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Abstract

Separation of the sources and analysis of their
connectivity have been an important topic in
EEG/MEG analysis. To solve this problem
in an automatic manner, we propose a two-
layer model, in which the sources are con-
ditionally uncorrelated from each other, but
not independent; the dependence is caused
by the causality in their time-varying vari-
ances (envelopes). The model is identified
in two steps. We first propose a new source
separation technique which takes into ac-
count the autocorrelations (which may be
time-varying) and time-varying variances of
the sources. The causality in the envelopes
is then discovered by exploiting a special
kind of multivariate GARCH (generalized au-
toregressive conditional heteroscedasticity)
model. The resulting causal diagram gives
the effective connectivity between the sep-
arated sources; in our experimental results
on MEG data, sources with similar functions
are grouped together, with negative influ-
ences between groups, and the groups are
connected via some interesting sources.

1 INTRODUCTION

Blind source separation (BSS) of the magne-
toencephalography (MEG) or electroencephalography
(EEG) data has been a very active research area (Bail-
let et al., 2001). As a widely-used BSS technique, in-
dependent component analysis (ICA, Hyvärinen et al.,
2001) has been found very useful to find and re-
move artifacts (Jung et al., 2000). However, it is
difficult to find components related to brain activity.
This may be due to the lack of independence or non-
Gaussianity of the activations of different cell assem-
blies involved (Hyvärinen et al., 2010). Some second-

order statistics (SOS)-based BSS techniques, such as
SOBI (Second-order Blind Identification, Belouchrani
et al., 1997), assume that the sources are uncorrelated
and have different autocorrelations (or spectra). Since
some assemblies may have very similar autocorrela-
tions, it is also very difficult for such methods to sep-
arate brain activity-related components.

In this paper, we aim to find more specific proper-
ties of the EEG/MEG sources, and to provide suitable
machine learning tools for analysis. In particular, we
propose a two-layer generative model for EEG/MEG
signals. Its identification enables BSS and discovery of
the effective connectivity between the sources implied
in their envelopes. In the first layer of this model, the
observable scalp sensor signals are assumed to be linear
mixtures of underlying sources, which are condition-
ally uncorrelated from each other. Each source follows
an autoregressive (AR) model, and the coefficients
may be time-varying. In the second layer, statistical
dependencies between the sources are introduced; their
time-varying conditional variances (or envelopes) are
correlated. The GARCH (generalized autoregressive
conditional heteroscedastic) model (Bollerslev, 1986),
in combination with the idea of causality in vari-
ance (Granger et al., 1984), gives a special kind of
multivariate GARCH model; estimation of this model
produces the variances of the sources and the causal
relations among them.

The model is identified conveniently in two steps. The
first step performs source separation, and we propose
a new and unified SOS-based method, which could
separate the sources if they have different AR coef-
ficients (which may be time-varying), or if their time-
varying conditional variances are not proportional to
each other over time. In the second step, we select
a subset of the estimated sources which are likely to
correspond to brain activities and have time-varying
variances; we then identify the causal relations among
the variances of these sources. Alternatively, one
can decompose the estimated envelopes of the sources



into some components or “modulators” (which may
be closely related to particular stimuli), and perform
clustering of the sources according to the relationships
between the envelopes and the estimated modulators.

Finally, we use the proposed method to analyze the
MEG recordings during naturalistic stimulation. Ac-
cording to the resulting effective connectivity between
the sources, the sources are automatically divided into
two groups, and sources with similar functions are in
the same group. There exist positive influences mainly
inside the groups, and negative influences between the
groups. Moreover, by decomposing the envelopes with
the proposed source separation method, we obtain the
modulators underlying the source envelopes. The de-
composition results are consistent with the grouping
derived from the causal diagram.

2 MODELLING EEG/MEG:
UNCORRELATED SOURCES &
CAUSALITY IN VARIANCES

2.1 MIXING PROCEDURE

As in ordinary BSS, we assume that the vector
of the observable EEG/MEG recordings, x(t) =
(x1(t), ..., xN (t))T , is a linear transformation of
the vector of the underlying sources s(t) =
(s1(t), ..., sN (t))T :

x(t) = As(t), (1)

where A is assumed to be of full rank, such that all
sources can be recovered from x(t). Here for simplicity,
we have assumed that the sources and observed signals
have the same number. (Note that usually we need
to reduce the dimensionality of the raw EEG/MEG
sensor signals to obtain x(t)).

