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Anticipatory neural activity preceding behaviorally important events has
been reported in cortex, striatum, and midbrain dopamine neurons.
Whereas dopamine neurons are phasically activated by reward-predictive
stimuli, anticipatory activity of cortical and striatal neurons is increased
during delay periods before important events. Characteristics of dopa-
mine neuron activity resemble those of the prediction error signal of the
temporal difference (TD) model of Pavlovian learning (Sutton & Barto,
1990). This study demonstrates that the prediction signal of the TD model
reproduces characteristics of cortical and striatal anticipatory neural ac-
tivity. This finding suggests that tonic anticipatory activities may reflect
prediction signals that are involved in the processing of dopamine neuron
activity.

1 Introduction

In a famous experiment by Pavlov (1927), a dog was trained with the ring-
ing of a bell (stimulus) followed by food delivery (reinforcer). In the first
trial, the animal salivated when food was presented. After several trials,
salivation started when the bell was rung. This finding suggests that the
salivation response following the bell ring reflects anticipation of food de-
livery. A large body of experimental evidence led to the hypothesis that
Pavlovian learning is dependent on the degree of unpredictability of the
reinforcer (Rescorla & Wagner, 1972; Dickinson, 1980). According to this
hypothesis, reinforcers become progressively less efficient for behavioral
adaptation as their predictability grows during the course of learning. The
difference between the actual occurrence and the prediction of the reinforcer
is usually referred to as the error in the reinforcer prediction. This concept
has been employed in the temporal difference model (TD model) of Pavlo-
vian learning (Sutton & Barto, 1990). The TD model uses reinforcement
prediction errors for learning a reinforcement prediction signal. This signal
was compared to anticipatory responses. As animals seem to optimize the
sum of reinforcement over time (Mackintosh, 1974; Dickinson, 1980), it is
the goal of the TD model to compute a desired prediction signal that re-
flects the sum of future reinforcement. If the reinforcement is food intake,
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this desired prediction signal reflects the sum of available food in the future.
After training of the TD model with a stimulus followed by a reinforcer, the
prediction error signal increases phasically when the stimulus is presented,
and the prediction signal is tonically increased during the intratrial inter-
val. Recent studies relate the TD model to neural information processing
because the reward prediction error of the TD model resembles dopamine
neuron activity in situations with unpredicted rewards, fully predicted re-
wards, reward-predicting stimuli, and unexpectedly omitted rewards. The
comparison between basal ganglia anatomy and the architecture of the TD
model suggests that cortico-striatonigral pathways are involved in adap-
tation of dopamine neuron activities (Barto, 1995; Houk, Adams, & Barto,
1995; Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague,
1997; Suri & Schultz, 1999).

Anticipatory activity is related to an upcoming event that is prerepre-
sented as a result of a retrieval action of antedating events, in contrast to
activity reflecting memorized features of a previously experienced event
(Wagner, 1978). Therefore, as in Pavlov’s experiment, anticipatory activity
precedes a future event irrespective of the physical features of the antedat-
ing events, which make this future event predictable (see Figure 1A). Phasic
activity anticipating rewards was reported in midbrain dopamine neurons
(Ljungberg, Apicella, & Schultz, 1992; Schultz, Apicella, & Ljungberg, 1993;
Schultz et al., 1997; Mirenowicz & Schultz, 1994). Tonic delay period ac-
tivity that anticipates stimuli, rewards, or the animal’s own actions was
termed anticipatory, preparatory, or predictive and has been reported in the
striatum (Hikosaka, Sakamoto, & Usui, 1989; Alexander & Crutcher, 1990a,
1990b; Apicella, Scarnati, Ljungberg, & Schultz, 1992; Schultz & Romo, 1992;
Kermadi & Joseph, 1995; Tremblay, Hollerman, & Schultz, 1998; Holler-
man, Tremblay, & Schultz,1998), supplementary motor area (Alexander &
Crutcher, 1990a, 1990b; Romo & Schultz, 1992), prefrontal cortex (Watan-
abe, 1996), orbitofrontal cortex (Tremblay & Schultz, 1999, 2000; Schultz,
Tremblay, & Hollerman, 2000), premotor cortex (Mauritz & Wise, 1986),
and primary motor cortex (Alexander & Crutcher, 1990a, 1990b).

The TD model was usually applied to learn to predict one reinforcer. In
situations with two different anticipated rewards, we use two TD models,
each processing one reward. In order to investigate the relations between
anticipatory neural activity and predictive signals of the TD model (Sutton
& Barto, 1990), we compare simulated predictive signals with anticipatory
neural activities.

2 Description of Anticipatory Neural Activity

2.1 Phasic Anticipatory Activity. Phasic anticipatory neural responses
of about 100 msec duration were reported for midbrain dopamine neurons.
These neurons are activated by unpredicted rewards and by a reward fol-
lowing a stimulus for the first time. After repeated presentations of the
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stimulus followed by the reward, the activation elicited by the reward de-
creases and entirely disappears after learning is completed. These neurons
become activated instead by the stimulus (Ljungberg et al., 1992; Schultz,
Apicella, & Ljungberg, 1993; Schultz et al., 1997; Mirenowicz & Schultz,
1994; Schultz, 1998).

