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Abstract

Motor skill learning may involve training a neural system to automatically perform sequences of movements, with the training signals

provided by a different system, used mainly during training to perform the movements, that operates under visual sensory guidance. We use a

dynamical systems perspective to show how complex motor sequences could be learned by the automatic system. The network uses a

continuous attractor network architecture to perform path integration on an efference copy of the motor signal to keep track of the current

state, and selection of which motor cells to activate by a movement selector input where the selection depends on the current state being

represented in the continuous attractor network. After training, the correct motor sequence may be selected automatically by a single

movement selection signal. A feature of the model presented is the use of ‘trace’ learning rules which incorporate a form of temporal average

of recent cell activity. This form of temporal learning underlies the ability of the networks to learn temporal sequences of behaviour. We

show that the continuous attractor network models developed here are able to demonstrate the key features of motor function. That is, (i) the

movement can occur at arbitrary speeds; (ii) the movement can occur with arbitrary force; (iii) the agent spends the same relative proportions

of its time in each part of the motor sequence; (iv) the agent applies the same relative force in each part of the motor sequence; and (v) the

actions always occur in the same sequence.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Much effort has been devoted to the application of

classical control theory to the understanding of motor control

by the brain (Miall & Wolpert, 1996; Wolpert & Ghahramani,

2000; Wolpert, Miall, & Kawato, 1998). In these models the

motor programme seeks to minimise the distance or error

between the current state of the agent and a particular target

state (or desired trajectory), where the distance is either

determined by external visual or proprioceptive feedback, or

estimated with internal models. In this paper we present an

alternative, new, approach which is inspired from a

dynamical systems perspective, rather than classical control

theory. The model presented here is able to learn arbitrary

dynamical motor sequences, execute such motor sequences

at arbitrary speed, and perform the motor sequences in

the absence of external visual or proprioceptive cues. These

are important properties for models of motor control in

biological agents (Bizzi & Polit, 1979; Laszlo, 1966, 1967;

Polit & Bizzi, 1978; Schmidt, 1987, 1988). The system we

describe is based on continuous attractor networks. These

networks are used in a mode in which they perform ‘path

integration’ on an efference copy of a motor signal. This

enables them to learn arbitrary paths, which correspond to

sequences of motor output commands generated by the

network, in response to a movement selector signal. More-

over, they can execute the motor sequence at arbitrary speeds.

The learning of new motor skills appears to involve

distinct stages, which a number of authors have attempted to

identify and describe (Fitts & Posner, 1967; Gentile, 1972,

1987; Newell, 1985). When an animal begins to learn a new

motor skill, the initial mechanisms used to execute the

motor task during learning appear to be specific to the

learning phase, and may involve for example attention and

use of visual and proprioceptive feedback (Magill, 1998;

Sections 3.2 and 4.2). Gradually the execution of the skill

and the necessary sequence of movements becomes more
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automatic. In this paper we propose a general framework for

modelling this learning process, and show how it provides

an efficient means to learn from even noisy inputs such as

those which may be present during the learning process.

A framework that introduces some of the properties that

may be required for motor control is the generalized motor

program (Schmidt, 1987, 1988). Schmidt proposed that a

generalized motor program controls a class of actions, rather

than a specific movement or sequence. Schmidt suggested

that a particular class of actions has a common set of invariant

features which define the class. Although many possible

characteristics might be regarded as candidates for invariant

features of motor programs, the three most commonly

proposed invariant features are: the relative timing of the

components of the skill; the relative force used in performing

the skill; and the order or sequence of the components. In this

paper we develop a network model that is able to demonstrate

the key features of Schmidt’s generalised motor control

program. The model has the following key properties:

† the movement can occur at arbitrary speeds;

† the movement can occur with arbitrary force;

† the agent spends the same relative proportions of its time

in each part of the motor sequence;

† the agent applies the same relative force in each part of the

motor sequence;

† the actions always occur in the same sequence.

The model of motor function described here is based on

self-organizing continuous attractor neural networks

(CANNs). Continuous attractor networks are able to stably

maintain a localised packet of neuronal firing activity

(Amari, 1977; Taylor, 1999). The new model we describe

makes use of our proposal of how path integration could be

performed in a continuous attractor network (Stringer, Rolls,

& Trappenberg, 2003; Stringer, Rolls, Trappenberg, & de

Araujo, 2002b; Stringer, Trappenberg, Rolls, & de Araujo,

2002c). Use of this approach enables us to develop here a

network that can learn temporal sequences of behaviour, and

can perform the sequences at arbitrary speeds.

2. The model

The model is described with the neural architecture

shown in Fig. 1. There are two connected networks. First,

there is a network of state cells (with firing rate rS
i for state

cell i) which represent the current positional (or postural)

Fig. 1. General network architecture for continuous attractor network model of state representation and motor function. There is a network of state cells which

represent the postural state of the agent, a network of motor cells which represent the motor activity, and a network of movement selector cells which represent

the decision to perform a motor sequence. The forward model is implemented by the synaptic connections w2 from Sigma–Pi couplings of state cells and motor

cells to the state cells. The connections w2 are able to update the representation in the network of state cells given the current patterns of firing in both the

network of state cells and the network of motor cells. The inverse model is implemented by the synaptic connections w3 from Sigma–Pi couplings of state cells

and movement selector cells to the motor cells. Given a desired motor task or target state represented by the firing of the movement selector cells, the

connections w3 are able to drive the motor cells to perform the appropriate motor actions.
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state of the agent. The positional state cell network operates

as a movement path integrator using a CANN, which is a

class of network that can maintain the firing of its neurons to

represent any location along a continuous physical dimen-

sion representing the state of the agent (Amari, 1977;

Taylor, 1999). Secondly, there is a network of motor cells

(with firing rate rM
i for motor cell i) which represent the

current motor command. As the size of the activity packet in

the motor network increases, this will increase the level of

the current injected into muscle fibres or other motor

neurons receiving efferent connections from these motor

cells. Hence, the size of the activity packet in the network of

motor cells may be viewed as representing the force, and

hence the speed, of the movement of the agent itself.

During the initial learning phase, each positional state

cell i receives an external input ei; for example visual and

proprioceptive input, which carries information about the

state of the agent. When visual or proprioceptive cues are

available, these external inputs dominate other excitatory

inputs to the state cells, and force each positional state cell

to respond best to a particular positional state of the agent,

with less firing as the agent’s state moves away from the

preferred state. During training, the motor input signals ti
received by each motor cell i cause the agent to proceed

through a set of positional states allowing the network to

learn the relation between the motor firing rM
i and the

corresponding positional states rS
i as forced on the network

of state cells by the visual or proprioceptive inputs ei:

During learning, the recurrent connections w1
ij from state

cell j to i use associative synaptic modification so that the

synaptic strengths between the state cells reflect the distance

between the positional states of the agent represented by the

state cells. The recurrent connectivity implemented by w1
ij

allows the network of state cells to operate as a continuous

attractor network and support stable patterns of firing in the

absence of external visual or proprioceptive input, so that

the agent can operate with incomplete sensory input or in

the dark. However, the most important function performed

by the positional state CANN is to enable an efference copy

of the motor signal to update using the path integration the

positional state CANN, and thus to implement a forward

model of motor function. The path integration uses the

connections w2
ijk; which are learned by a traced Sigma–Pi

learning rule, which allows a combination of the traced

activity within the state cell network (which represents the

preceding position) and the traced activity within the motor

cell network (which represents the preceding motor

command) to be associated with the current positional

state. Thus, after training, the firing of a particular cluster of

state cells and a particular cluster of motor cells should

stimulate the firing of further state cells such that the pattern

of activity within the network of state cells evolves

continuously to faithfully reflect and track the changing

state of the agent as it performs the motor sequence. Of

course, a particular combination of the agent’s state and

motor activity should always lead to the same next state,

regardless of which particular motor sequence is being

executed. Thus, when the network is trained on multiple

motor sequences, the firing of a particular cluster of state

cells and a particular cluster of motor cells should always

stimulate the firing of the same set of further state cells,

regardless of which particular motor sequence is being

executed. The synapses are Sigma–Pi in that there are three

terms in their description w2
ijk; where the i subscript refers to

the postsynaptic position state cell i; the j subscript refers to

the presynaptic position state cell j; and the k subscript refers

to the input from the presynaptic motor cell k:

To develop the hypothesis more formally, the activation

hS
i of state cell i in the model is governed by

t
dhS

i ðtÞ

dt
¼ 2hS

i ðtÞ þ
f0

CS

X
j

ðw1
ij 2 wINHÞrS

j ðtÞ þ ei

þ
f1

CS£M

X
j;k

w2
ijkrS

j rM
k ; ð1Þ

where the activation hS
i is driven by the following terms.

The term rS
j is the firing rate of state cell j; w1

ij is the

excitatory (positive) synaptic weight from state cell j to state

cell i; and wINH is a global constant describing the effect of

inhibitory interneurons within the layer of state cells.2

Further terms in Eq. (1) are as follows. The term t is the time

constant of the system. The term ei represents an external

input to state cell i; which may be visual or proprioceptive.

When the agent is denied visual or proprioceptive input, the

term ei is set to zero. Thus, in the absence of visual or

proprioceptive input, the key term driving the state cell

activations in Eq. (1) is a sum of coupled inputs from the

state and motor cells
P

j;k w2
ijkrS

j rM
k ; where rS

j is the firing rate

of state cell j; rM
k is the firing rate of motor cell k; and w2

ijk is

the corresponding strength of connection from these cells.3

The issue of the biological plausibility of such synapses,

which can be thought of as having two presynaptic terms

which operate in combination (i.e. multiplicatively), is

considered by Stringer et al. (2002c), where we note that

there are several possible ways in which this could be

implemented in the brain. The firing rate rS
i of state cell i is

determined from the activation hS
i and the sigmoid

2 The scaling factor ðf0=C
SÞ controls the overall strength of the recurrent

inputs to the layer of state cells, where f0 is a constant and CS is the number

of presynaptic connections received by each state cell from other state cells.