The sources usually have significant autocorrelations,
which may be time-varying. Here we assume that the
sources can be modelled by a AR(L) model:1

si(t) =
L

∑

τ=1

ciτ,tsi(t − τ) + ei(t), (2)

where ciτ,t are the (time-varying) coefficients, and in-
novations (or errors) ei(t) are temporally white and
uncorrelated with ej(t), j "= i, and follow the Gaussian
distribution with zero mean and variance σ2

it. That is,
the conditional distributions of si(t) is p(si(t)|si(t −

1Here we assume that the data have been made zero-
mean, and for simplicity of the presentation, we assume
that the constant term in the AR model is zero. If needed,
one can incorporate it in the model, without complicating
the algorithm.

k), k > 0) = N (
∑L

τ=1 ciτsi(t−τ), σ2
it), or equivalently,

ei(t) = σitzi(t), where zi(t) ∼ N (0, 1). (3)

Now let us specify the time-varying variances σ2
it.

2.2 MOELLING SOURCE ENVELOPES
BY EXTENDING GARCH MODELS

Figure 1 (top) shows the time course and autocorrela-
tions in the squared values of a typical MEG signal
after whitening, which was obtained as the innova-
tion of the AR(10) model. One can see that the inno-
vation, although temporally uncorrelated, has signifi-
cantly positive autocorrelations in the squared values.
This is a well-established phenomenon for financial re-
turn series such as stock returns, known as “volatility
clustering”. That is, the variance changes over time,
and large (small) changes in the time series tend to be
followed by large (small) changes of either sign.

The autoregressive conditional heteroscedasticity
(ARCH)-type models (Engle, 1982) were proposed to
model the time-varying variance as a weighted sum of
the squared values of the past innovations and some
constant. To estimate the variance accurately, ARCH
usually requires fairly many lags of the past data. As
a powerful extension of ARCH, the generalized ARCH
(GARCH) model (Bollerslev, 1986) avoids this prob-
lem by further incorporating the past variances in the
model. Using the GARCH(p,q) model, we can express
the conditional variance of si(t) as follows:

σ2
it = ωi +

q
∑

τ=1

αiτe2
i (t − τ) +

p
∑

τ=1

βiτσ
2
i,t−τ , (4)

where restrictions ωi > 0, αiτ ≥ 0, and βiτ ≥ 0
are imposed to ensure σ2

it to be positive. In prac-
tice, GARCH(1,1) is usually adequate. This model
has been proven very useful in modelling and fore-
casting the time-varying variances of financial returns.
The middle row in Figure 1 shows the time-varying
variances of the innovations of the MEG signal esti-
mated by GARCH(1,1). The corresponding standard-
ized residual, which was obtained by dividing the in-
novation by the time-varying standard deviation, is
plotted in the bottom row. Clearly, compared to the
original innovation series, it is much closer to be i.i.d.,
and the autocorrelations in its squared values are al-
most zero.

When we have parallel time series, whose variances
are dependent, one series may be useful to predict the
variance, or it may cause the change of the variance, of
another one. To formulate that, by incorporating the
idea of causality in variance (Granger et al., 1984), we
extend GARCH to the following constrained multivari-
ate GARCH model, which expresses the conditional
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Figure 1: An illustration of estimating the envelope
of the innovation of a MEG signal. From top to bot-
tom: innovation, time-varying variance estimated by
GARCH(1,1), and standardized residual. Right col-
umn: autocorrelation coefficients in squared values.

variance of the ith series as

σ2
it = ωi +

N
∑

j=1

q
∑

τ=1

αij,τe2
j (t − τ) +

p
∑

τ=1

βiτσ
2
i,t−τ . (5)