2.2 Tonic Anticipatory Activity. Tonic anticipatory activity was found
in subsets of cortical and striatal neurons. Before learning, such neurons
often respond to specific events. When this event becomes predicted in the
course of learning, these responses seem to become progressively preceded
by anticipatory neural activity (Hikosaka et al., 1989; Tremblay et al., 1998).
After learning, anticipatory neural activity often progressively increases
between the first (predicting) event and the second (predicted) event. This
activity starts increasing at the onset of the predicting event or during the
interevent interval. Alternatively to this progressive increase, the responses
can be limited to the predictive and to the predicted event as shown in Fig-
ure 4C (Hikosaka et al., 1989; Alexander & Crutcher, 1990a, 1990b; Apicella
et al., 1992; Kermadi & Joseph, 1995; Watanabe, 1996).

Tonic anticipatory activity was reported to precede stimuli, reinforcers,
and movements in delayed-response tasks (Apicella et al., 1992; Schultz
& Romo, 1992; Schultz, Apicella, Scarnati, & Ljungberg, 1992; Tremblay
et al., 1998; Hollerman et al., 1998). Each correct trial of this task consists
of an instruction stimulus, a delay period, a trigger stimulus, a behavior,
and a reward. Animals have to remember the instruction stimulus to react
correctly to the trigger stimulus. Apicella and collaborators (1992) reported
anticipatory neural activity in the monkey striatum after training a go-nogo
version of this task. From the 1173 studied striatal neurons, 615 showed
some change in activity during task performance. The activity of 193 task-
related neurons increased in advance of at least one task component: the
instruction stimulus (16 neurons), the trigger stimulus (15 neurons), the
animal’s movement (56 neurons), or the reward delivery (87 neurons) (see
Figure 1B). These neurons with anticipatory activity were found in dorsal
and anterior parts of caudate and putamen and were slightly more frequent
in the proximity of the internal capsule.

Tremblay and collaborators (Tremblay & Schultz, 1999, 2000; Schultz et
al., 2000) trained monkeys in delayed-response tasks in which each instruc-
tion stimulus preceded presentation of a specific reward (two liquids with
different taste). Instruction stimulus A was followed by reward X, instruc-
tion stimulus B was followed by the same reward X, and instruction stimu-
lus C was followed by reward Y. Neural activity was recorded in six-layered
parts of orbitofrontal areas 11 and 14 and rostral area 13. These neurons
showed three principal types of activation: responses to instructions (15%
of 1095 tested neurons), responses following reward (8%), and sustained ac-
tivations preceding reward (9%). Unrewarded control trials demonstrated
that all three types of activation were influenced by the expected reward.
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The prereward activations began several seconds before the reward and
subsided less than 1 sec after reward delivery.

Tonic anticipatory activities can be specific for anticipated stimuli
(Hikosaka et al., 1989; Alexander & Crutcher, 1990b; Apicella et al., 1992;
Kermadi & Joseph, 1995; Tremblay et al., 1998; Hollerman et al., 1998). Ker-
madi & Joseph (1995) analyzed the neural activity of 2100 neurons in the
caudate nucleus. During the instruction phase, a sequence of three visual
targets was presented, and the monkey was required to fixate on a central
fixation point. In the subsequent behavioral phase, the monkey had to press