Scaling the recurrent inputs
P

j ðw
1
ij 2 wINHÞrS

j ðtÞ by ðCSÞ21 ensures that the

overall magnitude of the recurrent input to each state cell remains

approximately the same as the number of recurrent connections received by

each state cell is varied. For a fully recurrently connected layer of state

cells, CS is equal to the total number of state cells, NS:
3 The scaling factor f1=C

S£M controls the overall strength of the motor

inputs, where f1 is a constant, and CS£M is the number of Sigma–Pi

connections received by each state cell. Scaling the motor inputs by

ðCS£MÞ21 ensures that the overall magnitude of the motor input to each state

cell remains approximately the same as the number of coupled state and

motor connections received by each state cell is varied. For a fully

connected network, CS£M is equal to the number of state cells, NS; times the

number of motor cells, NM:
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activation function

rS
i ðtÞ ¼

1

1 þ e22bðhS
i
ðtÞ2aÞ

; ð2Þ

where a and b are the sigmoid threshold and slope,

respectively.

The recurrent synapses w1
ij in the state cell continuous

attractor are trained by a local associative (Hebb) rule

dw1
ij ¼ k1rS

i rS
j : ð3Þ

This rule increases the strength of the synaptic connec-

tions between state cells that represent nearby states of

the agent, and which tend to be co-active due to broadly

tuned, overlapping receptive fields. The learning rule

used to update the synapses w2
ijk can be expressed by

dw2
ijk ¼ k2rS

i �r
S
j �r

M
k ; ð4Þ

where �rS
j refers to a memory trace of the firing rS

j ; and

�rM
k refers to a memory trace of the firing of rM

k : The

trace value �r of the firing rate r of a cell is calculated

according to

�rðt þ dtÞ ¼ ð1 2 hÞrðt þ dtÞ þ h�rðtÞ; ð5Þ

where h is a parameter in the interval [0,1] which

determines the relative contributions of the current firing

and the previous trace. For h ¼ 0 the trace becomes just

the present firing rate, and as h is increased the

contribution of preceding firing at times earlier than the

current timestep is increased (Stringer et al., 2002b,c;

Sutton & Barto, 1981). Possible ways in which such

traces of previous neuronal activity could be

implemented include short-term memory related firing

in networks, and biophysical processes within neurons

(Stringer et al., 2002c).

The motor cells are driven by the Sigma–Pi synapses

w3
ijk which allow the selection of motor cell firing rM

i by

movement selector cells rMS
k to be dependent on the

current activity of the position state cells rS
j : Of course,

if visual input is available, visual information may be

used directly to guide the motor activity. However, in

primates, for example, only a relatively small amount of

the environment is analysed in detail by the visual

system at any moment, and so most movement is

probably guided by internal representations of the

positional state of the agent in its environment that in

our idealised model are supported by the network of state

cells. The firing of the movement selector cells rMS
k

represents the instruction to perform a particular motor

sequence. In particular, the force, and hence speed, of the

movement may be controlled by varying the firing rates

of the movement selector cells. As the firing rates of the

movement selector cells increase, the size of the activity

packet within the motor network increases and the

movement is performed with greater force, and hence

speed. The synapses w3
ijk are Sigma–Pi in that there are

three terms in their description, where the i subscript

refers to the postsynaptic motor cell i; the j subscript

refers to the presynaptic position state cell j; and the k

subscript refers to the input from the presynaptic

movement selector cell k: The synaptic weights w3
ijk are

set up during training by a learning rule which associates

the co-firing of the movement selector cells rMS
k and a

particular cluster of state cells rS
j ; with the firing of the

appropriate cluster of motor cells rM
i produced during the

training by an external motor signal ti (Fig. 1). Then,

after training, the co-firing of the movement selector

cells and a particular cluster of position state cells

stimulates the relevant cluster of motor cells, and thus

produces motor firing which is appropriate given the

current position of the agent. The movement selector

specifies the desired movement (which may be a final

target position for the agent to reach, or simply a desired

motor sequence like saying a word), and the motor firing

needed to produce this can be learned by the network

because it takes into account the current position state

when the movement selection command is issued. The

synaptic connections w3
ijk thus implement an inverse

model of motor function: given a desired motor task or

target state represented by the firing of the movement

selector cells, the synaptic connections w3
ijk drive the

motor cells to perform the appropriate motor actions.

More formally, the activation hM
i of motor cell i is

governed by

t
dhM

i ðtÞ

dt
¼ 2hM

i ðtÞ þ ti þ
f2

CS£MS

X
j;k

w3
ijkrS

j rMS
k ; ð6Þ

where the activation hM
i is driven by the following terms.

The first term driving the activations of the motor cells in

Eq. (6) is the motor training signal ti for each motor cell i:

This term is present only during the training phase. The

input term ti models an initial mechanism used during

learning, perhaps involving active attentional processes, to

stimulate the neurons associated with the new motor

sequence being learned. After the training phase is

completed, the input terms ti are set to zero for the

subsequent testing phase. One possible mechanism for

generating the training signal ti during the learning phase is

discussed below in Section 5, and involves the stimulation,

during training, of an appropriate temporal sequence of

movement selector cells that encodes simpler motor

primitives that represent component motor features of the

full motor sequence to be learned.

The second term driving the activations of the motor

cells in Eq. (6) is the input from couplings of the state cells

and movement selector cells
P

j;k w3
ijkrS

j rMS
k ; where rS

j is the

firing rate of state cell j; rMS
k is the firing rate of movement

selector cell k; and w3
ijk is the corresponding strength of the

connection from these cells. The driving term
P

j;k w3
ijkrS

j rMS
k

initiates activity in the network of motor neurons, and then

drives the activity packet along a particular path through
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the motor network.4 The synapse connecting the state and

movement selector cells to the motor cells has a Sigma–Pi

form in that it computes a weighted sum of the products of

the firing rates of the state cells and movement selector cells.

This ensures the activity within the network of motor cells is

driven by the state cells if and only if the movement selector

cells are also active. If the movement selector cells stop

firing then the activity in the motor network decays to zero

according to the time constant t: The firing rate rM
i of motor

cell i is determined from the activation hM
i and the sigmoid

activation function

rM
i ðtÞ ¼

1

1 þ e22bðhM
i ðtÞ2aÞ

; ð7Þ

where a and b are the sigmoid threshold and slope,

respectively.

The synaptic weights w3
ijk from the state cells and

movement selector cells to the motor cells are updated

during learning according to

dw3
ijk ¼ k3rM

i rS
j rMS

k : ð8Þ

During the learning phase, the agent performs the desired

motor sequence to be learned. As the agent performs the

motor task, the state cells are driven by the visual or

proprioceptive inputs ei; the motor cells are driven by the

training signal ti; and the synaptic weights w1
ij; w2

ijk and w3
ijk

are updated according to the simple learning rules discussed

earlier. During repeated learning cycles of the motor

sequence, even with some amount of error in the training

signal ti for the motor cells, the synaptic connectivity of the

network self-organizes such that, after training, the correct

motor sequence may be stimulated solely by stimulating the

particular set of movement selector cells. The overall

network architecture is thus able to learn the following.

First, the network learns a forward model of motor control,

implemented through the synaptic connections w2
ijk; which

uses the motor signal from the motor cell firing to update the

position state CANN to implement path integration.

Secondly, the network learns an inverse model of motor

control, implemented through the synaptic weights w3
ijk;

which enables a movement command (or target-position

movement command) signal represented by the firing of the

movement selector cells rMS
k to select the appropriate motor

cell firing rM
i given the current position or postural state

represented by the firing of the state cells rS
j : Effectively, the

movement selector cells enable a sequence of motor cell

firing to be produced, where the motor sequence is guided

by the changing pattern of activity within the state CANN.

This model is capable of implementing various types of

motor programs. For example, the model developed here

may be used to learn movement sequences which involve

the agent seeking to reach a fixed positional target, as in

prehension, where the target position is specified by the

particular pattern of firing among the movement selector

cells. Alternatively, the motor sequence may not involve a

particular target state for the agent. Instead the performance

of the motor sequence itself may be the goal as in the case

of, for example, saying a word. Furthermore, the network

can implement cyclic motor programs, involving continu-

ous cycling through the position state space of the agent, if

the state space associated with the movement is toroidal (as

might be required for example to implement locomotion).

The network can implement movements in higher dimen-

sional spaces, because the nature of the position state space

is stored in the recurrent synaptic connections w1
ij; which

may become self-organised during learning to represent

spaces of arbitrary dimensionality (Stringer et al., 2002b,c).

However, for simplicity of illustration, in the simulations

performed in this paper the state space of the agent,

represented by the network of state cells, is one-dimen-

sional.

2.1. Stabilization of the activity packet within the continuous

attractor network of state cells when the agent is stationary

As described for the models presented by Stringer et al.