There exist many different forms of multivari-
ate GARCH models; this one is highly con-
strained, tailored to do causal discovery in the
envelopes. Here we term it causal-in-variance
GARCH (CausalVar-GARCH). Compared to standard
GARCH (Eq. 4), this model contains extra terms
∑

j "=i

∑q
τ=1 αij,τe2

j,t−τ ; the parameters αij indicate
the (causal) influence from sjt to sit in the vari-
ances. If αij "= 0, sj(t) is said to be causal in vari-
ance to si(t) (Granger et al., 1984). This model is
closely related to Granger causality analysis (Granger,
1980). However, here we prefer not to perform ordi-
nary Granger causality analysis on e2

i (t), since it is
difficult to find a suitable functional form to represent
e2
i (t) in terms of e2

j (t − τ). Moreover, σ2
it are interest-

ing to us and we would like to estimate them from the
data. In practice, it is expected that the causal rela-
tions are sparse, i.e., only a small subset of {αij,τ} in
CausalVar-GARCH are non-zero. To achieve this, we
use the model selection approach proposed by Zhang
et al. (2009), which exploits the data-adaptive &1 pe-
nalization with a fixed penalization parameter.

Finally, the combination of Eqs. 1, 2, 3, and 5 gives
the two-layer generative model for the EEG/MEG sig-
nals. The first layer generates the observed signals
as linear combinations of the sources, and the second
layer models the conditional variance of each source.
All involved parameters can be estimated simultane-
ously by maximum likelihood. However, the param-
eters at different stages (including A, parameters in
CausalVar-GARCH Eq. 5, and those in the AR model
Eq. 2) interfere with each other, which may cause es-
timation difficulties. Therefore, we prefer estimation
in two steps, as explained next.

2.3 ESTIMATION IN TWO STEPS

One can first perform source separation and then ana-
lyze the source envelopes. The procedure is as follows.

1. Separate the EEG/MEG sources using a suitable
BSS method, which will be proposed in Section 3.

2. First, remove estimated sources which are clearly
artifacts (e.g. based on visual inspection, or the
methods in Hyvärinen et al., 2010). Since we aim
to analyze the information hidden in the time-
varying variances of the sources, sources with con-
stant variances, if there are any, should be ex-
cluded; we use Engle’s Lagrange Multiplier (LM)
test (Engle, 1982) to test for the existence of
ARCH behavior in the sources. Then, use the
CausalVar-GARCH model to find the causality in
the envelopes of the selected sources.

As a result, we find possibly interesting sources and
their effective connectivity implied in their envelopes.

2.4 DECOMPOSITION OF ENVELOPES

Another way to analyze the dependent source en-
velopes is to decompose them into some uncorrelated
and simple components. The envelopes can be con-
sidered as products of some underlying “modulators”
with different strength. Mathematically, we assume
that the modulation process can be written as

σ2
it =

K
∏

k=1

(evkt)dik , or equivalently, log σ2
it =

K
∑

k=1

dikvkt,

where evkt , k = 1, ...,K are the underlying modulators,
and dik denote the strength of the influence of the kth
modulator on the envelope σ2

it. As log σ2
it follow a

linear mixing model, one can then decompose log σ2
it

with suitable BSS methods to find the modulators. In
particular, since the modulators are strongly autocor-
related, BSS methods based on the temporal informa-
tion of the data are expected to work well. In our
experiments, the BSS method proposed in Section 3 is
employed to do such decomposition. We expect that
some modulators may be physically interpretable; for
instance, they may be closely related to stimuli. One
can also interpret the dik as giving K groupings of the
sources, by finding for each k those dik which are large
enough, and sources in the same group may have some
similar functions.

3 A UNIFIED SOS-BASED BSS
METHOD IN TIME DOMAIN

ICA (Hyvärinen et al., 2001) requires the sources to be
separated independent and non-Gaussian. SOBI (Be-



louchrani et al., 1997) could separate the sources if
they have different autocorrelations. On the other
hand, if the sources are locally uncorrelated and their
local variances fluctuate somewhat independently of
each other (Matsuoka et al., 1995; Pham & Cardoso,
2001), one can recover the sources, by making the out-
puts locally uncorrelated. These requirements or as-
sumptions may not be satisfied by the model given
in Section 2; in particular, for EEG/MEG signals,
some sources may have similar autocorrelations (or
frequency spectra), and the variances of some sources
may be approximately constant. Some algorithms in
frequency domain or time-frequency domain have also
been proposed (Hosseini et al., 2009; Pham & Car-
doso, 2003). Such algorithms require a good estimate
of the frequency spectral densities and need to handle
imaginary numbers. Here to estimate the two-layer
model given in Section 2, we propose a unified SOS-
based time-domain BSS method, which could sepa-
rate conditionally uncorrelated sources if the local vari-
ances of the sources change somewhat independently
(as in Matsuoka et al., 1995), or if the sources have dif-
ferent autocorrelations (which are allowed to be time-
varying). The method is derived by maximum likeli-
hood (Pham & Cardoso, 2001), so generally speaking,
the estimate is statistically appealing.

