
function of the system. Note that parameter-free estimation is more challenging with
increasing dimensions. Considering a simple histogram method to estimate the joined
density function where we discretize the space along every dimension into n bins.
This leads to n2 bins for a two-dimensional histogram, and nd for a d-dimensional
problem. This exponential scaling is a major challenge in practice since we need also
considerable data in each bin to sufficiently estimate the probability of each bin.

Basic probability theoryxvi |

-2

-1

0

1

2

-2

-1

0

1

2
0

5

10

15

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

X
Y

p(X,Y)

p(X,Y)

p(Y|X=0.4)

p(X|Y=0.88)

Fig. 1.2 Example of a two-dimensional probability density function (pdf) and some examples of
conditional pdfs.

1.8.2 The chain rule

As mentioned before, if we know the joined distribution of some random variables
we can make the most predictions of these variables. However, in practice we have
often to estimate these functions, and we can often only estimate conditional density
functions. A very useful rule to know is therefore how a joined distribution can be
decompose into the product of a conditional and a marginal distribution,

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (1.29)

which is sometimes called the chain rule. Note the two different ways in which we can
decompose the joined distribution. This is easily generalized to n random variables by

p(x1, x2, ..., xn) = p(xn|x1, ...xn−1)p(x1, ..., xn−1) (1.30)
= p(xn|x1, ..., xn−1) ∗ ... ∗ p(x2|x1) ∗ p(x1) (1.31)
= Πn

i=1p(xi|xi−1, ...x1) (1.32)

but note that there are also different decompositions possible. We will learn more about
this and useful graphical representations in Chapter ??.

Estimations of processes are greatly simplified when random variables are inde-
pendent. A random variable X is independent of Y if

p(x|y) = p(x). (1.33)

Using the chain rule eq.1.29, we can write this also as

p(x, y) = p(x)p(y), (1.34)

that is, the joined distribution of two independent random variables is the product of
their marginal distributions. Similar, we can also define conditional independence. For

| xviiDensity functions of multiple random variables

example, two random variables X and Y are conditionally independent of random
variable Z if

p(x, y|z) = p(x|z)p(y|z). (1.35)

Note that total independence does not imply conditionally independence and visa
versa, although this might hold true for some specific examples.

1.8.3 How to combine prior knowledge with new evidence: Bayes rule

One of the most common tasks we will encounter in the following is the integration
of prior knowledge with new evidence. For example, we could have an estimate of
the location of an agent and get new (noisy) sensory data that adds some suggestions
for different locations. A similar task is the fusion of data from different sensors. The
general question we have to solve is how to weight the different evidence in light
of the reliability of this information. Solving this problem is easy in a probabilistic
framework and is one of the main reasons that so much progress has been made in
probabilistic robotics.

How prior knowledge should be combined with prior knowledge is an important
question. Luckily, basically already know how to do it best in a probabilistic sense.
Namely, if we divide this chain rule eq. 1.29 by p(x), which is possible as long as
p(x) > 0, we get the identity

p(x|y) =
p(y|x)p(x)

p(y)
, (1.36)

which is called Bayes theorem. This theorem is important because it tells us how to
combine a prior knowledge, such as the expected distribution over a random variable
such as the state of a system, p(x), with some evidence called the likelihood function
p(y|x), for example by measuring some sensors reading y when controlling the state,
to get the posterior distribution, p(y|x) from which the new estimation of state can be
derived. The marginal distribution p(y), which does not depend on the state X , is the
proper normalization so that the left-hand side is again a probability.

Exercises

1. Use your favourite plotting program to plot a Gaussian, a uniform, and the
Chi-square distribution (probability density function). Include units on the axis.

2. Explain if the random variables X and Y are independent if their marginal
distribution is p(x) = 3x2 + log(x) and p(y) = 3y2 + log(y) and the joined
distributions is p(x, y) = 3x2y2 + log(xy).

