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Abstract. This paper compares two Self-Organizing Map (SOM) based models for temporal
sequence processing (TSP) both analytically and experimentally. These models, Temporal
Kohonen Map (TKM) and Recurrent Self-Organizing Map (RSOM), incorporate leaky
integrator memory to preserve the temporal context of the input signals. The learning and
the convergence properties of the TKM and RSOM are studied and we show analytically that
the RSOM is a significant improvement over the TKM, because the RSOM allows simple
derivation of a consistent learning rule. The results of the analysis are demonstrated with
experiments.
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1. Introduction

The Self-Organizing Map (SOM) [10] is probably the most popular unsupervised
neural network model. The basic SOM is indifferent to the ordering of the input
patterns. Real data, however, is often sequential in nature thus temporal context
of a pattern may significantly influence its correct interpretation.

Since the SOM is quite popular in data mining applications, where it is primarily
used for visualization and clustering, the idea of a SOM model that effectively
accounts for temporal or other context of patterns is appealing and has been around
for quite a while.

The chain of the best matching units (bmus) for pattern sequences produce time
varying trajectories of activity on the SOM. These trajectories were employed in
[12] for visualization of speech signals and their variations. The activity trajectories
have also found applications in process control and monitoring [15]. The hypermap
idea [8] is to use several levels of information for the bmu selection. For example,
in the case of sequential data, the bmu for the current pattern is searched from
a subset of units restricted with the previous patterns. The self-organizing operator
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map analyzes the temporal sequence directly by associating each unit with an
operator other than the usual Euclidean distance. These operators may for example
be filters which are tuned to periodic phenomena in the data. Derivation of learning
rules for generic operators is quite complicated. In [9] a genetic approach was pro-
posed for parameter search but in special cases, such as Linear Prediction
Coding [7], gradient descent can be used since the corresponding error function
can be analytically defined. Operator maps have been applied to speech analysis [7].

The hierarchical model in [7] consists of two maps connected with a leaky inte-
grator memory. The first of the maps transforms the input patterns. The transforms
are stored in the leaky integrator memory which preserves a trace of the past
transforms. The contents of the memory is the input of the second map. The idea
is that the second map learns to distinguish different sequences by adapting to
the different traces of transforms in the memory. Another hierarchical SOM based
model [2] also has two maps but this model has a leaky integrator memory associated
with both of the maps. The major difference between these hierarchical models is the
computation of the contents of the leaky memory connecting the first and the second
map. The model in [7] stores normalized inverted distances between the units and the
input patterns into the memory. The model proposed in [2] uses distances in the map
space of the units to a neighborhood of the best matching unit (bmu) of the first map.

One simple SOM based model that takes the temporal context of a pattern into
account is the Temporal Kohonen Map (TKM) [3]. In the TKM the outputs of
the units are replaced with leaky integrators, which effectively low pass filter the
unit activities over the sequence of inputs. The TKM model was modified into
the Recurrent Self-Organizing Map (RSOM) [16, 17] for better resolution, but it
later turned out that the real improvement came from a consistent update rule
for the network parameters. In this paper we analyze the properties of the TKM
and the RSOM models. This analysis may also serve as an example of the risks
in modifying a model without considering relevant aspects of the related algorithm.
In the TKM the problem of the modification lays in the difficulty of updating
the learning rule to accommodate for the modified activity rule. We show that
the RSOM is a significant improvement over the TKM since it allows simple
derivation of a consistent update rule.

2. The Self-Organizing Map

The Self-Organizing Map (SOM) [10] is a set of competitive units connected into a
lattice with a topologic neighborhood function. The SOM can be regarded as a
Linde-Buzo-Gray [10] vector quantizer units of which are arranged into a grid
and locally attracted toward each other with strength determined by the
neighborhood function. Later we will refer to the grid or the lattice of connected
units as the map space. When properly trained the SOM forms a mapping of
the input manifold, where the units close in the map space are close in the input
space. However, the units close in the input space are not necessarily close in
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the map space since the dimensionality of the input manifold is often higher than the
dimensionality map which consequently folds. The map space is usually one or two
dimensional to facilitate visualization, for example.