3.1 METHOD

The model for source separation considered here is the
combination of Eqs. 1, 2, and 3; here we do not as-
sume the GARCH-type model for each source, but
simply assume that some source innovations have time-
varying variances σ2

it. We aim to recover the sources
si(t) in Eq. 1 using y(t), which is obtained by applying
the linear transformation W on x(t):

y(t) = Wx(t). (6)

As usual, we assume that the variances σ2
it and the AR

coefficients ciτ,t change smoothly over time, such that
they could be approximately considered as constants
in a short window.

Suppose we divide all time points at t = 1, ..., T into
M blocks T1, ..., TM . Denote by K the length of each
block. Denote by σi(m)2 and ciτ (m) the innovation
variances σ2

it and the coefficients ciτ,t in the mth block,
respectively.

The conditional distributions of si(t) are

p(si(t)|si(t − k), k > 0) = N (
∑L

τ=1 ciτsi(t − τ), σ2
it),

and the conditional distribution of x(t) is p(x(t)|x(t−
k)) = p(s(t)|s(t−k))/|A| =

∏n
i=1 p(si(t)|si(t−k))/|A|.

After simplifications, the negative data (condi-
tional) likelihood becomes − log p(x(1), ...,x(T )) =
1
2

∑n
i=1

∑m
l=1

∑

t∈Tm

[

n log(2π) + log σi(m)2 +

ỹi(t)2/σi(m)2
]

− T log |W|, where ỹi(t) denote the

innovations of fitting yi(t) with the AR model Eq. 2,

i.e., ỹi(t) = yi(t) −
∑L

τ=1 ciτ (m)yi(t − τ). Like
in Pham and Cardoso (2003), by minimizing the
negative likelihood w.r.t. σi(m)2, one can find its

estimate: σ̂i(m)2 =
∑

t∈Tm
ỹi(t)2/K. Substituting

it back into the negative likelihood leads to (with
certain constants dropped)

J =
K

2

n
∑

i=1

M
∑

m=1

log σ̂i(m)2 − T log |W|. (7)

The autocovariance matrices of x(t) in each block will
be involved in our algorithm. To make them symmetri-
cal, we define the autocovariance matrice of xt in the

mth block at lag d as R
(m)
x,d ! 1

2K

∑

t∈Tm

[

x(t)x(t +

d)T + x(t + d)x(t)T
]

. Let γ(m)
yi,d

be the dth-order au-

tocovariance of yi(t) in the mth block, i.e., γ(m)
yi,d

=
∑

t∈Tm
yi(t)yi(t + d)/K. They can be directly calcu-

lated from R
(m)
x,d as γ(m)

yi,d
= wT

i R
(m)
x,d wi, where wT

i de-

notes the ith row of W. The matrix K
(m)
i defined

below consists of γ(m)
yi,d

as its entries:

K
(m)
i !













γ(m)
yi,0 γ(m)

yi,1 · · · γ(m)
yi,L−1

γ(m)
yi,1 γ(m)

yi,0 · · · γ(m)
yi,L−2

...
. . .

. . .
...

γ(m)
yi,L−1 · · · γ(m)

yi,1 γ(m)
yi,0













. (8)

After tedious calculations, we can find the derivative
of Eq. 7 w.r.t. wi:

1

T

∂J

∂wi
=

1

M

M
∑

m=1

1

σ̂i(m)2

(

L
∑

τ1=0

L
∑

τ2=0

ĉiτ1
(m)

·ĉiτ2
(m) · R(m)

x,|τ1−τ2|

)

wi − [W−1]·i, (9)

where ĉi0(m) ! −1, (ĉi1(m), ..., ĉiL(m))T = [K(m)
i ]−1 ·

(γ(m)
yi,1, ..., γ

(m)
yi,L

)T , σ̂i(m)2 = γ(m)
yi,0 − (γ(m)

yi,1, ..., γ
(m)
yi,L

) ·
ĉi(m), and [W−1]·i denotes the ith column of W−1.
The corresponding natural gradient can be obtained
by multiplying the right-hand side of the gradient ∂J

∂W

with WT W (Cichocki & Amari, 2003). As input,
the algorithm just requires the local autocovariances

R
(m)
x,|τ1−τ2|

; it is then termed as “L-ACOV I” (local

autocovariance-based method I).