3. (From Thrun, Burgard and Fox, Probabilistic Robotics) A robot uses a sensor
that can measure ranges from 0m to 3m. For simplicity, assume that the actual
ranges are distributed uniformly in this interval. Unfortunately, the sensors can
be faulty. When the sensor is faulty it constantly outputs a range below 1m,
regardless of the actual range in the sensor’s measurement cone. We know that
the prior probability for a sensor to be faulty is p = 0.01.

Basic probability theoryxviii |

Suppose the robot queries its sensors N times, and every single time the mea-
surement value is below 1m. What is the posterior probability of a sensor fault,
for N = 1, 2, ..., 10. Formulate the corresponding probabilistic model.

2 Programming with Matlab

This chapter is a brief introduction to programming with the Matlab programming en-
vironment. We assume thereby little programming experience, although programmers
experienced in other programming languages might want to scan through this chapter.
MATLAB is an interactive programming environment for scientific computing. This
environment is very convenient for us for several reasons, including its interpreted exe-
cution mode, which allows fast and interactive program development, advanced graphic
routines, which allow easy and versatile visualization of results, a large collection of
predefined routines and algorithms, which makes it unnecessary to implement known
algorithms from scratch, and the use of matrix notations, which allows a compact and
efficient implementation of mathematical equations and machine learning algorithms.
MATLAB stands for matrix laboratory, which emphasizes the fact that most opera-
tions are array or matrix oriented. Similar programming environments are provided
by the open source systems called Scilab and Octave. The Octave system seems to
emphasize syntactic compatibility with MATLAB, while Scilab is a fully fledged al-
ternative to MATLAB with similar interactive tools. While the syntax and names of
some routines in Scilab are sometimes slightly different, the distribution includes a
converter for MATLAB programs. Also, the Matlab web page provides great videos
to learn how to use Matlab at http://www.mathworks.com/demos/matlab/...
...getting-started-with-matlab-video-tutorial.html.

2.1 The MATLAB programming environment
MATLAB3 is a programming environment and collection of tools to write programs,
execute them, and visualize results. MATLAB has to be installed on your computer to
run the programs mentioned in the manuscript. It is commercially available for many
computer systems, including Windows, Mac, and UNIX systems. The MATLAB web
page includes a set of brief tutorial videos, also accessible from the demos link from
the MATLAB desktop, which are highly recommended for learning MATLAB.

As already mentioned, there are several reasons why MATLAB is easy to use and
appropriate for our programming need. MATLAB is an interpreted language, which
means that commands can be executed directly by an interpreter program. This makes
the time-consuming compilation steps of other programming languages redundant and
allows a more interactive working mode. A disadvantage of this operational mode is
that the programs could be less efficient compared to compiled programs. However,
there are two possible solution to this problem in case efficiency become a concern.
The first is that the implementations of many MATLAB functions is very efficient

3MATLAB and Simulink are registered trademarks, and MATLAB Compiler is a trademark of The
MathWorks, Inc.

Programming with Matlabxx |

and are themselves pre-compiled. MATLAB functions, specifically when used on
whole matrices, can therefore outperform less well-designed compiled code. It is thus
recommended to use matrix notations instead of explicit component-wise operations
whenever possible. A second possible solutions to increase the performance is to use
the MATLAB compiler to either produce compiled MATLAB code in .mex files or to
translate MATLAB programs into compilable language such as C.

A further advantage of MATLAB is that the programming syntax supports matrix
notations. This makes the code very compact and comparable to the mathematical
notations used in the manuscript. MATLAB code is even useful as compact nota-
tion to describe algorithms, and it is hence useful to go through the MATLAB code
in the manuscript even when not running the programs in the MATLAB environ-
ment. Furthermore, MATLAB has very powerful visualization routines, and the new
versions of MATLAB include tools for documentation and publishing of codes and
results. Finally, MATLAB includes implementations of many mathematical and sci-
entific methods on which we can base our programs. For example, MATLAB includes
many functions and algorithms for linear algebra and to solve systems of differential
equations. Specialized collections of functions and algorithms, called a ‘toolbox’ in
MATLAB, can be purchased in addition to the basic MATLAB package or imported
from third parties, including many freely available programs and tools published by
researchers. For example, the MATLAB Neural Network Toolbox incorporates func-
tions for building and analysing standard neural networks. This toolbox covers many
algorithms particularly suitable for connectionist modelling and neural network ap-
plications. A similar toolbox, called NETLAB, is freely available and contains many
advanced machine learning methods. We will use some toolboxes later in this course,
including the LIBSVM toolbox and the MATLAB NXT toolbox to program the Lego
robots.