The SOM, like vector quantizers in general, partitions the input space into convex
regions of activity that are characterized with the following property: Every point in
the space is closer to the centroid of its region than to the centroid of any other
region. The centroids of the regions are defined by the weight vectors of the map.
Partitioning of this kind is called Voronoi tessellation of the input space. The
partitioning of an optimally trained map minimizes some error function but since
the tessellation is discontinuous this error function cannot be an energy function.
This is proven in, for example, [6].

The target of the SOM approach is to minimize the sum of weighted errors
between the input and the weight or the reference vectors. When Euclidean distance
is the error metric we can formulate the error function E(V, X) with

1 J
EWV.X) =53 > hijlx—w)l’ (1)

ieV j=1

where V is the map, w; are the weights of unit 7 and X = {xy, ..., Xy} is the set of J
input vectors. The neighborhood function /;;, that weights terms of the sum,
determines how much the distance of the input vector x;j to the weight vector w;
contributes to the total error. The neighborhood function #;; is typically a
monotonically decreasing positive function of the map distance from unit 7 to
the best matching unit (bmu) b of the pattern x;. A common choice for the
neighborhood function is a Gaussian

hip(n) = exp{—I||t; — rp||*/a(m)}

where r; are the map coordinates of the unit 7 and r, are the map coordinates of the
bmu. The width of the Gaussian bell is controlled by a(n) which is normally reduced
as the learning progresses. The neighborhood function serves two purposes. While
not apparent from Equation (1) the neighborhood function orders the map by
pulling units close in the map space toward each other in the input space. On
the other hand the neighborhood function acts as a regularization factor that
smoothes the functional mapping on the map.

Deriving an exact learning algorithm to minimize Equation (1) is difficult because
the neighborhood function and the tessellation are only piecewise continuous in the
input space making the error function only piecewise differentiable with respect
to the weights. However, when we ignore the discontinuities at the boundaries
of the Voronoi cells, we can easily derive approximate learning rules. In the classical
stochastic rule the gradient is approximated for each sample and the weights are
updated toward the optimum for the sample. The stochastic approach is realized
with a two step algorithm. In the first step the input vector x(n) at step » is assigned
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a bmu b with
x(n) — wy(n)|| = Iiréigl x(n) — wi(m)]l , )

where wy(n) are the weights of the bmu.
In the second step the weights are updated toward the optimum for x(r) with the
stochastic gradient descent rule

wi(n + 1) = wi(n) + 7 (mhi p(n)(x(n) — wi(n)) , (©)

where £; 5(n) is the value of the neighborhood function and 0 < y(n) < 1 is a scalar
adaptation gain. During the final quantization stage the ¢ of the neighborhood
function is set to zero, which means that the function becomes Kronecker delta.
For correct rule, the adaptation gain or the learning rate must satisfy the Robbins—
Monroe conditions for stochastic parameter estimation [1, 4, 5, 10].

The alternative batch approach is available for static input sets. In the batch
approach the approximate gradient is evaluated for the entire input set and the
weights are updated to the global optimum given the current partitioning of the
data. In contrast with the stochastic rule the map may reach an equilibrium state
where all units are exactly at the centroids of the samples in their regions of
activity [10]. The batch rule, like the stochastic rule, can be implemented with a
two step algorithm. In the first step each sample is assigned a bmu with Equation
(2). In the second step the weights can be updated with

J
_ Zj:l hl}b/’xl'
=7
Zn:l hiqu

where b; is the bmu for the pattern x;. However, since the neighborhood function is
identical for samples with the same bmu we can rewrite Equation (4) in a
computationally more efficient form
Wi — > jev hi Qe ’

> jev i€y
where ¢; is the centroid of the samples in the Voronoi cell of j and € is the cardinality
of the set.

After a sufficient number of input vector presentations a mapping will form, i.e.
the weight vectors will specify the centroids of clusters covering the input space.
The point density of these centroids is related to the actual density in [4, 5], where
it is shown that unlike for a random quantizer there is no magnification factor related
to a quantizer generated with the SOM algorithm.