(2002b,c), the recurrent synaptic weights within the

continuous attractor network may be corrupted by a certain

amount of noise from the learning regime. This in turn can

lead to drift of the activity packet within the continuous

attractor network of state cells when there is no external

visual or proprioceptive input available even when the agent

is not moving. Stringer et al. (2002c) proposed that in real

nervous systems this problem may be solved by enhancing

the firing of neurons that are already firing. This might be

implemented through mechanisms for short term synaptic

enhancement (Koch, 1999), or through the effects of voltage

dependent ion channels in the brain such as NMDA

receptors. In the model presented in this paper, we simulate

these effects using an additional non-linearity in the

activation functions (2) and (7) (such as might be

implemented by NMDA receptors, see Wang (1999) and

Lisman, Fellous, and Wang (1998)) by adjusting the sigmoid

threshold ai for each state and motor cell i according to

ai ¼
aHIGH if ri , g

aLOW if ri $ g

(
; ð9Þ

where g is a firing rate threshold. This helps to reinforce the

current position of the activity packet within the continuous

attractor network of state cells. The sigmoid slopes are set to

a constant value, b; for all cells i:

4 The scaling factor f2=C
S£MS controls the overall strength of the inputs

from couplings of state and movement selector cells, where f2 is a constant,

and CS£MS is the number of connections received by each motor cell from

couplings of the state and movement selector cells. Scaling the inputs from

the state and movement selector cells by ðCS£MSÞ21 ensures that the overall

magnitude of the input from the state and movement selector cells to each

motor cell remains approximately the same as the number of connections

received by each motor cell from couplings of state and movement selector

cells is varied. For a fully connected network, CS£MS is equal to the number

of state cells, NS; times the number of movement selector cells, NMS:
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2.2. Training and testing procedures

We next present numerical (simulation) results to

prove and illustrate the main properties of the model,

including its ability to learn arbitrary motor sequences.

Fig. 1 shows the details of the network architecture used

for the simulations. In most of the simulations (except

Experiment 4) there were 200 state cells, 200 motor

cells, and 200 movement selector cells. In the numerical

simulations presented below we demonstrated the model

working with a one-dimensional state space, but the

concepts readily generalise to higher dimensions. We

assumed the state space x of the agent was a finite one-

dimensional space from x ¼ 0–1: That is, the state of the

agent was defined by the parameter x [ ½0; 1�: In the

model simulations the state cells were mapped onto a

regular grid of different states, where for each state cell i

there was a unique preferred state xi of the agent for

which the cell was stimulated maximally by the visual

and proprioceptive cues. Similarly, we assumed the

motor space y of the agent was a finite one-dimensional

space from y ¼ 0–1: That is, the instantaneous motor

activity of the agent was defined by the parameter y [
½0; 1�: In the simulations of the model the motor cells

were mapped onto a regular grid of different instan-

taneous motor activities, where for each motor cell i

there was a unique preferred instantaneous motor activity

yi for which the cell was stimulated maximally.

During the initial learning phase it was assumed that the

external input ei to the state cells would dominate all other

excitatory inputs. Therefore, in the simulations presented

below we employed the following modelling simplification.

During the learning phase in which the agent received

external visual or proprioceptive input, rather than imple-

menting the dynamical Eqs. (1) and (2), we set the firing

rates of the state cells according to the following Gaussian

response profile

rS
i ¼ expð2ðsS

i Þ
2
=2ðsSÞ2Þ; ð10Þ

where sS
i was the absolute value of the difference between

the actual state x of the agent and the preferred state xi for

state cell i; and sS was the standard deviation. For each state

cell i; sS
i was given by

sS
i ¼ lxi 2 xl: ð11Þ

During the initial learning phase we assumed that the

agent would employ specific neural mechanisms, perhaps

involving active attentional processes, to stimulate the

particular sequence of motor neurons associated with the

new motor task. These mechanisms were modelled by

the incorporation of the training signal terms ti in Eq.

(6). However, in the simulations presented below we

employed the following modelling simplification. During

the learning phase, rather than implementing the

dynamical Eqs. (6) and (7), the firing rate rM
i of each

motor cell i was set according to the following Gaussian

response profile

rM
i ¼ expð2ðsM

i Þ2=2ðsMÞ2Þ; ð12Þ

where sM
i was the absolute value of the difference

between the actual motor activity y of the agent and the

preferred motor activity yi for motor cell i; and sM was

the standard deviation. For each motor cell i; sM
i was

given by

sM
i ¼ lyi 2 yl: ð13Þ

The numerical simulations began with the learning phase

in which the synaptic weights, w1
ij; w2

ijk and w3
ijk; were

self-organized. At the start of the learning, the synaptic

weights were initialized to zero (but could have been

random positive values). Then learning proceeded with

the agent running through the motor training sequence.

Different motor tasks might involve slightly different

training and testing procedures. However, the basic

process was as follows. The motor task involved the

motor activity of the agent y and the state of the agent x

simultaneously moving through their respective one-

dimensional spaces in a particular sequence that defined

the motor program. That is, during learning, the state x

of the agent and motor activity y ran through the

sequence

x ¼ f ðtÞ and y ¼ gðtÞ; ð14Þ

where f and g were the functions of time t that defined

the motor sequence to be learned. This was the motor

task to be learned by the movement selector cells.

(Although, in some of the simulations described later, we

demonstrated how the network was able to learn the

correct motor sequence, defined by Eq. (14), even when

the motor training sequence used during learning

contained some error). As the agent performed the

motor sequence (14), the firing rates of the state cells

were set according to Eq. (10), the firing rates of the

motor cells were set according to Eq. (12), and the firing

rates of the relevant subset of movement selector cells

were set to 1. This led to activity packets in the state and

motor networks moving through their respective net-

works. During this, the synaptic weights were updated as

described above according to the learning rules (3), (4)

and (8). At the start of training all trace values were

initialised to zero.

After the learning phase was completed, the simu-

lations continued with the testing phase in which the

agent had to perform the motor sequence without the

motor training signal, and without the visual and

proprioceptive inputs. The aim was to demonstrate that

the population of movement selector cells had learned to

produce the desired motor sequence once the relevant

movement selector cells were activated. For the testing

phase, the full ‘leaky-integrator’ dynamical Eqs. (1), (2),

(6) and (7), were implemented. In the simulations,
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the differential Eqs. (1) and (6) were approximated by

Forward Euler finite difference schemes. At the start of

the testing phase, all of the firing rates, rS
i ; rM

i ; and rMS
i ;

were set to zero. Then the agent was simulated with

visual input available, with the agent in an initial state

x ¼ f ð0Þ; but with no movement selector cells active, for

500 timesteps. While the agent maintained this state, the

visual input term ei for each state cell i was set to a

Gaussian response profile identical (except for scaling) to

that used for the state cell during the learning phase

given by Eq. (10). Next the visual input was removed by

setting all of the ei terms to zero, and the agent was

allowed to rest in the same state x ¼ f ð0Þ for a further

500 timesteps. This process led to a stable packet of

activity within the layer of state cells that represented the

initial state of the agent.

To start to perform the motor activity, the firing rates

rMS
i of the relevant movement selector cells were set to

1. When the movement selector cells fired, the co-firing

of the movement selector cells and the state cells

stimulated a relatively large activity packet in the

motor network. Then the co-firing of the motor cells

and the state cells stimulated further state cells in the

appropriate direction in the state network to reflect the

altering state of the agent given that the agent was

moving. That is, the state representation was updated by

motor efference copy. As the activity packet within the

state network moved, the activity packet in the motor

network, which was stimulated by the co-firing of the

state cells and movement selector cells, also moved.

Thus, the two networks moved in tandem while the

movement selector cells were active. In this way the

network repeated the motor sequence that was learned

during training. When the movement selector cells

stopped firing, the driving input to the motor cells

disappeared, and the motor cells ceased to fire. Then the

activity packet within the state network was no longer

updated by the motor efference copy, and the state

representation remained static.

3. Simulation results

The aim of Experiment 1 was to demonstrate, test, and

elucidate the fundamental properties of the model. In

Experiment 2, we investigate ways of altering the velocity

with which movements are performed. In Experiment 3 we

illustrate motor behaviour in which the same motor

command reflected in the firing of the motor cells can

occur during different parts of a motor sequence in which

the current postural state may be different. In Experiment 4

we investigate the operation of the model when it is required

to reach a target postural state from different arbitrary

starting positions.

3.1. Experiment 1: learning a motor sequence

The investigations of Experiment 1 are shown in

Figs. 2–4.5 In Experiment 1, the network was trained with

the agent running through a motor sequence, with the

postural state x of the agent and current motor activity y

running in lock-step from x ¼ 0:1 to 0:9; and from y ¼

0:1to0:9; with x ¼ y: During the training, the selection of

this movement was represented by setting the firing rates

rMS of movement selector cells 1–5 to 1, with the firing

rates of the remaining movement selector cells 6–200 set to

0. (Any subset of movement selector cells could have been

chosen to represent the movement). The result of the

training (to be shown in Fig. 3) is that movement selector

cells 1–5 came to represent the movement just described.

After the training was completed, the agent was

simulated with visual input available, with the agent

Fig. 2. Experiment 1: firing rates of state cells before movement. There was

a stable packet of activity within the state network that represented the

current state of the agent.