Figure 1: Facing page. (A) Illustration providing a criterion for the expression
“activity anticipating event X.” The three well-trained trial types “event A fol-
lowed by event X,” “event B followed by event X,” and “event C followed by
eventY” are assumed to be separated by sufficiently long intertrial intervals and
are presented randomly intermixed. Presentations of event A (left) and event
B (middle), which both precede presentation of event X, increase the activity.
Event C, which precedes event Y, does not influence the activity (right side).
This last control trial shows that the anticipatory activity is specific for event
X. Furthermore, this control trial indicates that the activity is not related to a
common physical feature of the events A, B, and C and therefore does not re-
flect memorization of these preceding events. The responses following events
X and event Y are not shown because they are not relevant for this criterion.
Events A and B were termed “predictive” events and event X the “predicted”
or “anticipated” event. (B) Population activity of expectation- and preparation-
related striatal neurons (figure from Apicella et al., 1992). (Top) Activation of
16 neurons preceding instruction onset. The intertrial interval was 4-7 seconds.
(Middle) Activation of 44 neurons preceding the trigger stimulus in go trials.
The histogram is split because the intervals between instruction and trigger var-
ied from 2.5 to 3.5 sec. Neurons responding to the trigger stimulus, activated
during movement, or activated before instruction or reward, are excluded. (Bot-
tom) Activation of 68 neurons preceding reward in no-go trials. The activation
began to a modest extent before trigger onset, gained increasingly in ampli-
tude after trigger onset, and reached its peak when the reward was delivered.
In each display, histograms for each neuron normalized for trial number are
added, and the resulting sum is divided by the number of neurons. (C) Activity
of this neuron in caudate anticipated presentation of stimulus L only if stimulus
L occurred in the sequence ULR (figure from Kermadi & Joseph, 1995). During
the shown instruction phase of the task, the monkey withheld movements and
fixated on a central fixation point. The three visual stimuli—L (left target), U
(upper target), and R (right target)—were presented in the six sequences: LUR,
RLU, URL, LRU, ULR, and RUL (top of each subfigure). Each cell discharge is
indicated by a dot, and the 6 to 9 successive trials per neuron are shown on
successive lines (middle of each subfigure). The histogram shows the sum of
the individual discharges (bottom of each subfigure).
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three levers in the order indicated by the instruction phase. Six different
sequences of the three targets were presented in the instruction phase. Be-
cause these six sequences were always presented in the same order, the three
target stimuli in each trial were completely predictable. From 125 neurons
responding in the instruction phase, the activity of 81 neurons preceded the
presented stimuli. The activity of 46 neurons anticipated the offset of the
central fixation point, the activity of 7 neurons anticipated the illumination
of any target, the activity of 17 neurons anticipated the illumination of the
first target, and the activity of 11 neurons anticipated the onset of specific
targets. In a majority (35 neurons), the responses to specific targets were
modulated by the rank of the target in the sequence or by complex rela-
tionships with other targets. Anticipatory activity started increasing about
1 second before stimulus onset. Then this activity progressively increased
until it reached the maximum at the onset of the anticipated stimulus. A neu-
ron with activity anticipating the specific target L in the specific sequence
ULR is shown in Figure 1C.

2.3 Anticipatory Activity in Paradigms Without Delay Period. Al-
though we do not intend to reproduce anticipatory neural activity in para-
digms without delay period, we briefly mention such findings here. Activ-
ity of the head-direction cells in the anterior thalamus anticipates the future
head direction by a neuron-specific duration between 0 and 50 msec (Blair,
Lipscomb, & Sharp, 1997). Event-specific anticipatory activity can also de-
pend on the future behavior of the animal. Activity that anticipates the
retinal consequences of intended eye movements by about 100 msec was
reported in frontal eye fields (Goldberg & Bruce, 1990; Umeno & Goldberg,
1997), superior colliculus (Walker, Fitzgibbon, & Goldberg, 1995), parietal
cortex (Duhamel, Colby, & Goldberg, 1992), and striate cortex (Nakamura
& Colby, 1999).

3 Description of the TD Model

In Pavlovian learning paradigms, animals often learn to estimate the time of
reward occurrence (Gallistel, 1990). Therefore, the TD model of Pavlovian
learning (Sutton & Barto, 1990) proposes a time-estimation mechanism. The
same time-estimation mechanism was also used to reproduce the finding
that dopamine neuron activity is decreased below baseline levels when an
expected reward is omitted (Montague et al., 1996; Schultz, 1998). This time-
estimation mechanism is implemented by assuming that each stimulus is
represented with a series of short components following stimulus onset.
This is achieved by mapping each stimulus to a fixed temporal pattern
of phasic signals xi (), x2(f), ... that follow stimulus onset with varying
delays. This temporal pattern is referred to as a complete serial compound
stimulus or temporal stimulus representation (see Figure 2A). Note that
the choice of these signals is rather arbitrary. The single components have
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been proposed to be phasic (Sutton & Barto, 1990), sustained (Desmond &
Moore, 1988, 1991), or phasic immediately after the stimulus onset and then
progressively more sustained (Grossberg & Schmajuk, 1989; Brown, Bullock,
& Grossberg, 1999; Suri & Schultz, 1999). In some models the representation
of astimulus depends on successive events (Dominey, Arbib, & Joseph, 1995;
Suri & Schultz, 1999). Although the shapes of the components differ among
these models, the learned prediction and prediction error signals are usually
not affected by this choice.

The temporal stimulus representation is used to compute the reward pre-
diction signal with the adaptive weights V,,(t) (see equation A.2; Sutton &
Barto, 1990; Montague et al., 1996; Schultz et al., 1997; Suri & Schultz, 1998).
A representation of the TD model using a neuron-like element is shown
in Figure 2B. According to the TD model, the reward prediction develops
during learning in a similar way as the animal’s anticipatory behavior. The
reward prediction increases gradually before an anticipated reward if this
reward is completely predicted. The rate of this gradual increase is deter-
mined by the constant y, which is referred to as the temporal discount factor.
The value of the discount factor y was estimated from the time course of
measured anticipatory neural activity. We usually used the standard value
y = 0.99 per time step (1 time step = 100 msec), which led to an increase
in the prediction signal of 1% each 100 msec (see section 6). Previously,
y = 0.98 per 100 msec had been estimated from dopamine neuron activity
(Suri & Schultz, 1999).