4)

Wi

©)

3. Temporal Kohonen Map and Recurrent Self-Organizing Map

In the Temporal Kohonen Map (TKM) model leaky integrators, that gradually lose
their activity, are added into the outputs of the otherwise normal competitive units.
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These integrators and consequently the decay of activation is modeled with the
difference equation

Uin, d) = dUi(n — 1, d) = 3 |Ix(n) — wi(m)|* , (6)

where 0 < d < 1 is a time constant, U;(n, d) is the activation of the unit 7 at step n
while w;(n) is the weight vector of the unit i and x(») is the input pattern. The formula
in Equation (6) preserves a trace of the past activations as weighted sum. In fact it
incorporates a linear low pass filter in the outputs of the otherwise normal competi-
tive units. The unit with the maximum activity is the bmu in analogy with the normal
SOM.

The update rule for the TKM is not specifically addressed in [3]. In the
experiments, however, weights were updated toward the last sample of the input
sequence using the normal stochastic SOM update rule in Equation (3), which,
corresponds with stochastic gradient descent when the time constant d in the activity
computation is zero.

In the Recurrent Self-Organizing Map (RSOM) the leaked quantity is the
difference vector instead of its squared norm. These integrators are modeled with

yi(n, o) = (I — a)yi(n — 1, @) + o(x(n) — wi(n)) , (7

where yi(n, o) is the leaked difference vector for unit i at step n. The leaking
coefficient o is analogous to the value of 1 —d in the TKM but in the RSOM
formulation the sum of the factors is one to ensure stability when o is positive
but less than one [14]. The RSOM formulation like the TKM formulation associates
a linear low pass filter with each unit to preserve a trace of the past but in the RSOM
the operator is moved from the unit outputs into the inputs.

After moving the leaky integrators into the difference vector computation we can
treat the map much like the normal SOM when unit with

lyn(72, 0)[| = min |lyi(n, 2|
ieV

is the bmu. To derive an update rule for the RSOM we first formulate an error
function E(n) for the current sample x(n)

E(m) =Y hipm)llyi(n, o),

ieV

where V' is the map. The gradient direction of E(n) with respect to wi(n) is yi(n, &) and
thus the stochastic weight update rule for w; to minimize error E(n) is

wi(n + 1) = wi(n) + (Wi p(n)yi(n, o) .

In this derivation we ignored the discontinuities of the error function E(n) at the
boundaries of the Voronoi cells. This is the normal practise when deriving update
rules for SOM models.
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Table I. The properties of the TKM and the RSOM. .

Model Bmu selection criterion Weight update target
TKM max U(-, d) max U(-, 0)
RSOM min [ly(-, )2 min [|y(-, o)||?

The second column is bmu selection criterion and the third column is the update rule target.

The key properties of the learning rules of the TKM and the RSOM models are
summarized in Table I.

4. Comparison of TKM and RSOM

In this section we will discuss the learning properties of the TKM and the RSOM
models. First in Section 4.1 we derive the optimal or the activity maximizing weights
for a set of sequences and a single unit for both TKM and RSOM. The analysis
directly extends to multiple units in the zero neighborhood case

| i
h"’-/(”):{o il;é]]'.

when the boundaries of the Voronoi cells are ignored. In 4.2 we look into the update
rule of the TKM to see what the map actually learns and compare the results with the
RSOM results.

4.1. OPTIMAL WEIGHTS

Brief mathematical analysis is sufficient to show how maximizing activity in the
TKM should lead to similar weights as minimizing the norm of the leaked difference
vector in the RSOM when the maps share the same topology and data. Let us first
consider a single TKM unit and a set S = {X7, X3, ..., Xn} of sequences. The samples
of the sequence X; € S are x{(1), xj(2), ..., Xj(n;), where n; is the length of the sequence
X;. In the TKM the goal is to distinguish different sequences by maximizing the
activity of the corresponding bmu. For the set S of sequences and weights wr
the activity U(S, wr) over S is the sum

I N

U(S. wr) = — D0 d P xik) — wrll? (8)
XjeS k=1

Since the activity U(S,wr) is a parabola, it is everywhere continuous and

differentiable with respect to wr. Consequently its maximum lies either at its extreme

or at the single zero of dU(S, wr)/dwr. From

dU(S, wr)

0
8wT
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we obtain

w Y xes i dOx (k)
T= i —
Zx,es szzl d=h

©)

The weights wr are optimal as they maximize the activity U(S, wr) of the unit over
the set S. When all sequences have the same length n, the inner sum of the
denominator of Equation (9) is constant allowing us to simplify the the equation to

where Qg is the cardinality of S and ij are the optimal weights for the sequence
X; € S defined with

i i 4" 00
HR YA

These weights are the mean of the per sequence optimal weights, and they also are a
good approximation when all sequences are sufficiently long for the chosen d.