3.2 SPECIAL CASE WITH CONSTANT
AR COEFFICIENTS

In some situations, ciτ,t are approximately constant
along time. Moreover, if the sample size is not large



enough, the model with time-varying ciτ,t has too
much freedom, causing the danger of overfitting. It
would then be better to constrain them to be constant.

In this case, AR coefficients ciτ (m) become ciτ , which
can be learned together with W, by minimizing Eq. 7,
using an alternating optimization technique. In each
iteration, we first fix ĉiτ , and update W using the gra-
dient (or natural gradient)-based method. The gradi-
ent of Eq. 7 w.r.t. wi is actually similar to Eq. 9. After
updating W, we fix W and update ĉiτ , the estimate of
the AR parameters for yi(t). The derivative of Eq. 7
w.r.t. ci = (ci1, ..., ciL)T can be easily found. One
can then update ĉi with the gradient-based method,
or even in closed form. Details are skipped. This al-
gorithm is termed as “L-ACOV II”.

In fact, one can easily incorporate different prior
knowledge or constraints in the model discussed in
Section 3.1 to simplify the algorithm, or to improve
the separation performance. In particular, if the in-
novation variance σ2

it of each source is constant, the
nonstationarity of the autocorrelations in the sources
could also enable source separation.

3.3 SIMULATIONS

To make the simulations of practical use for
EEG/MEG analysis, we generated the data whose
properties are similar to real EEG/MEG data. We
took into account various effects, including non-
stationarity, source autocorrelations (which may be
time-varying), correlation in the envelopes, and the
noise effect. In Simulation 1, 10 sources were first
generated as independent AR(4) processes with Gaus-
sian errors, and the coefficients in the AR model were
randomly chosen in the range [−0.1, 0.2]. Next, four
sources were further modulated by the same modulator
with different strengths; the modulator was a sinusoid
waveform, and a positive number was added to make it
positive. They were then mixed by a randomly gener-
ated mixing matrix A. Finally, uncorrelated Gaussian
noise with the signal-to-noise ratio 30dB was added to
the mixtures. The sample size was 4000. The meth-
ods for comparison were SOBI (Belouchrani et al.,
1997), FastICA (Hyvärinen, 1999) with the tanh non-
linearity and in the symmetrical manner, JADE (Car-
doso & Souloumiac, 1993), the method by joint diag-
onalization of local covariances (Hereafter denoted by
‘JD-COV’), which is based on the assumption of local
uncorrelatedness and nonstationary variances of the
sources (Pham & Cardoso, 2001), the method exploit-
ing the time-frequency diversity of the sources (de-
noted by ‘TF’, Pham & Cardoso, 2003), L-ACOV I
(Subsection 3.1), and L-ACOV II (Subsection 3.2). In
the last four methods, the data were divided into 20
blocks. For TF, discrete Fourier transform (DFT) was

used to estimate the spectral density and the frequency
plane was divided into 6 equi-spaced intervals.

The performance was evaluated by the Amari perfor-
mance index Perr (Cichocki & Amari, 2003), which
measures how far WA is from a generalized permu-
tation matrix. The smaller Perr, the better the sepa-
ration performance. We repeated the simulations for
40 replications, in each of them the sources and the
mixing matrix were randomly chosen. Fig. 2 (top)
gives the boxplot of the Amari performance index for
each method. One can see that SOBI is better then
FastICA and JADE, but the remaining four are bet-
ter than SOBI. JD-COV solely makes use of the time-
varying local variances of the sources and neglects the
autocorrelations, and its performance is not as good
as those combining the time-varying conditional vari-
ances and autocorrelations of the sources. L-ACOV I
and L-ACOV II are among the best. Due to the prior
knowledge of the constant AR coefficients, L-ACOV II
is slightly better then L-ACOV I.
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Figure 2: Boxplots of the Amari performance index in
simulations. Top: Simulation 1. Bottom: Simulation
2.