2.1.1 Starting a MATLAB session

Starting MATLAB opens the MATLAB desktop as shown in Fig. 2.1 for MATLAB
version 7. The MATLAB desktop is comprised of several windows which can be
customized or undocked (moving them into an own window). A list of these tools are
available under the desktop menu, and includes tools such as the command window,
editor, workspace, etc. We will use some of these tools later, but for now we only
need the MATLAB command window. We can thus close the other windows if they
are open (such as the launch pad or the current directory window); we can always
get them back from the desktop menu. Alternatively, we can undock the command
window by clicking the arrow button on the command window bar. An undocked
command window is illustrated on the left in Fig. 2.2. Older versions of MATLAB
start directly with a command window or simply with a MATLAB command prompt
>> in a standard system window. The command window is our control centre for
accessing the essential MATLAB functionalities.

2.1.2 Basic variables in MATLAB

The MATLAB programming environment is interactive in that all commands can
be typed into the command window after the command prompt (see Fig. 2.2). The

| xxiThe MATLAB programming environment

Fig. 2.1 The MATLAB desktop window of MATLAB Version 7.

Fig. 2.2 A MATLAB command window (left) and a MATLAB figure window (right) displaying the
results of the function plot sin developed in the text.

commands are interpreted directly, and the result is returned to (and displayed in) the
command window. For example, a variable is created and assigned a value with the =
operator, such as

>> a=3

Programming with Matlabxxii |

a =

3

Ending a command with semicolon (;) suppresses the printing of the result on screen.
It is therefore generally included in our programs unless we want to view some
intermediate results. All text after a percentage sign (%) is not interpreted and thus
treated as comment,

>> b=’Hello World!’; % delete the semicolon to echo Hello World!

This example also demonstrates that the type of a variable, such as being an integer,
a real number, or a string, is determined by the values assigned to the elements. This
is called dynamic typing. Thus, variables do not have to be declared as in some other
programming languages. While dynamic typing is convenient, a disadvantage is that
a mistyped variable name can not be detected by the compiler. Inspecting the list of
created variables is thus a useful step for debugging.

All the variables that are created by a program are kept in a buffer called workspace.
These variable can be viewed with the command whos or displayed in the workspace
window of the MATLAB desktop. For example, after declaring the variables above,
the whos command results in the responds

>> whos

Name Size Bytes Class Attributes

a 1x1 8 double

b 1x12 24 char

It displays the name, the size, and the type (class) of the variable. The size is often
useful to check the orientation of matrices as we will see below. The variables in the
workspace can be used as long as MATLAB is running and as long as it is not cleared
with the command clear. The workspace can be saved with the command save

filename, which creates a file filename.mat with internal MATLAB format. The
saved workspace can be reloaded into MATLAB with the command load filename.
The load command can also be used to import data in ASCII format. The workspace
is very convenient as we can run a program within a MATLAB session and can then
work interactively with the results, for example, to plot some of the generated data.