5 In this simulation we used the following parameter values. The

parameters governing the response properties of the state and motor cells

during learning were: sS ¼ 0:02 and sM ¼ 0:02: Further parameters

governing the learning were: h ¼ 0:9; k1 ¼ 0:001; k2 ¼ 0:001; and k3 ¼

0:001: The parameters governing the leaky-integrator dynamical equations

(1) and (6) were: t ¼ 1; f0 ¼ 3 £ 105; f1 ¼ 5 £ 106; f2 ¼ 2:5 £ 106; and

wINH ¼ 0:0055: The parameters governing the sigmoid activation

functions were as follows. For the state cells we used: aHIGH ¼ 0:0;

aLOW ¼ 220:0; g ¼ 0:5; and b ¼ 0:1: For the motor cells we used:

aHIGH ¼ 10:0; aLOW ¼ 10:0; g ¼ 0:5; and b ¼ 0:3: Since we set aHIGH ¼

aLOW for the motor cells, there was no enhancement of the firing rates of

motor neurons with already high firing rates, and the parameter g was

redundant. Finally, for the numerical simulations of the leaky-integrator

dynamical Eqs. (1) and (6) we employed a Forward Euler finite difference

method with the timestep set to 0.2.
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maintained in an initial state x ¼ 0:1; but with no movement

selector cells active, for 500 timesteps. (As described in

Section 2.2, the visual input term ei was set to the same

Gaussian response profile as that used for state cell i during

the learning phase given by Eq. (10)). Next the visual input

was removed by setting all of the ei terms to zero, and the

agent was allowed to rest in the same state for a further 500

timesteps. It is shown in Fig. 2 that 500 timesteps after the

external input was set to zero, that the firing rates of the

postural state cells rS maintained a stable packet of activity

representing the (continuing, remembered) steady postural

state. This continued firing among the state cells is

supported by the recurrent synaptic connections w1:

In Fig. 3 we show the firing rate profiles within the

movement selector network, state network and motor

network through time as the agent performs the learned

motor sequence in the absence of the motor training signal t;

and without the external (visual or proprioceptive) input e:

We show in Fig. 3 that applying steady activity to

movement selector cells 1–5 from timestep 200 to 1050

first activates (through the synapses w3) the motor cells, the

firing of which alters the state being represented by the

network of state cells via connections w2; which in turn

shifts the motor state represented by the motor cells through

synapses w3: The results produced are continuously moving

motor and postural states, as shown in Fig. 3. In this way, the

activity packets in the state and motor networks moved in

synchrony, with the network firing patterns running through

the learned motor sequence maintaining the relation x ¼ y:

From timesteps 1051 to 1250 the movement selector cells

stopped firing, and all motor cells were again quiescent.

Finally, in additional simulations, even when the speed of

the activity packets was varied by altering the firing rates

Fig. 3. Experiment 1: firing rate profiles within the movement selector

network, state network and motor network through time. Top: firing rates of

movement selector cells through time. From timesteps 1 to 200, all

movement selector cells were quiescent. At timestep 201 movement

selector cells 1–5 became active, and remained active until timestep 1050.

The activity of these movement selector cells initiated the learned motor

sequence during this time interval. From timesteps 1051 to 1250 all

movement selector cells were again quiescent. Middle: firing rates of motor

cells through time. From timesteps 1 to 200, all motor cells were quiescent.

At timestep 201, the appropriate motor cells were stimulated by the

movement selector cells, and the agent began to move through the learned

motor sequence. Bottom: firing rates of state cells through time. From

timesteps 1 to 200, there was a stationary, stable activity packet within the

state network centred around x ¼ 0:1: When the movement selector cells

became active at timestep 201, the activity packet within the state network

started to move to track the state of the agent as the motor sequence was

performed. When the motor sequence was completed by timestep 1051 and

the movement selector cells became inactive, the activity packet within the

state network remained stationary at x ¼ 0:9 reflecting the end state of

the agent after the movement. During the movement, the activity packets in

the state and motor networks moved in synchrony, with the network firing

patterns running through the learned motor sequence maintaining the

relation x ¼ y: From timesteps 1051 to 1250 the movement selector cells

stopped firing, and all motor cells were again quiescent.
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rMS
i of the movement selector cells, the activity packets in

the state and motor networks remained in synchrony,

maintaining the relation x ¼ y:

Three important observations from the results shown

in Fig. 3, and from the additional simulations in which

the firing rates rMS
i of the movement selector cells were

varied, were as follows. First, the actions always

occurred in the same sequence. Secondly, for a particular

fixed firing rate of the movement selector cells, the size

of the activity packet within the motor network, which

we take to govern the force of the movement, remained

the same throughout the motor sequence, and so the

agent applied the same relative force in each part of

the motor sequence. Thirdly, for a particular fixed firing

rate of the movement selector cells, the speeds of the

activity packets within the state and motor networks,

which represent the speed of the agent’s movement,

remained the same throughout the motor sequence, and

so the agent spent the same relative proportions of its

time in each part of the motor sequence.

In Fig. 4 we show the recurrent synaptic weights w1
ij

between state cells, the synaptic weights w2
ijk from Sigma–

Pi couplings of the state cells and the motor cells to the state

cells, and the synaptic weights w3
ijk from the Sigma–Pi

couplings of the movement selector cells and state cells to

the motor cells. In the top plot of Fig. 4 we show the type 1

Fig. 4. Experiment 1: synaptic weight profiles for type 1, 2 and 3 synaptic weights. Top: type 1 synaptic weights w1
ij where the presynaptic state cell was j ¼ 100

which fired maximally when the state of agent was approximately x ¼ 0:5 during the learning phase. The value of the weights w1
ij with j ¼ 100 is shown for all

postsynaptic state cells i ¼[ ½1; 200�: Bottom left: type 2 synaptic weights w2
ijk where the presynaptic state cell j was j ¼ 100 which fires maximally when the

state of agent was approximately x ¼ 0:5 during the learning phase, and the presynaptic motor cell was k ¼ 100 which fired maximally when the motor activity

of agent was approximately y ¼ 0:5 during the learning phase. The value of the weights w2
ijk with j ¼ 100 and k ¼ 100 is shown for all postsynaptic state cells

i ¼[ ½1; 200�: Bottom right: type 3 synaptic weights w3
ijk where the presynaptic state cell j was j ¼ 100 which fired maximally when the state of agent was

approximately x ¼ 0:5 during the learning phase, and the presynaptic movement selector cell was k ¼ 1 which was one of the five movement selector cells that

were associated with the learned motor sequence. The value of the weights w3
ijk with j ¼ 100 and k ¼ 1 is shown for all postsynaptic motor cells i ¼[ ½1; 200�:
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synaptic weights w1
ij where the presynaptic state cell was

j ¼ 100 which fired maximally when the state of agent was

approximately x ¼ 0:5 during the learning phase. The value

of the weights w1
ij with j ¼ 100 is shown for all postsynaptic

state cells ¼ i [ ½1; 200�: It can be seen that the learning

resulted in nearby state cells in the state space, which need

not be at all close to each other in the brain, developing

stronger recurrent synaptic connections than state cells that

were more distant in the state space. Furthermore, it can be

seen that the graph of the recurrent weights is symmetric

about the central node and is approximately a Gaussian

function of the distance between the state cells in the state

space. This is important for stably supporting the activity

packet at a particular location when the agent is stationary.

In the bottom left plot of Fig. 4 we show the type 2 synaptic

weights w2
ijk where the presynaptic state cell j was j ¼ 100

which fired maximally when the state of agent was

approximately x ¼ 0:5 during the learning phase, and the

presynaptic motor cell was k ¼ 100 which fired maximally

when the motor activity of agent was approximately y ¼ 0:5

during the learning phase. The value of the weights w2
ijk with

j ¼ 100 and k ¼ 100 is shown for all postsynaptic state cells

i ¼[ ½1; 200�: The synaptic weights w2
ijk; which were

calculated with a trace learning rule, were asymmetric.

The asymmetry of the weights w2
ijk; introduced by trace

learning, played a key rôle in moving the activity packets in

state and motor networks through their correct sequences

when the movement selector cells fired in the dark. In the

bottom right plot of Fig. 4 we show the type 3 synaptic

weights w3
ijk where the presynaptic state cell j was j ¼ 100

which fired maximally when the state of agent was

approximately x ¼ 0:5 during the learning phase, and the

presynaptic movement selector cell was k ¼ 1 which was

one of the five movement selector cells that were associated

with the learned motor sequence. The value of the weights

w3
ijk with j ¼ 100 and k ¼ 1 is shown for all postsynaptic

motor cells i ¼[ ½1; 200�: The synaptic weights w3
ijk; which

were calculated according to a Hebb rule without trace

terms, were symmetric.

3.2. Experiment 2: controlling the speed and force

of movement

The investigations of Experiment 2 are illustrated in

Figs. 5 and 6.6 In Experiment 2, we demonstrate how

increasing the firing rates of the movement selector cells

increases the force, and hence speed, of the motor action,

and how the network is able to compensate by increasing the

speed of the path integration within the state network so that

the agent’s internal representation of its state may keep in

step with its actual state. This is necessary in order for the

agent to perform the correct motor action when the agent is

in a particular state.

Fig. 5 shows the sizes of the activity packets within the

continuous attractor network of state cells (left) and the

network of motor cells (right) for different firing rates rMS
i of

the relevant movement selector cells. When the firing rates

of the movement selector cells were less than or equal to 0.5,

there was a moderate amount of activity within the network

of state cells, but only a very low level of activity within the

motor network. However, when the firing rates of the

movement selector cells increased above 0.5 the sizes of the

activity packets within the state and motor networks started

to rise sharply with the firing rates of the movement selector

cells. However, while the size of the activity packet within

the state network increased by just under a factor of two as

the firing rates of the movement selector cells increased

from 0.5 to 1.0, the size of the activity packet within the

motor network increased by an order of magnitude. In a

sense, once the firing rates of the movement selector cells

reached a threshold of approximately 0.5, the motor network

‘switched on’ to perform the movement. The key obser-

vation from the results shown in Fig. 5 is that the size of the

activity packet within the motor network, which we take to

govern the force of the movement, could be controlled

through control of the firing rates of the relevant movement

selector cells. As the firing rates of the movement selector

cells were increased, the size of the activity packet within

the motor network increased, and the desired movement was

performed with greater force. Thus, a movement could be

performed with arbitrary force. Furthermore, as shown in

Fig. 3, for a particular fixed firing rate of the movement

selector cells, the size of the activity packet within the motor

network remained the same throughout the motor sequence,

and so the agent applied the same relative force in each part

of the motor sequence.