The settings in the second simulation were similar to in
the first one; however, the coefficients in the AR model
for each source were not constant. We divided the
whole time period into two parts, and for each source,
in the second part we re-generated the AR coefficients
randomly. The performance of different methods is
shown in Fig. 2(bottom). The performance of SOBI
and L-ACOV II is not as good as in Simulation 1,
due to the changing autocorrelations of the sources.
L-ACOV I, L-ACOV II, and TF are among the best.
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Figure 3: Selected sources estimated by L-ACOV II. Panels from left to right: waveforms (without pre-whitening),
power spectral densities, topographic helmet plots, innovations, and estimated envelopes of the sources.

4 EXPERIMENTAL RESULTS

4.1 DATA AND PREPROCESSING

We applied our model and method on real MEG data
recorded at the Brain Research Unit of the Helsinki
University of Technology.2 The raw recordings con-
sisted of 204 gradiometer channels and last about 12
minutes, obtained from a healthy volunteer, who re-
ceived non-overlapping auditory, visual, and tactile
stimuli (Malinen et al., 2007). The data were down-
sampled to 75Hz. Since some recordings have clear
trends, as preprocessing, we concatenated all MEG
signals and fitted an AR(10) model on the concate-
nated data. We then worked on the errors. This is
equivalent to apply a whitening filter, which is the
same for all channels, on the raw recordings. Since the
recordings of different channels usually have different
autocorrelations, each channel is not necessarily white.
But the trends in the data disappeared and the auto-
correlations common in all channels were eliminated.
We then used principal component analysis (PCA) to
reduce the dimensionality to N = 40.

4.2 SOURCE SEPARATION

We separated sources with different source separation
methods, including L-ACOV I (Subsection 3.1), L-
ACOV II (Subsection 3.2), JD-COV (Pham & Car-
doso, 2001), SOBI, FastICA, and JADE. The last

2We are very grateful to Pavan Ramkumar for providing
the data.

three methods have been widely used for BSS of the
EEG/MEG signals.

When using L-ACOV I and II, we set the order of the
AR model of each source to L = 10. For L-ACOV II,
we divided the whole period into 150 segments; each
segment then corresponds to 4.8 seconds. For L-ACOV
I, in which each segment has its own AR model, to
limit the model complexity and avoid overfitting, we
divided the data into 120 segments. We repeated these
two algorithms for 10 replications with random initial-
izations for W, and each algorithm always converged
to almost the same solution. Furthermore, their results
are similar to each other. We then mainly report the
results by L-ACOV II. We selected 17 sources which
are likely to correspond to brain activities, out of all 40
output components, by visual inspection on their to-
pographical helmet plots, waveforms, and also the fre-
quency spectra. These sources are reliable also in the
sense that there were all found very accurately in all of
the 10 replications. The LM test (Engle, 1982) showed
that all of these selected sources have the ARCH effect
at significance level 0.01, i.e., they have time-varying
conditional variances. The first four columns of Fig-
ure 3 give the time courses, power spectral densities,
topographical helmet plots, and innovations ei(t) of
the selected sources. They were sorted according to
their contributed variances, indicated by the norms of
the corresponding columns of the mixing matrix.

To save space, the results by other methods are not
shown. By inspection on the topographical helmet
plots, we found that generally speaking, the sources



produced by L-ACOV I, as well as those by L-ACOV
II, have sharper locations than those produced by
other methods, and are preferable.

4.3 CAUSAL DISCOVERY IN THE
ENVELOPES

We then estimated the CausalVar-GARCH(1,1) model
(Eq. 5) for the innovations of the selected sources.3 We
used the adaptive &1 penalty-based BIC-like model se-
lection (Zhang et al., 2009) to eliminate insignificant
causal connections implied by αi,j . All involved pa-
rameters were estimated by penalized maximum like-
lihood. The estimated envelopes of the sources are
shown in Figure 3 (rightmost column).