The TD model learns the reward prediction signal from stimuli ante-
dating reward occurrence using a signal that reflects “errors” in the reward
prediction. The TD model uses the difference between the actual occurrence
and the prediction of the reward as this reward prediction error. Thus, the
reward prediction error e(t) is computed from discounted temporal differ-
ences in the prediction signal p(t) and from the reward signal (see equa-
tion A.3). In order to minimize these prediction errors, the elements of the
weight matrix V,,(t) are incrementally adapted according to the product of
the prediction error with eligibility traces of the temporal stimulus repre-
sentation (see equation A.4). These traces are defined as slowly decaying
versions of the representation components (see equation A.5). Such stimu-
lus traces were originally introduced to explain learning for situations with
a delay between the stimulus and the reinforcer, as they bridge the time
interval between the predictive stimulus and the reinforcer (Hull, 1943). Al-
though TD models with complete temporal stimulus representation learn
without representation traces (Montague et al., 1996), the proposed model
uses traces to accelerate learning (Sutton & Barto, 1998).

3.1 One TD Model for Each Event. Since rewards are usually accom-
panied by certain sensory stimuli, it was proposed to represent a reward for
the TD model as a composite of a reward and a stimulus (Suri & Schultz,
1999). With this approach, the reward prediction error signal is phasically
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activated at reward onset after repeated reward presentations. We use the
same approach in this study and provide a copy of the reward signal as an
additional stimulus to the TD model.

The TD model processes two types of input: input that the model learns
to predict (usually the reward) and input that serves as information for these
predictions (usually the stimuli). The first event in a trial (usually a stimulus)
serves as the information to learn prediction signals for the second event
(usually the reward). Since behaviorally important stimuli are preceded by
anticipatory neural activity (see Figure 1C), we want to compute prediction
signals not only for rewards but also for stimuli. Therefore, we propose
a model that does not distinguish between stimuli and rewards. We use
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several TD models, each computing predictions for each event (stimulus or
reward) that occurs in the simulated paradigm. The TD models receive all
events as information input in order to compute optimal prediction signals
(see Figure 2C). Since these TD models are independent, each of them is
mathematically equal to the standard TD model, and all the simulation
results (except Figure 5C) could be computed with the standard TD model.

4 Model Simulations

4.1 Pretraining with Rewards Alone. For the experimental situations,
animals were typically familiar with the single rewards occurring in the
experiments. Therefore, the model was always pretrained with 20 presen-
tations of the single rewards alone. These single rewards were presented
during 1 second. Reward presentations were separated by intervals that
were long enough to prevent learning of associations between rewards.

4.2 Delayed-Response Task. We did not intend to reproduce anticipa-
tory neural activity for all events of the delayed-response task but simulated
a trial with a presentation of a stimulus followed after a delay by presen-
tation of a reward. The duration of the instruction stimulus (1 sec) and the
duration of the intratrial interval (5 sec) corresponded to similar durations
in the monkey experiments. Trigger stimulus and the animal’s movements
were not modeled. Simulated intertrial intervals were long enough to avoid

Figure 2: Facing page. (A) Temporal stimulus representation. Each stimulus u;(t)
is followed by a series of phasic signals x; (f), x2(t), x3(%), . . . that cover trial dura-
tion. The first component of this temporal representation peaks with amplitude
one (line 2), the second with amplitude § (line 3), the third with amplitude §2
(line 4), and so on. Representation computed with the standard value § = 1
is shown (without decay of the temporal representation). (B) TD model for one
stimulus and one reward (Sutton & Barto, 1990). For the stimulus u(t) the tempo-
ral stimulus representation x; (), x2(t), x3(t), . . . is computed. Each component
X (t) is multiplied with an adaptive weight V,,(t) (filled dots). The reward pre-
diction p(t) is the sum of the weighted representation components of all stimuli.
The difference operator D takes temporal differences from this prediction signal
(discounted with factor y). The reward prediction error e(t) reports deviations to
the desired prediction signals. This error is minimized by incrementally adapt-
ing the elements of the weights V,,(t) proportionally to the prediction error
signal e(t) and to the learning rate 8. (C) Two TD models for two events u (t)
and u, (t). Each event signal u(t) reports about a stimulus or a reward that occurs
in the experimental paradigm. All events are modeled as a composite of a stim-
ulus and a reward. Each temporal representation component x,,(t) is multiplied
with an adaptive weight V},, (filled dots). The event prediction p;(t) is computed
from the sum of the weighted components.
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associations between trials. If only one reward type was delivered in the
animal experiment, the model was trained with 20 trials in which stimulus A
(instruction) was followed by reward B. If three different instruction stimuli
preceded delivery of two different rewards, the model was trained with the
corresponding three pairs of events (stimulus A — reward X, stimulus B
— reward X, and stimulus C — reward Y). Each pair was presented 20
times. Tonic and phasic anticipatory activity was compared with prediction
signals and prediction error signals, respectively. The temporal discount
factor y was chosen to approximate the time course of the anticipatory
neural activity.