Variables in MATLAB are generally matrices (or data arrays), which is very con-
venient for most of our purposes. Matrices include scalars (1× 1 matrix) and vectors
(1×N matrix) as special cases. Values can be assigned to matrix elements in several
ways. The most basic one is using square brackets and separating rows by a semicolon
within the square brackets, for example (see Fig. 2.2),

>> a=[1 2 3; 4 5 6; 7 8 9]

a =

1 2 3

4 5 6

7 8 9

| xxiiiThe MATLAB programming environment

A vector of elements with consecutive values can be assigned by column operators
like

>> v=0:2:4

v =

0 2 4

Furthermore, the MATLAB desktop includes an array editor, and data in ASCII files
can be assigned to matrices when loaded into MATLAB. Also, MATLAB functions
often return matrices which can be used to assign values to matrix elements. For
example, a uniformly distributed random 3 × 3 matrix can be generated with the
command

>> b=rand(3)

b =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214

The multiplication of two matrices, following the matrix multiplication rules, can be
done in MATLAB by typing

>> c=a*b

c =

3.2329 4.5549 2.9577

8.5973 10.9730 6.8468

13.9616 17.3911 10.7360

This is equivalent to

c=zeros(3);

for i=1:3

for j=1:3

for k=1:3

c(i,j)=c(i,j)+a(i,k)*b(k,j);

end

end

end

which is the common way of writing matrix multiplications in other programming
languages. Formulating operations on whole matrices, rather than on the individual
components separately, is not only more convenient and clear, but can enhance the
programs performance considerably. Whenever possible, operations on whole matrices
should be used. This is likely to be the major change in your programming style
when converting from another programming language to MATLAB. The performance
disadvantage of an interpreted language is often negligible when using operations on

Programming with Matlabxxiv |

whole matrices.
The transpose operation of a matrix changes columns to rows. Thus, a row vector

such as v can be changed to a column vector with the MATLAB transpose operator
(’),
>> v’

ans =

0

2

4

which can then be used in a matrix-vector multiplication like
>> a*v’

ans =

16

34

52

The inconsistent operation a*v does produce an error,
>> a*v

??? Error using ==> mtimes

Inner matrix dimensions must agree.

Component-wise operations in matrix multiplications (*), divisions (/) and potentia-
tion ∧ are indicated with a dot modifier such as
>> v.^2

ans =

0 4 16

The most common operators and basic programming constructs in MATLAB are
similar to those in other programming languages and are listed in Table 2.1.

2.1.3 Control flow and conditional operations

Besides the assignments of values to variables, and the availability of basic data
structures such as arrays, a programming language needs a few basic operations for
building loops and for controlling the flow of a program with conditional statements
(see Table 2.1). For example, the for loop can be used to create the elements of the
vector v above, such as
>> for i=1:3; v(i)=2*(i-1); end

>> v

v =

| xxvThe MATLAB programming environment

Table 2.1 Basic programming contracts in MATLAB.

Programming Command Syntax
construct
Assignment = a=b

Arithmetic add a+b

operations multiplication a*b (matrix), a.*b (element-wise)
division a/b (matrix), a./b (element-wise)
power a∧b (matrix), a.∧b (element-wise)

Relational equal a==b

operators not equal a∼=b
less than a<b

Logical AND a & b

operators OR a‖b
Loop for for index=start:increment:end

statement
end

while while expression
statement

end

Conditional if statement if logical expressions
command statement

elseif logical expressions
statement

else

statement
end

Function function [x,y,...]=name(a,b,...)

0 2 4

Table 2.1 lists, in addition, the syntax of a while loop. An example of a conditional
statement within a loop is

>> for i=1:10; if i>4 & i<=7; v2(i)=1; end; end

>> v2

v2 =

0 0 0 0 1 1 1

In this loop, the statement v2(i)=1 is only executed when the loop index is larger
than 4 and less or equal to 7. Thus, when i=5, the array v2 with 5 elements is created,
and since only the elements v2(5) is set to 1, the previous elements are set to 0 by
default. The loop adds then the two element v2(6) and v2(7). Such a vector can also
be created by assigning the values 1 to a specified range of indices,

>> v3(4:7)=1

v3 =

Programming with Matlabxxvi |

0 0 0 1 1 1 1

A 1×7 array is thereby created with elements set to 0, and only the specified elements
are overwritten with the new value 1. Another method to write compact loops in
MATLAB is to use vectors as index specifiers. For example, another way to create a
vector with values such as v2 or v3 is