Fig. 6 shows the speeds of the activity packets within

the continuous attractor network of state cells (left) and

the network of motor cells (right) for different firing rates

rMS
i of the relevant movement selector cells. Because the

motor cells i were stimulated through the w3
ijk synaptic

connections by the co-firing of the corresponding state

cells j with yi ¼ xj and the movement selector cells k;

the location of the activity packet within the motor

network reflected the location of the activity packet

within the state network, and hence the two plots were

almost identical. When the firing rates of the movement

selector cells were less than or equal to 0.5, the activity

packet within the network of state cells was held stably

at its initial location due to the non-linearity within the

sigmoid activation functions described by Eq. (9), and

the speeds of the activity packets within the state and

motor networks were therefore zero. However, when the

firing rates of the movement selector cells increased

above 0.5 the speeds of the activity packets within the

state and motor networks started to rise sharply with the

firing rates of the movement selector cells. The reason

for this was as follows. The state cells received two

kinds of inputs:
P

j w1
ijr

S
j and

P
j;k w2

ijkrS
j rM

k : The input

6 The model parameters used for Experiment 2 were the same as those

used for Experiment 1.
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term responsible for moving the activity packet within

the state network was the second term
P

j;k w2
ijkrS

j rM
k ;

which involved asymmetric w2
ijk synaptic connections

from Sigma–Pi couplings of state cells j and motor cells

k: As the size of the activity packet within the motor

network increased, so did the size of this input term, and

so the activity packet within the state network moved

faster. Thus, the speed of the activity packet within the

state network directly reflected the size of the activity

packet within the motor network and hence the force of

Fig. 5. Experiment 2: the plot shows the sizes of the activity packets within the continuous attractor network of state cells (left) and the network of motor cells

(right) for different firing rates rMS
i of the relevant movement selector cells. (The size of the activity packets was calculated by numerically integrating the

neuronal firing rates over the relevant space. That is, the firing rates of the state cells were integrated over the state space x [ ½0; 1�; and the firing rates of the

motor cells were integrated over the motor space y [ ½0; 1�:) When the firing rates of the movement selector cells were less than or equal to 0.5, there was a

moderate amount of activity within the network of state cells, but only a very low level of activity within the motor network. However, when the firing rates of

the movement selector cells increased above 0.5 the sizes of the activity packets within the state and motor networks started to rise sharply, and rose

monotonically with the firing rates of the movement selector cells. However, while the size of the activity packet within the state network increased by just

under a factor of two as the firing rates of the movement selector cells increased from 0.5 to 1.0, the size of the activity packet within the motor network

increased by an order of magnitude.

Fig. 6. Experiment 2: the plot shows the speeds of the activity packets within the continuous attractor network of state cells (left) and the network of motor cells

(right) for different firing rates rMS
i of the relevant movement selector cells. Because the motor cells i were stimulated through the w3

ijk synaptic connections by

the co-firing of the corresponding state cells j with yi ¼ xj and the movement selector cells k; the location of the activity packet within the motor network

reflected the location of the activity packet within the state network, and hence the two plots were almost identical. When the firing rates of the movement

selector cells were less than or equal to 0.5, the activity packet within the network of state cells was held stably at its initial location due to the non-linearity

within the sigmoid activation functions described by Eq. (9), and the speeds of the activity packets within the state and motor networks were therefore zero.

However, when the firing rates of the movement selector cells increased above 0.5 the speeds of the activity packets within the state and motor networks started

to rise sharply, and rose monotonically with the firing rates of the movement selector cells.
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the movement. Furthermore, the curve showing the speed

of the activity packet within the motor network was

identical to the curve showing the speed of the activity

packet within the state network, as discussed earlier.

Indeed, it can be seen that the curves showing the speeds

of the activity packets in the state and motor networks as

shown in Fig. 6 were remarkably similar to the curve

showing the size of the activity packet within the motor

network as shown in the right plot of Fig. 5. Thus, the

forward model implemented by the synapses w2
ijk is able

to take into account the force with which the motor

sequence is performed, and hence the speed of movement

of the agent, when updating the representation within the

state network. This is a fundamentally important property

of the model, and is the mechanism by which the

network is able to operate across different forces, and

hence speeds, of movement. The network is able to

achieve this even when it is only trained with one speed

of movement. If the mechanism responsible for updating

the state network in the absence of external visual or

proprioceptive input was not able to take into account the

force, and hence speed, with which the agent was

moving, the state representation would become inaccurate

and fail to reflect the true state of the agent. In this case,

for each momentary physical state of the agent, the agent

would not be able to stimulate the correct motor neurons

for the desired motor sequence. Instead, the agent would

continue to stimulate the motor neurons that were

associated during learning with the state cells currently

active (which would no longer reflect the true state of the

agent), and so the motor sequence would not be

performed correctly.

The key observation from the results shown in Fig. 6

is that the speed of the activity packets within the state

and motor networks, which represent the speed of

Fig. 7. Experiment 3: firing rate profiles within the movement selector

network, state network and motor network through time. Top: firing rates of

movement selector cells through time. From timesteps 1 to 200, all

movement selector cells were quiescent. At timestep 201 movement selector

cells 1–5 became active, and remained active until timestep 1050. The

activity of these movement selector cells initiated the learned motor

sequence during this time interval. From timesteps 1051 to 1250 all

movement selector cells were again quiescent. Middle: firing rates of motor

cells through time. From timesteps 1 to 200, all motor cells were quiescent.

At timestep 201, the appropriate motor cells were stimulated by the

movement selector cells, and the agent began to move through the learned

motor sequence. Bottom: firing rates of state cells through time. From

timesteps 1 to 200, there was a stationary, stable activity packet within the

state network centred around x ¼ 0:1: When the movement selector cells

became active at timestep 201, the activity packet within the state network

started to move to track the state of the agent as the motor sequence was

performed. When the motor sequence was completed by timestep 1051 and

the movement selector cells became inactive, the activity packet within the

state network remained stationary at x ¼ 0:9 reflecting the end state of

the agent after the movement. During the movement, the activity packets in

the state and motor networks moved with the same relationship that occurred

during the learning phase. From timesteps 1051 to 1250 the movement

selector cells stopped firing, and all motor cells were again quiescent.

S.M. Stringer et al. / Neural Networks 16 (2003) 161–182172



the agent’s movement, could be controlled through

control of the firing rates of the relevant movement

selector cells. As the firing rates of the movement

selector cells were increased, the size of the activity

packet within the motor network increased and the

desired movement was performed with greater force.

However, the increase in the size of the activity packet

within the motor network led to an increase in the speeds

of the activity packets within the state and motor

networks, and so the network was able to operate at

greater speeds. Thus, a movement could be performed

with arbitrary speed. Furthermore, as shown in Fig. 3, for

a particular fixed firing rate of the movement selector

cells, the speeds of the activity packets within the state

and motor networks, which represent the speed of the

agent’s movement, remained the same throughout the

motor sequence, and so the agent spent the same relative

proportions of its time in each part of the motor

sequence.

From the above simulations we have demonstrated how

our model captures the key criteria of Schmidt’s generalised

motor control program. That is, key properties of the model

are as follows: (i) the movement can occur at arbitrary

speeds; (ii) the movement can occur with arbitrary force;

(iii) the agent spends the same relative proportions of its

time in each part of the motor sequence; (iv) the agent

applies the same relative force in each part of the motor

sequence; (v) the actions always occur in the same

sequence.

3.3. Experiment 3: motor sequences with the same

motor commands executed during different parts

of the motor programme

The results from Experiment 3 are shown in Fig. 7.7 In

Experiment 3, the network was trained on a different motor

sequence in which the state x of the agent and the motor

activity y do not run in phase. For this simulation, during

learning the activity packet within the motor network

moved back and forth, at twice the speed of the activity

packet in the state network. This was done to demonstrate

the ability of the model to learn more general motor

sequences.8 In particular, we demonstrate that the network

can learn a motor sequence involving an association

between the state x ¼ f ðtÞ and motor activity y ¼ gðtÞ

where ðf ðtÞ; gðtÞÞ is a non-monotonic curve. As the agent’s

state x moves in the positive x-direction, the motor activity y

first moves in the positive y-direction, and then moves in the

opposite direction. For this motor sequence, each motor

activity y occurred for more than one state x of the agent. As

for Experiment 1, during this movement, the firing rates of

movement selector cells 1–5 were set to 1, and the firing

rates of the remaining movement selector cells 6–200 were

set to 0. Thus, the motor sequence was learned by movement

selector cells 1–5, and it was these cells that needed to be

activated after training in order to perform the learned motor

sequence. In Fig. 7 we show the firing rate profiles within

the movement selector network, state network and motor

network through time as the agent performs the learned

motor sequence in the absence of external input. During the

movement, the activity packets in the state and motor

networks moved with the same relationship that occurred

during the learning phase. Thus, the network successfully

learned this second motor sequence in which each motor

activity y occurred for more than one state x of the agent.

Finally, in additional simulations, even when the speed of

the activity packets was varied by altering the firing rates

rMS
i of the movement selector cells, the activity packets in

the state and motor networks maintained the relation which

was learned during training.

3.4. Experiment 4: learning to reach a target state

Numerical results from Experiment 4 are shown in Figs. 8

and 9.9 In Experiment 4, we demonstrated the ability of the

network to encode multiple motor programmes, where each

motor programme involved the agent moving to a final

target state. Such motor programmes might represent motor

activities like prehension, where the agent has to reach to a

target location. In this case, the firing of the state cells would

represent the position of the hand in space, and the firing of

the movement selector cells would represent the target

location to which the agent decided to reach.