The chosen stimulus representation covered equally the whole interval
between stimuli and rewards without “forgetting” the stimulus presenta-
tion. However, not all neurons may have access to such a complete tem-
poral stimulus representation. We therefore examined the influence of an
incomplete stimulus representation that decayed rapidly after presentation
of stimuli. This was achieved by setting the value of the decay rate § to 0.8
per 100 msec (see the legend to Figure 2A). Using this parameter value, the
peaks of the stimulus representation components decreased 20% for each
additional 100 msec stimulus-peak interval. This model with incomplete
stimulus representation was trained according to the schedule with two
rewards.

5 Results

During the pretraining with repeated presentations of the reward (see sec-
tion 4), the time of reward onset was unpredictable, but the reward dura-
tion remained constant. After pretraining, the prediction signals correctly
decreased during reward presentation, reflecting the remaining reward du-
ration, and the prediction error signals increased phasically at the reward
onset (see Figure 3A).

The model was trained with a stimulus A followed by a reward B (see
Figure 3B). When the discount factor y was set to the standard value of 0.99
per 100 msec (left), the prediction signals increased at onset of stimulus A
and then progressively increased with a rate similar to the desired rate of 1%
per 100 msec (see left, line 3). When the model was trained with the discount
factor y = 0.85, the prediction signals increased with a rate similar to the
desired rate of 15% per 100 msec see (see right, line 3). For y = 0.99, the
interstimulus interval was too short to learn the desired prediction signals
for times before presentation of stimulus A. Therefore, the prediction error
was phasically increased at the onset of stimulus A (see bottom, left side). For
y = 0.85, the interstimulus interval was long enough to learn the desired
prediction signals, which led to a very small prediction error signal (see
bottom, right side).

Simulated reward prediction signals of the proposed model were com-
parable with anticipatory neural activity measured in the putamen (part of
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Figure 3: (A) Pretraining with a single reward. For the first presentation of a
novel reward u; (f) of 1 sec duration (left side, line 1), the prediction signal p; ()
(left, line 2) was zero, as the weight matrix Vim was initialized with zeros (see
equation A.2). The prediction error signal e;(t) (left, line 3) was equal to the
reward signal u;(t) (see equation A.3). After 20 presentations of this reward
(right side), learning was completed and the duration of the reward u;(t) was
correctly predicted (right side, line 2). The prediction signal decreased during
the reward presentation, as it correctly reflected the remaining future reward
duration. The prediction error signal (right side, line 3) increased phasically at
the reward onset, as the reward onset was unpredictable. The discount factor
was set to the value of y = 0.99 per time step (1 time step = 100 msec). (B) After
20 presentations of stimulus A (line 1) followed by reward B (line 2). The model
was trained with the standard value of 0.99 for the discount factor y (left side)
and the value of 0.85 (right side). Both prediction signals were learned correctly.
The increases in the prediction signals were equal to the desired rates of 1%
per 100 msec (left side) and 15% per 100 msec (right side). For y = 0.99 (left
side), the prediction error signals increased phasically at onset of stimulus A, as
onset of stimulus A was unpredictable. For y = 0.85 (right side), the prediction
error signal was almost zero for all time steps, because the simulated prediction
signals were close to the desired prediction signals. (This figure was computed
without representation decay (6 = 1).)
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striatum), and reward prediction error signals were comparable with activ-
ity of midbrain dopamine neurons (see Figure 4). When the stimulus and
the reward were presented in temporal succession for the first time (see
Figure 4A), the reward prediction signal was not affected by presentation
of the stimulus, as the stimulus was not associated with reward. At the time
of the unpredicted reward, the reward prediction signal was increased (see
Figure 4A, line 3). Similar to this simulated signal, activity of a subset of
putamen neurons was not affected by presentation of the stimulus and was
increased by the reward (see line 4). The simulated reward prediction error
was phasically increased at the reward onset as the reward was unpredicted
(seeline 5). This signal was comparable to the activity of midbrain dopamine
neurons (bottom).

Simulated signals were then compared with neural activities after learn-
ing (see Figure 4B). The simulated reward prediction signal was already
increased at stimulus onset and progressively increased until reward onset
(see line 3) as the stimulus predicted the reward. This signal correctly in-
creased between the stimulus and the reward about 1% for each 100 msec,
because the discount factor y was set to 0.99 per 100 msec (standard value).
The simulated reward prediction signal was comparable to reward anticipa-
tory activity of a subset of striatal neurons (see line 4). The signal represent-
ing the reward prediction error was phasically increased by the unpredicted
stimulus but not affected by the predicted reward (see line 5). This response
to the stimulus was smaller than the response to the unpredicted reward
before learning (compare Figure 4A, line 5) as the prediction signal (see Fig-
ure 4B, line 3) progressively increased according to the discount factor. The
reward prediction error was comparable to dopamine neuron activity (see
Figure 4B, bottom).

