# Fundamentals of Computational Neuroscience 2e

January 1, 2010

Chapter 10: The cognitive brain

## Hierarchical maps and attentive vision

#### A. Ventral visual pathway



#### B. Layered cortical maps



## Attention in visual search and object recognition



Gustavo Deco

#### Model



## Example results



## The interconnecting workspace hypothesis



Stanislas Dehaene, M. Kergsberg, and J.P. Changeux, PNAS 1998

# Stroop task modelling



## The anticipating brain

- The brain can develop a model of the world, which can be used to anticipate or predict the environment.
- The inverse of the model can be used to recognize causes by evoking internal concepts.
- Hierarchical representations are essential to capture the richness of the world.
- 4. Internal concepts are learned through matching the brain's hypotheses with input from the world.
- An agent can learn actively by testing hypothesis through actions.
- 6. The temporal domain is an important degree of freedom.

#### **Outline**



#### Recurrent networks with hidden nodes

#### The Boltzmann machine:



Energy: 
$$H^{nm} = -\frac{1}{2} \sum_{ij} w_{ij} s_i^n s_j^m$$

Probabilistic update: 
$$p(s_i^n = +1) = \frac{1}{1 + \exp(-\beta \sum_j w_{ij} s_j^n)}$$

Boltzmann-Gibbs distribution: 
$$p(\mathbf{s}^{v}; \mathbf{w}) = \frac{1}{Z} \sum_{m \in h} \exp(-\beta H^{vm})$$

## Training Boltzmann machine

#### Kulbach-Leibler divergence

$$KL(p(\mathbf{s}^{v}), p(\mathbf{s}^{v}; \mathbf{w})) = \sum_{\mathbf{s}}^{v} p(\mathbf{s}^{v}) \log \frac{p(\mathbf{s}^{v})}{p(\mathbf{s}^{v}; \mathbf{w})}$$
$$= \sum_{\mathbf{s}}^{v} p(\mathbf{s}^{v}) \log p(\mathbf{s}^{v}) - \sum_{\mathbf{s}}^{v} p(\mathbf{s}^{v}) \log p(\mathbf{s}^{v}; \mathbf{w})$$

Minimizing KL is equivalent to maximizing the average log-likelihood function

$$I(\mathbf{w}) = \sum_{\mathbf{s}}^{V} p(\mathbf{s}^{V}) \log p(\mathbf{s}^{V}; \mathbf{w}) = \langle \log p(\mathbf{s}^{V}; \mathbf{w}) \rangle.$$

#### **Gradient decent** → **Boltzmann Learning**

$$\Delta \textit{w}_{\textit{ij}} = \eta rac{\partial \textit{I}}{\partial \textit{w}_{\textit{ij}}} = \eta rac{eta}{2} \left( \langle \textit{\textbf{S}}_{\textit{i}} \textit{\textbf{S}}_{\textit{j}} 
angle_{\text{clamped}} - \langle \textit{\textbf{S}}_{\textit{i}} \textit{\textbf{S}}_{\textit{j}} 
angle_{\text{free}} 
ight).$$

#### The restricted Boltzmann machine



#### Contrastive Hebbian learning: Alternating Gibbs sampling



## Deep generative models



## Adaptive Resonance Theory (ART)



### **Further Readings**

- Edmund T. Rolls and Gustavo Deco (2001), Computational neuroscience of vision, Oxford University Press.
- Karl Friston (2005), A theory of cortical responses, in Philosophical Transactions of the Royal Society B 360, 815–36.
- Jeff Hawkins with Sandra Blakeslee (2004), On intelligence, Henry Holt and Company.
- Robert Rosen (1985), Anticipatory systems: Philosophical, mathematical and methodological foundations, Pergamon Press.
- Geoffrey E. Hinton (2007), Learning Multiple Layers of Representation, in Trends in Cognitive Sciences 11: 428–434.
- Stephen Grossberg (1976), Adaptive pattern classification and universal recoding: Feedback, expectation, olfaction, and illusions, in Biological Cybernetics 23: 187–202.
- Gail Carpenter and Stephen Grossberg (1987), A massively parallel architecture for a self-organizing neural pattern recognition machine in Computer Vision, Graphics and Image Processing 37: 54–115.
- Daniel S. Levine (2000), Introduction to neural and cognitive modeling, Lawrence Erlbaum, 2nd edition.
- James A. Freeman (1994), Simulating neural networks with Mathematica, Addison-Wesley.