In the simulations, the 200 movement selector cells were

mapped onto a regular grid of different target states xT;

where for each movement selector cell i there was a unique

preferred target state xT
i for which the cell was stimulated

maximally. Then, during both the learning and testing

phases, the firing rates of the movement selector cells were

set according to the following Gaussian response profile

rMS
i ¼ expð2ðsMS

i Þ2=2ðsMSÞ2Þ; ð15Þ

where sMS
i was the absolute value of the difference between

the actual target state xT of the agent and the preferred target

state xT
i for movement selector cell i; and sMS was

7 The model parameter values used for Experiment 3 were the same as

those used for Experiment 1, except for two exceptions. In Experiment 3,

we set f1 ¼ 6:2 £ 106 and f2 ¼ 3:1 £ 106:
8 For Experiment 3, the network was trained with the agent running

through a motor sequence, with the state x of the agent running from

x ¼ 0:1 to 0:9: However, during this, the motor activity y moved at twice

the speed of the state x: As the state x of the agent moved from x ¼

0:1 to 0:5; the motor activity y moved from y ¼ 0:1 to 0:9: Then, while the

state x of the agent moved from x ¼ 0:5 to 0:9; the motor activity y moved

backwards from y ¼ 0:9 to 0:1:

9 The model parameter values used for Experiment 4 were the same as

those used for Experiment 1, except for the following exceptions. In

Experiment 4 we set f1 ¼ 4 £ 107 and f2 ¼ 1:3 £ 105: In addition, since

the increased amount of learning involved in Experiment 4 leads to larger

recurrent synaptic weights w1
ij; the lateral inhibition constant wINH was

increased to 1.1.
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the standard deviation. For each movement selector cell i;

sMS
i was given by

sMS
i ¼ lxT

i 2 xTl: ð16Þ

Since the motor programmes in Experiment 4 involved

movement of the state of the agent in the positive and

negative x-directions, an additional set of 200 motor cells

were needed to encode the movements of the agent in the

negative x direction. This was because a fundamental aspect

of the model is that a particular combination of the agent’s

state and motor activity should always lead to the same next

state, regardless of which particular motor sequence is being

executed. Hence, different motor cells were required for

when the agent was moving in the positive or negative x

directions. The enlarged network thus had two sets of motor

cells, where the first set of 200 motor cells encoded

movements in the positive x direction, and the second set of

200 motor cells encoded movements in the negative x

direction. Both sets of motor cells were mapped onto two

separate regular grids of different instantaneous motor

activities, where for each motor cell i there was a unique

preferred instantaneous motor activity yi for which the cell

was stimulated maximally. Then, during learning, the firing

rates of the two sets of motor cells were set as follows.

Firstly, the firing rates of the first set of motor cells were set

according to their Gaussian response profiles (12) whenever

the agent was moving in the positive x direction, and were

set to zero whenever the agent was moving in the negative x

direction. Secondly, the firing rates of the second set of

motor cells were set according to their Gaussian response

profiles (12) whenever the agent was moving in the negative

x direction, and were set to zero whenever the agent was

moving in the positive x direction.

The learning phase proceeded as follows. For each of the

200 target states represented by the movement selector cells,

the agent was simulated performing the following two

separate motor sequences: (i) moving in the positive x

direction from x ¼ 0 to x ¼ xT; and (ii) moving in the

negative x direction from x ¼ 1 to x ¼ xT: During move-

ments in the positive x direction, the state x of the agent, and

the instantaneous motor activity y represented by the first set

of motor cells moved in lockstep with x ¼ y: During

movements in the negative x direction, the state x of the

agent, and the instantaneous motor activity y represented by

the second set of motor cells moved in lockstep with x ¼ y:

Training the network with many target locations xT led to

the network learning the ability to move the agent towards

any desired target location within the state space x [ ½0; 1�

of the agent, where such motor programmes may be initiated

after training by stimulating a packet of activity at the

desired location within the network of movement selector

cells. In this experiment, the representation provided by the

movement selector cells is a continuous representation of

the target location space, and we suggest that such networks

could themselves operate as continuous attractor networks.

The testing phase began with a period of rest in which the

agent remained still, and then proceeded with a period of

movement in which a target state xT was chosen, and the

movement selector cells were set to fire according to their

Gaussian response profiles (15). In these simulations, the

movement selector cells were set to continue firing even

after the agent had reached its target state. The aim here was

to simulate the agent maintaining the postural target state

through continued motor stimulation. An example of such a

motor programme in biological agents might be reaching

and maintaining its target position, where maintaining the

target position requires continued muscle stimulation. A

number of simulations were performed with different initial

states xð0Þ and different target states xT represented by the

network of movement selector cells.

In Fig. 8 we show two simulations demonstrating the

ability of the network to learn to move the agent to chosen

target states. On the left are results from the first simulation

showing the evolution of the network from initial state

Fig. 8. Experiment 4: two simulations demonstrating the ability of the network to learn to move the agent to chosen target states. On the left are results showing

the evolution of the network from initial state xð0Þ ¼ 0:3 to target state xT ¼ 0:7; and on the right are results showing the evolution of the network from initial

state xð0Þ ¼ 0:7 to target state xT ¼ 0:3: For each simulation we show the firing rate profiles through time within the movement selector network, the first set of

motor cells which encode movements in the positive x direction, the second set of motor cells which encode movements in the negative x direction, and the state

network. Top row: firing rates of movement selector cells through time. From timesteps 1 to 200, all movement selector cells were quiescent. At timestep 201

the movement selector cells were set to fire according to their Gaussian response profiles given a target state xT; and these movement selector cells remained

active until the end of the simulation at timestep 1250. The activity of these movement selector cells initiated the learned motor sequence during this time

interval. Second row: firing rates of first set of motor cells through time. Third row: firing rates of second set of motor cells through time. From timesteps 1 to

200, all motor cells were quiescent. At timestep 201, the appropriate motor cells were stimulated by the movement selector cells, and the agent began to move

through the learned motor sequence. For the simulation shown on the left, the state of the agent moved in the positive x direction from xð0Þ ¼ 0:3 to xT ¼ 0:7;

and so the relevant motor cells from the first set of motor cells were stimulated. However, when the agent reached the target state xT ¼ 0:7; the relevant motor

cells from the second set of motor cells were stimulated. For the simulation shown on the right, the state of the agent moved in the negative x direction from

xð0Þ ¼ 0:7 to xT ¼ 0:3; and so the relevant motor cells from the second set of motor cells were stimulated. However, when the agent reached the target state

xT ¼ 0:3; the relevant motor cells from the first set of motor cells were stimulated. Bottom row: firing rates of state cells through time. From timesteps 1 to 200,

there was a stationary, stable activity packet within the state network centred around the initial state xð0Þ: When the movement selector cells became active at

timestep 201, the activity packet within the state network started to move to track the state of the agent as the motor sequence was performed. When the motor

sequence was completed, even with the movement selector cells still active, the activity packet within the state network remained stationary at the target state

xT reflecting the end state of the agent after the movement. During the movement, the activity packets in the state and the two sets of motor cells moved with the

same relationship that occurred during the learning phase.
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xð0Þ ¼ 0:3 to target state xT ¼ 0:7; and on the right are results

from the second simulation showing the evolution of the

network from initial state xð0Þ ¼ 0:7 to target state xT ¼ 0:3:

For each simulation we show the firing rate profiles through

time within the movement selector network, the first set of

motor cells which encode movements in the positive x

direction, the second set of motor cells which encode

movements in the negative x direction, and the state network.

At timestep 201 the movement selector cells were set to fire

according to their Gaussian response profiles given a target

state xT; and these movement selector cells remained active

until the end of the simulation at timestep 1250. The activity

of these movement selector cells initiated the learned motor

sequence during this time interval. At timestep 201, the

appropriate motor cells were stimulated by the movement

selector cells, and the agent began to move through the

learned motor sequence. For the simulation shown on the

left, the first set of motor cells were stimulated and the state

of the agent moved in the positive x direction from xð0Þ ¼ 0:3

to xT ¼ 0:7: However, when the agent reached the target

state xT ¼ 0:7; certain motor cells from the second set of

motor cells were stimulated. This is because, during the

learning phase, when the agent was learning to move to the

target state xT ¼ 0:7 in the negative x direction, at the end of

the movement the network learned to associate the co-firing

of the movement selector cells that represented the target

state xT ¼ 0:7 and the state cells that represented the states

near to x ¼ 0:7; with the firing of the corresponding motor

cells within the second set of motor cells that represented

instantaneous motor activities near to y ¼ 0:7:Hence, during

testing, the co-firing of the movement selector cells that

represented the target state xT ¼ 0:7 and the state cells that

represented the states near to x ¼ 0:7; stimulated the firing of

the corresponding motor cells from the second set of motor

cells that represented instantaneous motor activities near to

y ¼ 0:7: The activation of the second set of motor cells,

which encode movement in the negative x direction, after the

agent reached the target state xT ¼ 0:7 helped to stop the

agent from continuing to move through the target state

without stopping. For the simulation shown on the right,

motor cells from the second set of motor cells were

stimulated, and the state of the agent moved in the negative

x direction from xð0Þ ¼ 0:7 to xT ¼ 0:3:

In Fig. 9 we show examples of the agent moving to two

different target states xT from many different initial states

xð0Þ: Both top and bottom plots show many time courses of

the position of the activity packet within the state network for

different initial locations xð0Þ: For the top plot, the final target

state represented by the firing of the movement selector cells

is xT ¼ 0:3: While for the bottom plot, the final target state

represented by the firing of the movement selector cells is

xT ¼ 0:7: In all simulations, the movement selector cells

were quiescent from timesteps 1 to 200. At timestep 201 the

movement selector cells were set to fire according to their

Gaussian response profiles given the relevant target state,

xT ¼ 0:3 or 0.7, and these movement selector cells remained

active until the end of the simulation at timestep 1250.

4. Learning mechanisms to remove the effects of errors

present in the motor sequence during training

In reality biological agents may initially perform the

motor task poorly at the start of training. That is, the motor

Fig. 9. Experiment 4: examples of the agent moving to two different target

states xT from many different initial states xð0Þ: Both top and bottom plots

show many time courses of the position of the activity packet within the state

network for different initial locations xð0Þ: For the top plot, the final target

state represented by the firing of the movement selector cells is xT ¼ 0:3:

While for the bottom plot, the final target state represented by the firing of the

movement selector cells is xT ¼ 0:7: In all simulations, the movement

selector cells were quiescent from timesteps 1 to 200. At timestep 201 the

movement selector cells were set to fire according to their Gaussian response

profiles given the relevant target state, xT ¼ 0:3 or 0.7, and these movement

selector cells remained active until the end of the simulation at timestep 1250.
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sequence stimulated during the initial learning phase may

contain significant error such that the agent does not follow

the desired motor sequence perfectly during training. In this

section we propose some learning mechanisms that may

help to solve this problem.