Simulated prediction signals were also comparable with reward-specific
anticipatory activity recorded in orbitofrontal cortex (see Figure 5). Mon-
keys had been trained in a delayed-response task with three instruction
stimuli, A, B, and C, followed by two different rewards, X and Y (see sec-
tion 2). The model had been trained with the corresponding pairs of events
(see section 4). In trials without occurrence of reward Y, prediction of re-
ward Y was not affected (see Figure 5A, top, left, and middle). In trials with
occurrence of reward Y, this prediction signal was activated when stimu-
lus C was presented and then progressively increased until reward Y (see
Figure 5A, top, right), because reward Y was completely predicted by stim-
ulus C. Prediction of reward Y was comparable to reward-specific activity
of a subset of orbitofrontal neurons anticipating reward Y but not reward X
(see Figure 5A, bottom).

The model was trained with the same pairs of events, but the value of 0.95
per 100 msec was used for the temporal discount factor y . Therefore, predic-
tion signals increased more rapidly according to a correct rate of about 5%
per 100 msec (see Figure 5B, top). Prediction of reward X was only slightly
increased at the onset of stimuli A and B and then increased rapidly un-
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Figure 4: Comparable time courses of predictive signals and activity histograms
for a stimulus (line 1) preceding a reward (line 2). The same timescale applies
to simulated trajectories and histograms of neural activity. Activity histograms
were selected from delayed-response tasks with the simulated stimulus corre-
sponding to the instruction stimulus. Simulated signals were selected from the
above simulations (see Figure 3A, right, and Figure 3B, left). (A) Before learn-
ing. A typical reward prediction signal was increased when the reward was
presented (line 3). This signal was comparable to the activity histogram of a set
of putamen neurons aligned to an unpredictable reward (line 4) (from Schultz,
Apicella, Ljungberg, Romo, & Scarnati, 1993). A typical signal reflecting reward
prediction errors was phasically increased at onset of the reward (line 5). This
signal was comparable to dopamine neuron activity (bottom). These neurons do
not respond to a small instruction light (from Ljungberg et al., 1992) but rather
to an unpredictable drop of liquid reward delivered to the mouth of the ani-
mal (from Mirenowicz & Schultz, 1994). (B) After learning (20 stimulus-reward
pairings). A typical reward prediction signal had already increased when the
stimulus was presented and then progressively increased until occurrence of the
reward (line 3). This reward prediction signal was comparable to anticipatory
activity of a putamen neuron (line 4; from Apicella et al., 1992). This neural ac-
tivity seems to anticipate the future reward, because it was also increased before
the reward regardless of the instruction stimulus that indicated reward delivery.
Of 1173 studied neurons, 6 striatal neurons showed similar sustained reward
anticipatory activity lasting over the task duration (compare Figure 1B). A typ-
ical signal reflecting reward prediction errors was already phasically increased
at the stimulus onset and on baseline level when the reward was presented
(line 5). This signal was comparable to the activity of dopamine neurons, which
respond after learning to a small instruction light but not to a predictable drop
of liquid reward (bottom) (from Ljungberg et al., 1992).
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til reward X (see top, left, and middle), because reward X was completely
predicted by the stimuli A and B. Prediction of reward X was not affected
in trials without reward X (see top, right side). Prediction of reward X was
comparable to the activity of a subset of orbitofrontal neurons with activity
anticipating reward X (see Figure 5B, bottom). Figures 5A and 5B demon-
strate that simulated prediction signals and anticipatory neural activities
discriminate between specific predicted rewards.

Wesstudied the influence of arapidly decaying stimulus representation on
the prediction signal. After 20 presentations of the stimulus-reward pairs,
prediction of reward X was activated by the stimuli A and B and by the
reward X (see Figure 5C, top). Since learning was not completed, prediction
of reward X was associated with the correct predictive stimuli A and B but
did notbridge the time between the stimuli and the reward. The responses to
the predictive stimuli A and B were learned with the representation traces,
because the traces still bridged the time gap between the stimuli and the
rewards. Prediction of reward X was comparable to the activity of a subset of
orbitofrontal neurons anticipating reward Xbutnotreward Y (see Figure 5C,
bottom).

6 Discussion

This study demonstrates for the first time that an adaptive model can re-
produce characteristics of anticipatory delay period activity. Each of the
TD models learned a tonic reward-specific prediction signal using a phasic
reward-specific prediction error signal. Since the reward prediction error
signal was computed as in previous TD models (Montague et al., 1996;
Schultz et al., 1997; Suri & Schultz, 1999), characteristics of the reward
prediction error signal were comparable to phasic activities of midbrain
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dopamine neurons (see Figure 4). In addition, simulated reward-specific
prediction signals were comparable to reward-specific anticipatory activity
of subsets of cortical and striatal neurons before and after learning the con-
tingency between a stimulus and a reward (see Figures 4 and 5). Variation
of two model parameters, the discount factor and the decay rate of temporal
stimulus representation reproduced variations in time courses of anticipa-
tory neural activity (see Figure 5). Although the shown model simulations
do not include learning between more than two events, the model can be