>> i=1:10

i =

1 2 3 4 5 6 7 8 9 10

>> v4(i>4 & i<=7)=1

v4 =

0 0 0 0 1 1 1

2.1.4 Creating MATLAB programs

If we want to repeat a series of commands, it is convenient to write this list of
commands into an ASCII file with extension ‘.m’. Any ASCII editor (for example;
WordPad, Emacs, etc.) can be used. The MATLAB package contains an editor that has
the advantage of colouring the content of MATLAB programs for better readability and
also provides direct links to other MATLAB tools. The list of commands in the ASCII
file (e.g. prog1.m) is called a script in MATLAB and makes up a MATLAB program.
This program can be executed with a run button in the MATLAB editor or by calling
the name of the file within the command window (for example, by typing prog1). We
assumed here that the program file is in the current directory of the MATLAB session
or in one of the search paths that can be specified in MATLAB. The MATLAB desktop
includes a ‘current directory’ window (see desktop menu). Some older MATLAB
versions have instead a ‘path browser’. Alternatively, one can specify absolute path
when calling a program, or change the current directories with UNIX-style commands
such as cd in the command window (see Fig. 2.3).

Functions are another way to encapsulate code. They have the additional advan-
tage that they can be pre-compiled with the MATLAB CompilerTM available from
MathWorks, Inc. Functions are kept in files with extension ‘.m’ which start with the
command line like

function y=f(a,b)

where the variables a and b are passed to the function and y contains the values returned
by the function. The return values can be assigned to a variable in the calling MATLAB

| xxviiThe MATLAB programming environment

Run program

Fig. 2.3 Two editor windows and a command window.

script and added to the workspace. All other internal variables of the functions are local
to the function and will not appear in the workspace of the calling script.

MATLAB has a rich collection of predefined functions implementing many algo-
rithms, mathematical constructs, and advanced graphic handling, as well as general
information and help functions. You can always search for some keywords using the
useful command lookfor followed by the keyword (search term). This command
lists all the names of the functions that include the keywords in a short description
in the function file within the first comment lines after the function declaration in
the function file. The command help, followed by the function name, displays the
first block of comment lines in a function file. This description of functions is usually
sufficient to know how to use a function. A list of some frequently used functions is
listed in Table 2.1.4.

2.1.5 Graphics

MATLAB is a great tool for producing scientific graphics. We want to illustrate this
by writing our first program in MATLAB: calculating and plotting the sine function.
The program is

x=0:0.1:2*pi;

y=sin(x);

plot(x,y)

The first line assigns elements to a vector x starting with x(1) = 0 and incrementing
the value of each further component by 0.1 until the value 2π is reached (the variable

Programming with Matlabxxviii |

Name Brief description
abs absolute functions
axis sets axis limits
bar produces bar plot
ceil round to larger interger
colormap colour matrix for surface plots
cos cosine function
diag diagonal elements of a matrix
disp display in command window
errorbar plot with error bars
exp exponential function
fft fast Fourier transform
find index of non-zero elements
floor round to smaller integer
hist produces histogram
int2str converts integer to string
isempty true if array is empty
length length of a vector
log logarithmic function
lsqcurevfit least mean square curve

fitting (statistics toolbox)
max maximum value and index
mix minimum value and index
mean calculates mean
meshgrid creates matrix to plot grid

Name Brief description
mod modulus function
num2str converts number to string
ode45 ordinary differential equation solver
ones produces matrix with unit elements
plot plot lines graphs
plot3 plot 3-dimensional graphs
prod product of elements
rand uniformly distributed random variable
randn normally distributed random variable
randperm random permutations
reshape reshaping a matrix
set sets values of parameters in structure
sign sign function
sin sine function
sqrt square root function
std calculates standard deviation
subplot figure with multiple subfigures
sum sum of elements
surf surface plot
title writes title on plot
view set viewing angle of 3D plot
xlabel label on x-axis of a plot
ylabel label on y-axis of a plot
zeros creates matrix of zero elements