The resulting parameters αij are shown in Figure 4.
Correspondingly, the causal diagram among the source
envelopes, or the effective connectivity, implied by αij

in the CausalVar-GARCH model, is shown in Figure 5.
One can see that all sources are divided into two groups
by the green line (which was inserted manually). The
causal influences inside each group are positive, while
those between the groups are mainly negative. Sources
#9 and #12 are on the boundary and their connections
to both groups are positive. Some sources, such as
#2, #3, #6, #8, #11, and #16, have strong inter-
connections.

In fact, the sources in the first group (left in the di-
agram) are mainly occipital and parietal components,
related to visual processing and possibly spatial atten-
tion. In contrast, the sources in the second group are
Rolandic, related to somatosensory and motor process-
ing. Interestingly the sources #9 and #12 are located
between these two brain areas both in the diagram and
on the topographic helmet plots, and possibly interface
the two main groups.

4.4 DECOMPOSITION AND
CLUSTERING OF ENVELOPES

Next, we applied L-ACOV I (with the data divided
into 100 blocks and L = 10) on the logarithms of the
source envelopes, as suggested in Subsection 2.4, to
decompose them. This produced the components vkt

associated with the modulators and the mixing matrix
Aσ. The sign of each component was adjusted to make
its total contribution to all log σ2

it positive. They were
sorted according to the contributed variances. Fig-
ure 6 shows some columns of the mixing matrix Aσ

(the time courses of the output components vkt are
not given).

3We also tried CausalVar-GARCH(2,3) and found that
αij,τ and βiτ (with τ > 1) are not significant, so we report
the result with CausalVar-GARCH(1,1).
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Figure 6: The first six
columns of the mixing
matrix Aσ obtained by
decomposing log σ2

it.

The dependencies between
stimuli and the sources are
very important to under-
stand brain activation re-
lated to natural stimuli.
we found that v1t and v2t

are clearly correlated with
the stimuli. One might fur-
ther use regression or other
techniques to find the com-
binations of the modula-
tors which are most infor-
mative to distinguish stim-
ulus states; this is out of
the scope of this paper.
From the mixing matrix
(Figure 6), we can see that
all envelopes, expect that of Source #17, are strongly
positively related to v1t. This is consistent with the
causal diagram in Figure 5, in which Source #17 is al-
most isolated; Source #17 is possibly an artifact. The
second column of Aσ indicates that Sources #2, #3,
#6, #8, #11, which have strongly negative relations to
v2t, should be grouped together; the fifth column im-
plies that Sources #14, #15, #4, and #7 are closely
related. These are again consistent with the effective
connectivity. Moreover, the sixth column shows a sig-
nificant similarity between Sources #7 and #10. Ac-
cording to the fourth column of Aσ, Sources #4 and
#15 should be grouped together. In fact, Sources #7
and #10 have very similar spatial locations, but on op-
posite hemispheres. The same applies to Sources #4
and #15.

5 CONCLUSIONS

We proposed a two-layer model as a possible way
to explain the generating process of the EEG/MEG
signals. Compared to other blind source separation
models, this model has an additional layer to account
for the dependencies in the envelopes of the sources.
Causal-in-variance GARCH, as a constrained multi-
variate GARCH model, was employed to represent
the causality in the source envelopes. Estimation of
the two-layer model enables automatic source separa-
tion and causal discovery in their envelopes. To verify
the causal connections, we also gave a scheme to de-
compose the envelopes into modulators which may be
physically interpretable and help to do clustering of
the sources. Experimental results on real MEG sig-
nals show that the envelopes of the separated sources
are dependent, which challenges the independence as-
sumption underlying the application of ICA to sepa-
rate brain activities. The resulting effective connec-
tivity implied in the source envelopes reveals how the
sources are related to each other, and provides com-



j

i

αij (causality in variance i←j)

 

 

5 10 15

2

4

6

8

10

12

14

16 −2

0

2

4

6

8

10

12

14

x 10−3

Figure 4: Estimated
values of αij in the
CausalVar-GARCH
model.

Figure 5: Causality in the variances of the sources implied by αij in the CausalVar-
GARCH model. The thickness of the lines indicates the strength of the causal effects.
Undirected lines mean bi-directed causal relations. Black (red) lines show positive
(negative) effects. Clearly the green line (inserted manually) divides all sources into
two groups.

pletely new kind of information about the (causal) in-
teractions between different brain areas.
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