Figure 5: Facing page. Comparable time courses of prediction signals and or-
bitofrontal activities after learning pairings between different stimuli and re-
wards. Simulated stimuli are compared with the instruction stimuli in a delayed-
response task. (Histograms reconstructed from Tremblay & Schultz, 1999, 2000;
Schultz et al., 2000; see section 2. Durations of simulated stimuli, rewards, and
intratrial interval as in Figure 4.) (A) Prediction of reward Y. In trials without
reward Y, all signals reflecting prediction of reward Y were zero (top, left, and
middle). When stimulus C preceded reward Y, the signal-reflecting prediction
of reward Y was activated when stimulus C was presented and then progres-
sively increased until reward Y (top, right side). Prediction of reward Y was
comparable to the activity of an orbitofrontal neuron anticipating reward Y but
not reward X (bottom). (In the histogram at bottom, right, neural activity before
the task was larger than after the task, because the previous task already pre-
dicted reward Y.) (B) Prediction of reward X was learned with a discount factor
y = 0.95 per 100 msec. This signal slightly increased when stimuli A or B were
presented and then increased rapidly until reward X (top, left, and middle). This
signal was zero in trials without reward X (top, right). The prediction of reward
X was comparable to the activity of an orbitofrontal neuron anticipating reward
X but not reward Y (bottom). Nine percent of orbitofrontal neurons are active
during delay periods before specific rewards, as shown in A or B (Tremblay &
Schultz, 1999, 2000; Schultz et al. 2000). (C) Prediction of reward X with repre-
sentation decay (8 = 0.8 per 100 msec). In trials with presentations of reward X,
a typical signal reflecting the prediction of reward X increased when the stimuli
A and B or the reward X were presented (top, left and middle). Prediction of
reward X did not bridge the intratrial interval, as the temporal event represen-
tation decayed rapidly. In the trial without presentation of reward X, prediction
of reward X was zero (right). Prediction of reward X was comparable to the
activity of an orbitofrontal neuron. This neuron responded to the stimuli A and
B and to the reward X (bottom, left and middle). The activity did not bridge the
intratrial interval. Activity was at baseline levels in trials without reward X (bot-
tom, right). This neuron belongs to the subset with reward-specific responses to
the instruction (15% of tested neurons) and to the subset with reward-specific
responses following the reward (8% of tested neurons) (unpublished data from
Tremblay & Schultz, 1999, 2000, and Schultz et al. 2000). (Activities were aligned
to rewards. Horizontal broken lines below histograms indicate stimulus onsets.)
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applied to experiments with more events. Anticipatory neural activity is
usually influenced by only two events: a stimulus, which elicits the activity,
and a reward, which terminates the activity. Therefore, striatal anticipa-
tory neural activity in the delayed-response task could be reproduced with
separate models that separately learn the pairs reward-instruction (see Fig-
ure 1B, top), instruction-trigger (see Figure 1B, middle), instruction-reward
(see Figure 1B, bottom), and trigger-reward (see Figure 1B, bottom). This as-
sumption of separate networks is plausible, as networks of biological neu-
rons are usually partially connected. For the sequence reproduction task
(Kermadi & Joseph, 1995), an elaborated and biologically plausible stimu-
lus representation has been proposed that reproduces order- and stimulus-
dependent neural activities (Dominey et al., 1995). As the temporal charac-
teristics of anticipatory activities resemble those of the simulated prediction
signals (compare Figure 1C with Figure 3B, right), these anticipatory neural
activities could probably be reproduced by training a TD model with an
elaborated internal representation.

Associative weights involved in the computation of tonic prediction sig-
nals were adapted according to phasic signals reporting prediction errors.
Therefore, the model suggests that phasic anticipatory activities induce
long-term adaptations of neurons with tonic anticipatory activities. Con-
sistent with evidence for dopamine-dependent long-term adaptation of
corticostriatal transmission (Calabresi, Pisani, Mercuri, & Bernardi, 1992;
Calabresi et al., 1997; Wickens, Begg, & Arbuthnott, 1996), the model sug-
gests that activity of midbrain dopamine neurons leads to long-term adap-
tations of cortical or striatal neurons with tonic reward-anticipating activ-
ity. Furthermore, the model postulates the existence of a category of neu-
rons that are phasically active, report errors in predictions of specific re-
wards, and induce long-term adaptations of neurons with tonic reward-
specific anticipatory activity. Although phasic context-dependent neural
activities in striatum and prefrontal cortex have been reported (see Schultz
& Romo, 1992), it has not been investigated if these activities anticipate
rewards.