Table 2.2 MATLAB functions used in this course. The MATLAB command help cmd, where
cmd is any of the functions listed here, provides more detailed explanations.

pi has the appropriate value in MATLAB). The last element is x(63) = 6.2. The
second line calls the MATLAB function sin with the vector x and assigns the results
to a vector y. The third line calls a MATLAB plotting routine. You can type these
lines into an ASCII file that you can name plot sin.m. The code can be executed by
typing plot sin as illustrated in the command window in Fig. 2.2, provided that the
MATLAB session points to the folder in which you placed the code. The execution of
this program starts a figure window with the plot of the sine function as illustrated on
the right in Fig. 2.2.

The appearance of a plot can easily be changed by changing the attributes of the
plot. There are several functions that help in performing this task, for example, the
function axis that can be used to set the limits of the axis. New versions of MATLAB
provide window-based interfaces to the attributes of the plot. However, there are also
two basic commands, get and set, that we find useful. The command get(gca)

returns a list with the axis properties currently in effect. This command is useful for
finding out what properties exist. The variable gca (get current axis) is the axis handle,
which is a variable that points to a memory location where all the attribute variables are
kept. The attributes of the axis can be changed with the set command. For example,
if we want to change the size of the labels we can type set(gca,’fontsize’,18).

| xxixA first project: modelling the world

There is also a handle for the current figure gcf that can be used to get and set other
attributes of the figure. MATLAB provides many routines to produce various special
forms of plots including plots with error-bars, histograms, three-dimensional graphics,
and multi-plot figures.

2.2 A first project: modelling the world

Suppose there is a simple world with a creature that can be in three distinct states,
sleep (state value 1), eat (state value 2), and study (state value 3). An agent, which
is a device that can sense environmental states and can generate actions, is observing
this creature with poor sensors, which add white (Gaussian) noise to the true state.
Our aim is to build a model of the behaviour of the creature which can be used by
the agent to observe the states of the creature with some accuracy despite the limited
sensors. For this exercise, the function creature state() is available on the course
page on the web. This function returns the current state of the creature. Try to create
an agent program that predicts the current state of the creature. In the following we
discuss some simple approches.

A simulation program that implements a specific agent a with simple world model
(a model of the creature), which also evaluates the accuracy of the model, is given in
Table 2.3. This program, also available on the web, is provided in file main.m. This
program can be downloaded into the working directory of MATLAB and executed by
typing main into the command window, or by opening the file in the MATLAB editor
and starting it from there by pressing the icon with the green triangle. The program
reports the percentage of correct perceptions of the creature’s state.

Line 1 of the program uses a comment indicator (%) to outline the purpose of the
program. Line 2 clears the workspace to erase all eventual existing variables, and sets
a counter for the number of correct perceptions to zero. Line 4 starts a loop over 1000
trials. In each trial, a creature state is pulled by calling the function creature state()

and recording this state value in variable x. The sensory state s is then calculated by
adding a random number to this value. The value of the random number is generated
from a normal distribution, a Gaussian distribution with mean zero and unit variance,
with the MATLAB function randn().

We are now ready to build a model for the agent to interpret the sensory state. In the
example shown, this model is given in Lines 8–12. This model assumes that a sensory
value below 1.5 corresponds to the state of a sleeping creature (Line 9), a sensory value
between 1.5 and 2.5 corresponds to the creature eating (Line 10), and a higher value
corresponds to the creature studying (Line 11). Note that we made several assumptions
by defining this model, which might be unreasonable in real-world applications. For
example, we used our knowledge that there are three states with ideal values of 1,
2, and 3 to build the model for the agent. Furthermore, we used the knowledge that
the sensors are adding independent noise to these states in order to come up with the
decision boundaries. The major challenge for real agents is to build models without
this explicit knowledge. When running the program we find that a little bit over 50%
of the cases are correctly perceived by the agent. While this is a good start, one could
do better. Try some of your own ideas . . .