First, one way of reducing the effects of motor error

during learning might be through ‘explicit learning’, which

involves making use of an explicit reward signal rR that

signifies when the motor sequence is being performed well

by the agent. Let us assume there is a signal rR available

which represents the reward, where rR ¼ 1 when the motor

sequence is performed correctly, and rR ¼ 0 when the motor

sequence is performed incorrectly. Then, the synaptic

weights are only updated during learning when the agent

is currently performing well and the reward signal rR is set

to 1. In this case, the learning rules are modified as follows.

Firstly, learning rule (3) becomes

dw1
ij ¼ k1rS

i rS
j rR

; ð17Þ

where we have scaled the synaptic update by the term rR:

Secondly, in a similar way, learning rule (4) becomes

dw2
ijk ¼ k2rS

i �r
S
j �r

M
k rR

: ð18Þ

Thirdly, learning rule (8) becomes

dw3
ijk ¼ k3rM

i rS
j rMS

k rR
: ð19Þ

The effect of these modifications is to allow the networks to

learn only when the agent is performing the motor task

correctly.

A second way in which the effects of motor error during

learning may be reduced is through ‘implicit learning’

(Pfeifer & Scheier, 1999), which relies on the noisy motor

training signal containing a systematic component of the

correct signal which is relatively strong compared to any

error components. Whether the agent is able to generate

such a training signal will depend on the agent’s physical

morphology and the current level of organisation of its

neural architecture. Thus, implicit learning would operate

in a ‘bootstrapping’ manner in that the learning of a new

motor programme would rely on previously learned motor

competence. In the case where the motor training signal

contains a relatively strong component of the correct

signal, the errors may wash out during learning and the

movement selector cells are able to learn the correct motor

sequence. Hence, after training, the movement selector

cells stimulate the correct sequence of motor cells with

minimal error.

4.1. Simulation results with errors present in motor

sequence during training

In this section we present results for Experiment 5, in

which the simulations were performed with errors present

in motor sequence during training. In the simulations

performed here, the aim was for the agent to learn to

perform the same motor sequence as used for Experiment

1, with the postural state x of the agent and current motor

activity y running in lock-step from x ¼ 0:1 to 0:9; and

from y ¼ 0:1 to 0:9; with x ¼ y: During the training, the

selection of this movement was represented by setting the

firing rates rMS of movement selector cells 1–5 to 1, with

the firing rates of the remaining movement selector cells

6–200 set to 0. However, for Experiment 5, the motor

training signal was corrupted by noise in the following

way. The network was trained in a similar manner to

Experiment 1, except that at every 20th timestep the agent

had a 2/3 probability of beginning a 20 timestep movement

in the positive x direction, and a 1/3 probability of

beginning a 20 timestep movement in the negative x

direction. Thus, the agent effectively performed a random

walk from x ¼ 0:1 to 0:9; with a constant bias of moving

in the positive x direction. During the simulation of explicit

learning with a reward signal, the reward signal rR was set

to 1 when the agent was moving in the correct positive x

direction, and was set to 0 when the agent was moving in

the incorrect negative x direction. This effectively corre-

sponds to giving the agent a reward signal whenever it was

getting closer to its end state x ¼ 0:9:

Results for Experiment 5 are shown in Fig. 10.10 In the

top left is shown an example of the time course of the

position of the activity packet within the state network

during one epoch of the learning phase. For each learning

epoch, the agent moved in a random walk from x ¼

0:1 to 0:9; with a constant bias of moving in the positive x

direction. During the learning phases for both the explicit

and implicit learning simulations, the agent performed 100

such learning epochs. In the top right are shown the firing

rates of the state cells through time as the agent performs

the motor programme after explicit learning with a reward

signal. In the bottom row are shown the firing rates of the

state cells through time as the agent performs the motor

programme after implicit learning without a reward signal.

For both simulations with explicit and implicit learning, the

agent was able to learn to perform the correct motor

sequence fairly well given the amount of error in the

training sequence. The activity packets within the state and

motor networks moved in synchrony, with the network

patterns running through the correct motor sequence

maintaining the relation x ¼ y:

10 The model parameter values used for Experiment 5 were the same as

those used for Experiment 1, except for the following exceptions. In the

simulation with explicit learning (top right of Fig. 10) we set f1 ¼ 107;

f2 ¼ 1:3 £ 105; and wINH ¼ 1:3: In the simulation with implicit learning

(bottom row of Fig. 10) we set f0 ¼ 2:1 £ 105; f1 ¼ 6 £ 108; f2 ¼

2:5 £ 103; and wINH ¼ 1:7: In addition, for both simulations of explicit and

implicit learning, we set aLOW ¼ aHIGH ¼ 0:0 for the state cells. Since we

set aLOW ¼ aHIGH for the state cells, there was no enhancement of the firing

rates of state cells with already high firing rates, and the parameter g was

redundant.
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5. A hierarchical model of motor function

In the model presented earlier, the network learned to use

the movement selector cells’ input to produce a temporal

sequence of motor output, using during training the training

motor signal t (Fig. 1). Let the firing of one set of movement

selector cells by training come to produce sequence one. Let

the firing of a second set of movement selector cells by

training come to produce sequence two. Now present a third

movement selector cell input pattern throughout the

presentation of both movement selector inputs 1 and 2. If

the synapses from the movement selector cells to the motor

cells are associatively modifiable, then after a few

associative pairings, movement selector cell input pattern

3 will produce the complex sequence of movements that

was produced by movement selector input 1 followed by

Fig. 10. Experiment 5: simulations with error present in motor training signal during learning phase. Top left: example of the time course of the position of the

activity packet within the state network during one epoch of the learning phase. For each learning epoch, the agent moved in a random walk from

x ¼ 0:1 to 0:9; with a constant bias of moving in the positive x direction. During the learning phases for both the explicit and implicit learning simulations, the

agent performed 100 such learning epochs. Top right: firing rates of the state cells through time as the agent performs the motor programme after explicit

learning with a reward signal. Bottom row: firing rates of the state cells through time as the agent performs the motor programme after implicit learning without

a reward signal. For both simulations with explicit and implicit learning, the agent was able to learn to perform the correct motor sequence fairly well given the

amount of error in the training sequence. The activity packets within the state and motor networks moved in synchrony, with the network patterns running

through the correct motor sequence maintaining the relation x ¼ y:
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movement selector cell input 2. In this way, new, high level,

movement selection commands can be automatically

generated by the system, without any error feedback.

Another way of implementing hierarchical motor control

would be to add another network of the type shown in Fig. 1

hierarchically above the first network. The states in the

higher order state attractor could represent high level states

such as where one is in a room, and as the high level

attractor follows a trained trajectory through its state space,

its motor cells with rates rMH would provide an appropriate

sequence of movement selector cell inputs rMS for the first

(lower) network. The higher level network would have its

own set of high level motor signals tH (e.g. a motor plan to

move to a new location in the room), and its own set of

visual or proprioceptive inputs eH which might represent for

example surrounding space, but not information such as

limb position which would be represented in the lower level

continuous attractor. Such higher level networks might be

located in separate cortical areas, for example, in parts of the

prefrontal cortex. The concept of high level motor selector

cells stimulating directly the lower level motor selector cells

may offer a more powerful framework for self-organizing

motor control.

Thus, the models presented here may be viewed as a way

of self-organizing a hierarchical pyramid of motor programs

with increasing levels of complexity (Stringer & Rolls,

2003).

6. Discussion

The acquisition of new motor skills may initially involve

specific neural mechanisms that involve a heavy neural

processing burden in terms of active attention, and that may

also perform poorly in terms of error in the initial attempts at

the motor action. However, with practice a motor skill may

be mastered such that, after training, little active attention is

required to perform the task, and in addition the task may be

performed with much reduced error. In this paper we present

a network model that is able to learn arbitrary motor

sequences and simulates the acquisition of motor skills by

biological agents as outlined earlier.

In this paper we have presented a model of motor control

in which the synaptic connectivity is able to self-organize

during an initial training phase using biologically plausible

learning rules. After training, the network is able to produce

whole sequences of motor cell firing, to implement

particular learned movements, even when the state cells

receive no visual or proprioceptive input. In the models

presented here the synaptic connectivity of the network self-

organizes during learning such that, after training, the

correct motor sequence may be stimulated automatically by

the firing of a single set of ‘movement selector’ cells.

We showed that the models developed here are able to

demonstrate the key features of Schmidt’s Generalised

Motor Control Program (Schmidt, 1987). That is, we

showed that: (i) the movement can occur at arbitrary

speeds; (ii) the movement can occur with arbitrary force;

(iii) the agent spends the same relative proportions of its

time in each part of the motor sequence11; (iv) the agent

applies the same relative force in each part of the motor

sequence; (v) the actions always occur in the same

sequence. In the numerical simulations, we showed that

the force, and hence speed, of movement can be controlled

by varying the firing rate of the relevant movement selector

cells.

The models of motor function developed here are based

on self-organizing CANNs. Continuous attractor networks

are able to stably maintain a localised packet of neuronal

firing activity. This enables neural activity to progress

through motor networks at arbitrary speeds, and so allows

an agent to control the speed of its movement. A further

feature of the models presented here is their use of trace

learning rules which incorporate a form of temporal average

of recent cell activity. Such rules are able to build

associations between different patterns of neural activities

that tend to occur in temporal proximity. This form of

temporal learning underlies the ability of the networks to

learn temporal sequences of behaviour.