When the model was trained using an incomplete temporal stimulus
representation, the prediction signal did not progressively increase before
the predicted reward but instead decreased to zero in the intratrial interval.
This time course was similar to some time courses of anticipatory activity
(see Figure 5C). This finding suggests that neurons with anticipatory neural
activity that is on baseline levels during the intratrial interval do not have
access to the complete temporal stimulus representation. If a series of distin-
guishable stimuli were presented during the trial, these stimuli would serve
as a complete temporal stimulus representation, and the model would learn
the progressively increasing prediction signals. This suggests that anticipa-
tory neural activity would reveal their optimal time course when measured
in an experiment with a series of stimuli that precede the anticipated reward.
Such an experiment would test our basic model assumptions.
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The reward prediction error signal of the TD model reproduces dopamine
neuron activity in many situations (see section 1). Unfortunately, the TD
model fails to reproduce dopamine neuron activity when a reward is deliv-
ered earlier than expected (Hollerman & Schultz, 1998). This inconsistency
has been corrected with a temporal event representation that is influenced
by subsequent events (Suri & Schultz, 1999). For situations with delayed
or omitted rewards, prediction signals of the proposed TD model decrease
to zero when the reward is expected. These prediction signals resemble
some, but not all, tonic anticipatory activity for delayed reward presenta-
tion (Hikosaka et al., 1989). These subtle inconsistencies between simulated
signals and measured anticipatory activity suggest that some components
of the temporal event representation are influenced by subsequent events
(Suri & Schultz, 1999).

The proposed model can be partially related to networks of biological
neurons. The model learns to predict stimuli and rewards. It has been sug-
gested that reward predictions are learned in limbic parts of pathways from
cortex via striatum to midbrain dopamine neurons (Houk et al., 1995; Mon-
tague et al., 1996; Schultz et al., 1997; Brown et al., 1999; Suri & Schultz,
1999). In contrast, stimulus predictions may be learned predominantly in
the cortex. For visual stimuli, it has been proposed that pyramidal neurons in
higher cortical areas learn to predict neural activity of pyramidal neurons in
lower cortical areas (Rao & Ballard, 1997, 1999). These studies suggest that
the feedforward connections to higher cortical areas carry the prediction
errors, whereas the feedback connections carry the prediction signals.

Anticipatory neural activity may influence the behavior of the animal by
several mechanisms. Neural activity preceding specific reinforcers may lead
to anticipatory responses in Pavlovian paradigms. Reward anticipatory ac-
tivity was suggested to be used for learning (Houk et al., 1995; Montague et
al., 1996; Schultz et al., 1997; Suri & Schultz, 1999) or planning (Suri, Bargas,
& Arbib, submitted), whereas stimulus anticipation activity may be used as
a predictive representation to learn prediction-reward associations (Dayan,
1993) or to shorten the reaction time to anticipated situations (Goldberg &
Bruce, 1990).

Appendix A: TD Model

Since the model does not distinguish between stimuli and rewards, both
are here referred to as events. We give the model equations for a paradigm
with L different events and therefore L independent TD models (L = 2
for Figure 2C). The event signal u;(t) reports the presence (u;(t) = 1) and
absence (u;(t) = 0) of the event with number [/ (Il = 1,...,L). The desired
prediction signal for this event peireq.1(t) is defined as the discounted sum
of this future event u;(f)

Paesired. 1 () = wi(t) + yu(t+1) + y2up(t+2) + - - (A1)
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(standard value of discount factor y = 0.99 per time step, 1 time step
= 100 msec). The proposed model consists of the equations below (equa-
tions A.2-A.5), which allow estimating the desired prediction signals pesired,1(f)-

Events u;(t) are represented with the temporal representation x,,(t) as
shown in Figure 2A. The first event u;(t) is represented in the representa-
tion components x1(f), x2(t), ..., xn(t), the second event in the representa-
tion components xn11(t), xn4+2(), ..., Xon(t), and so on. In order to cover
trial durations of 7 seconds with the event representation, each event is
represented with 70 phasic representation components (N = 70; N = 3 in
Figure 2 is only for illustration). We estimate a weight matrix Vj,, (for L
events [ = 1,...,L,and m = 1,...,N x L) that computes the prediction
signal p;(f 4+ 1) from the temporal representation with

NxL
pt+1) =Y VigOxu(t +1). (A.2)

m=1

As it follows from equation A.1 that paesired.1(t) = 1(t) + YPdesirea1(t + 1), the
error e;(t) between the estimated prediction p;(t) and the desired prediction
Pdesired.1 (1) is computed from discounted temporal differences between suc-
cessive predictions (difference operator D in Figures 2B and 2C) and from
the event u;(f) with

el(t) = w(t) + ypit + 1) — pi(D). (A3)

The weight matrix V}, is initiated with zeros and then adapted with the
two-factor learning rule

Vim(t + 1) = Vi (t) + Ber(Hx L, (), (A4)

where the learning rate  was set to the value of 50. This value is larger than
that of usual learning rates since the desired prediction signals are much
larger than one. The trace x7, () is a slowly decaying version of the temporal
representation component x,,(t),

xh (1) = axl (t — 1) + (1 — Dxu(b), with x[,(0) = 0. (A5)

The traces decrease 0.3% each time step (1 time step = 100 msec, A = 0.997),
as this produces fast learning. The intertrial interval was long enough for
all eligibility traces to decrease to zero, which was simulated by setting the
traces to zero.

In contrast to the proposed algorithm, the TD model computes only one
prediction signal (L = 1) but still uses all stimuli in the trial to compute this
signal (the sum in equation A.2isoverm =1, 2, ..., N x number of stimuli).
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