Programming with Matlabxxx |
Table 2.3 Program main.m

1 % Project 1: simulation of agent which models simple creature

2 clear; correct=0;

3

4 for trial=1:1000

5 x=creature_state();

6 s=x+randn();

7

8 %% perception model

9 if (s<1.5) x_predict=1;

10 elseif (s<2.5) x_predict=2;

11 else x_predict=3;

12 end

13

14 %% calculate accuracy

15 if (x==x_predict) correct=correct+1; end

16 end

17

18 disp([’percentage correct: ’,num2str(correct/1000)]);

. . . Did you succeed in getting better results? It is certainly not easy to guess some
better model, and it is time to inspect the data more carefully. For example, we can
plot the number of times each state occurs. For this we can write a loop to record the
states in a vector,

>> for i=1:1000; a(i)=creature_state(); end

and then plot a histogram with the MATLAB function hist(),

>> hist(a)

The result is shown in Fig. 2.4. This histogram shows that not all states are equally
likely as we implicitly assumed in the above agent model. The third state is indeed
much less likely. We could use this knowledge in a modified model in which we predict
that the agent is sleeping for sensory states less than 1.5 and is eating otherwise. This
modified model, which completely ignores study states, predicts around 65% of the
states correctly. Many machine learning methods suffer from such ‘explaining away’
solutions for imbalanced data, as further discussed in Chapter ??.

It is important to recognize that 100% accuracy is not achievable with the inherent
limitations of the sensors. However, higher recognition rates could be achieved with
better world (creature + sensor) models. The main question is how to find such a
model. We certainly should use observed data in a better way. For example, we
could use several observations to estimate how many states are produced by function
creature state() and their relative frequency. Such parameter estimation is a basic
form of learning from data. Many models in science take such an approach by proposing
a parametric model and estimating parameters from the data by model fitting. The main
challenge with this approach is how complex we should make the model. It is much
easier to fit a more complex model with many parameters to example data, but the

| xxxiAlternative programming environments: Octave and Scilab

1 1.5 2 2.5 30

100

200

300

400

500

N
um

be
r o

f o
cc

ur
en

ce
s

in
 1

00
0

tr
ia

ls
Creature state value

Fig. 2.4 The MATLAB desktop window histogram of states produced by function
creature state() from 1000 trials.

increased flexibility decreases the prediction ability of such models. Much progress has
been made in machine learning by considering such questions, but those approaches
only work well in limited worlds, certainly much more restricted than the world we
live in. More powerful methods can be expected by learning how the brain solves such
problems.

2.3 Alternative programming environments: Octave and
Scilab

We briefly mention here two programming environments that are very similar to
Matlab and that can, with certain restrictions, execute Matlab scripts. Both of these
programming systems are open source environments and have general public licenses
for non-commercial use.

The programming environment called Octave is freely available under the GNU
general public license. Octave is available through links at http://www.gnu.org/software/octave/.
The installation requires the additional installation of a graphics package, such as gnu-
plot or Java graphics. Some distributions contain the SciTE editor which can be used
in this environment. An example of the environment is shown in Fig. 2.5

Scilab is another scientific programming environment similar to MATLAB. This
software package is freely available under the CeCILL software license, a license
compatible to the GNU general public license. It is developed by the Scilab consortium,
initiated by the French research centre INRIA. The Scilab package includes a MATLAB
import facility that can be used to translate MATLAB programs to Scilab. A screen
shot of the Scilab environment is shown in Fig. 2.6. A Scilab script can be run from
the execute menu in the editor, or by calling exec("filename.sce").

Programming with Matlabxxxii |

Fig. 2.5 The Octave programming environment with the main console, and editor called SciTE,
and a graphics window.

Fig. 2.6 The Scilab programming environment with console, and editor called SciPad, and a
graphics window.