The model developed here is capable of implementing

various types of motor programs. For example, the model

may be used to learn movement sequences which involve

the agent seeking to reach a fixed positional target, as in

prehension, where the target position is specified by the

particular pattern of firing among the movement selector

cells. Alternatively, the motor sequence may not involve a

particular target state for the agent. Instead the performance

of the motor sequence itself may be the goal as in the case

of, for example, saying a word. In addition, the network can

implement cyclic motor programs, involving continuous

cycling through the position state space of the agent, if the

state space associated with the movement is toroidal (as

might be required for example to implement locomotion).

A key property of the model is that the network is able to

learn both forward and inverse models of motor control. The

forward model, implemented by the synapses w2
ijk; allows

much quicker updating of the representation in the state

network than would be possible by visual or proprioceptive

cues alone. In particular, in the simulation results we

showed that the forward model is able to take into account

the force with which the motor sequence is executed, and

hence the speed of movement of the agent, when updating

the representation within the state network. Such a property

11 Although this part of Schmidt’s hypothesis does receive considerable

experimental support (Carter & Shapiro, 1984; Kelso, Putnam, &

Goodman, 1983; Schmidt, 1987; Shapiro & Schmidt, 1982; Terzuolo &

Viviani, 1980), some studies have found that the proportion of time spent in

each part of a motor program is not always maintained over different speeds

(Gentner, 1987). Further, for some kinds of multi-step motor programs,

which consist of a series of distinct stages, the proportional duration model

may apply to each component of a movement, but not necessarily to an

entire movement sequence (Shapiro, 1976).
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is of fundamental importance for the practical operation of a

forward model. The inverse model is implemented by the

synapses w3
ijk: Given a desired motor task or target state

represented by the firing of the movement selector cells, the

synaptic connections w3
ijk drive the motor cells to perform

the appropriate motor actions. We note that the model

addresses the issue of how the automatic motor system

learns, and does not itself use feedback control. However,

the other part of the motor system, shown as providing the

motor training signal t in Fig. 1, is presumably—though this

is not part of the model we describe—able to use visual and

proprioceptive feedback in a classical type of control loop.

To the extent that this occurs, the model of the learning of

automatic skills described here could be part of a larger

system which does utilise error feedback control from, e.g.

visual and proprioceptive signals during training. We

emphasise that the subsystem we describe does not actually

use feedback control itself as part of its processing—any

feedback control effects have the role of affecting the motor

training signal t; which is an input to the model we describe.

A key property of both biological and artificial control

systems is robustness. We propose that it should be possible

for the model described in this paper to learn to perform a

motor program robustly in the sense that the synaptic

weights are self-organized such that, during testing small

perturbations from the ideal motor sequence will result in

the network being drawn back to the correct sequence. That

is, for example, in the case of a cyclic motor sequence, the

whole motor sequence becomes an asymptotically stable

limit cycle, forming a basin of attraction for all nearby

perturbations from the ideal motor sequence. This might be

achieved through learning with an explicit reward signal,

where the reward signal rR is set to 1 whenever the agent has

moved from a perturbed state back onto the correct motor

sequence.

In the simulations performed in this paper, the state space

of the agent, represented by the network of state cells, is

one-dimensional. However, in principle, the network can

implement movements in higher dimensional spaces,

because the nature of the position state space is stored in

the recurrent synaptic connections w1
ij; which may become

self-organised during learning to represent spaces of

arbitrary dimensionality (Stringer et al., 2002b,c).

The model developed in this paper offers an interesting

perspective on the rôle of visual feedback in guiding motor

sequences like prehension, where the movement selector

cells represent a target position for the agent. We note the

following points. When visual input is available, the state

cell representation stays accurate. However, the model can

operate without visual or proprioceptive input. In this case,

the network relies on the representation of the agent’s state

within the continuous attractor network of state cells, which

is updated by efference copy from the motor network. This

property of the model is in accordance with evidence that

animals (Bizzi & Polit, 1979; Polit & Bizzi, 1978) and

humans (Laszlo, 1966, 1967) are able to perform some tasks

such as reaching in the absence of visual or proprioceptive

feedback, although in more ecological situations where

several joints are involved (Rothwell et al., 1982) or where

there are several segments to a movement (Cordo, 1990;

Cordo & Flanders, 1990; Sainburg, Ghilardi, Poizner, &

Ghez, 1995), some impairment is more typical. In the

model, impairments in accurate performance can be

accounted for by path integration errors in the update of

the state network when only efference copy is available.

This means that the motor cells will receive inaccurate

information from the state cells, which will lead to errors in

the motor sequence executed, and hence a loss of accuracy

in reaching the target position. However, if visual cues are

made available during the course of a movement then the

state network may be updated to represent the current

position of the agent more accurately. This will then allow

the correct motor sequence to be performed by the agent,

allowing the agent to reach the target position more

accurately. However, this mechanism produces a more

accurate movement to the target position as a result of a

more accurate state representation rather than the avail-

ability of a measure of error between the current state of the

agent and its target position. The earlier discussion perhaps

suggests a new view of how visual feedback is used in motor

tasks like prehension. Rather than directly using an explicit

error signal representing the distance between the hand and

the target, the accuracy with which the agent reaches a

target position may depend instead on the accuracy of its

state representation, which is then used to drive the correct

motor sequence. That is, the role of visual cues may be to

ensure an accurate representation in the state network,

which in turn is used to stimulate the correct dynamic in the

motor network given the current target position represented

by the movement selector cells. This viewpoint may become

important in the future interpretation of data from

neurophysiological studies of motor function.

The networks described in this paper are intended

primarily to introduce and illustrate a new approach to

understanding how motor function might be implemented in

neural systems. However, it is of interest to consider which

brain areas might correspond to some of the parts of

the network described here. One relevant brain area is the

parietal cortex, which has a set of representations of the

body and of egocentric visual space (Colby, 1999). Further,

damage to the parietal cortex can result in impairments in

both spatial perception and related forms of motor action

(Milner & Goodale, 1995). In relation to the state

representation described in this paper, it is relevant that

neurons in the anterior intraparietal area (AIP) respond not

only in relation to the shape of a grasp that is required, but

also, in a memory guided reaching task, when the monkey is

remembering an object with the neuron’s preferred object

shape (Murata, Gallese, Kaseda, & Sakata, 1996). Further, if

area AIP is inactivated, this reduces the monkey’s ability to

properly control the shape its of its hand in order to grasp

particular objects (Gallese, Murata, Kaseda, Niki, & Sakata,
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1994). Thus, the spatial representation maintained in area

AIP appears to be for the purpose of guiding grasping

movements with the hand, and is used by the premotor cortex

to control hand shape and grip (Gallese, Fadiga, Fogassi,

Luppino, & Murata, 1997; Jeannerod, Arbib, Rizzolatti, &

Sakata, 1995). Another brain region with a state represen-

tation is the hippocampus, and in this case the representation

in primates is of visual space. In particular, primate spatial

view cells respond when the monkey is looking towards a

particular location in space (Georges-François, Rolls, &

Robertson, 1999; Robertson, Rolls, & Georges-François,

1998; Rolls, Robertson, & Georges-François, 1997), and are

updated by idiothetic cues such as eye movements made in

darkness (Robertson et al., 1998), thus reflecting path

integration. Moreover, hippocampal spatial representations

are important in movement, as shown by the deterioration in

the ability of the rat to navigate through its environment

after hippocampal damage (Morris, Schenk, Tweedie, &

Jarrard, 1990).

The training signals tMS used to guide the firing of

movement selector cells determine the command patterns

represented in the movement selector layer, and hence the

overlap and interference between different movement

commands/motor programs. If two separate movement

commands have significantly overlapping distributed rep-

resentations in the layer of movement selector cells, then

executing one motor program may stimulate some motor

neurons associated with the other program. There are a

number of ways in which this problem may be ameliorated.

First, the firing threshold of the motor neurons may be set

sufficiently high for these cells to ignore partial signals from

incomplete movement commands in the layer of movement

selector cells. Second, the training signal tMS may operate to

establish a continuous space of commands within the

movement selector cell network, as demonstrated in

Experiment 4, in which case there will be no interference

between the commands represented in that network. Third,

the use of even higher order synapses w3 may help to make the

motor cells respond more selectively to movement com-

mands represented in the layer of movement selector cells.

In Section 4 we discussed various mechanisms that might

help to remove the effects of errors present in the motor

sequence during training. First, in numerical simulations we

demonstrated that one way of reducing the effects of motor

error during learning might be through explicit learning,

which involves making use of an explicit reward signal rR

that signifies when the motor sequence is being performed

well by the agent. However, questions remain about how the

agent might judge when the motor sequence was being

performed well, and how this might be converted into some

sort of useful reward signal in the brain. In further

simulations we demonstrated that a second way in which

the effects of motor error during learning may be reduced is

through implicit learning, which relies on the noisy motor

training signal containing a systematic component of the

correct signal which is relatively strong compared to any

error components. However, implicit learning relies on the

presence of a relatively strong component of the motor

training signal relating to the desired motor sequence. The

question remains as to how the agent may generate such a

motor training signal in the first place during learning. For

both of the above learning mechanisms, a fundamental

requirement is that during learning the agent is able to

generate a motor training signal ti that is good enough, at

least for part of the time, for the motor cells to be able to

extract and learn the correct motor sequence. The details of

how this might be achieved for the learning mechanisms

described earlier is an important question for future research.

In conclusion, we have used a dynamical systems

perspective to show how complex motor sequences could

be learned. The network uses a continuous attractor network

architecture to perform path integration on an efference

copy of the motor signal to keep track of the current state,

and selection of which motor cells to activate by a

movement selector input where the selection depends on

the current state being represented in the continuous

attractor network.
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