For the RSOM unit the Ileaked difference vector y(X,wgr), where
X =x(1),...,x(n) is the input sequence and wr are the RSOM weights, is

YOO wR) = a0y (1= 2" P (x(k) — we).
k=1

Since the goal is to minimize the norm of the leaked difference vector, for the set S we
can write

ES,wr) = Y y(X;, wa)II’

XjeS

for the error function E(S, wg), which is minimized at the optimum weights. E(S, wgr)
defines a parabola just like U(S, wt) for the TKM and thus the optimal weights are
either at an extreme or at the single zero of the derivative of the error function with
respect to the weights wg. From

OE(S, wr)

0
3WR

we obtain

_ Xes (L (=" 3 L (1 - 9" Ox(0)
Y es(Tii (1 =) )’

The optimal RSOM weights in Equation (10) are quite close to the weights specified

WR

. (10)
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in Equation (9). The small difference comes from the location of the leaky
integrators.

Much like with the TKM we can simplify Equation (10) if we assume that all
sequences have the same length n. We get

we = 3w
R Q R
SX/ES

where w’;z are the optimal weights for the sequence X; € S defined with

i — 2 (= 0" xi(k)
D VRIS

These weights are identical with the corresponding TKM weights when d = 1 — a.
From the analysis we observe that the optimal weights for both models are linear
combinations of the samples in the sequences.

4.2. LEARNING ALGORITHMS

Since the update rule of the RSOM approximates gradient descent to minimize the
sum of the squared norms of the leaked difference vectors regularized by the
neighborhood, the map explicitly seeks to learn the weights defined in the previous
section. With the TKM this is not the situation. We show that generally the steady
state weights of the TKM do not maximize the activity and use simulations to show
how this affects the behavior of the TKM. To simplify the analysis we only consider
the zero neighborhood case.

By definition, in a steady state further training causes no changes in weights. In
practice this means that the derivative of the objective function is zero with respect
to the weights given a static set of input patterns. Though in the stochastic training
scheme reaching a steady state is not possible in finite time, criteria for a steady
state can be defined and their impact considered when we study the equivalent batch
approach. For the batch approach we split the TKM algorithm in two. In the first
stage the data is Voronoi partitioned among the units with the network activity
function. In the second stage the new weights given the partitioning are computed.
While proving convergence for any SOM model is very difficult [4, 6], if the
TKM converges the weights have to satisfy the criteria we define here.

We have a set S = {X7, ..., Xy} of discrete sequences and a map V. Last sample of
each sequence X; € S is xj(n;) where #; is the length of the sequence X; € S. In a
steady state the TKM weights have to be in the centroids of the last samples of
the sequences in the Voronoi cells of the units. This observation is a direct conse-
quence of the weight update toward the last samples of the sequences corresponding
with maximizing the activity when the time delay coefficient d was set to zero. When
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d =0 TKM activity for unit i in Equation (8) reduces to

-1
Ui(Si, wi) = 5 Z (Wi — Xj(nj))2
X;eS;

and the corresponding steady state weights at dU(S;, w;)/ow; = 0 are

1
wizg—ij(nj),Vie v, (11)
Si X/ES;

where S; C S is the set of sequences in the Voronoi cell of i and Qg, is the cardinality
of §;. These weights are necessary for a steady state. The optimal TKM weights with
respect to the activity rule were defined in the previous section. The weights

w ijes, it ARk
o > xes, Sl dmh
maximize activity with our simplifying assumptions.

The problem with the TKM is the discrepancy between the optimal weights and
the necessary steady state weights. Figure 1, which has a portion of a TKM during
training, shows this graphically. The arrow ‘Gradient direction to maximize activity’
shows the steepest descent direction to maximize activity while the arrow “TKM
update direction’ shows the actual update direction toward the last sample of
the sequence.

We ran several simulations to show the impact of the discrepancy between the bmu
selection and the weight update in the TKM. The first simulation involves a 1D map
in a discrete 1D input manifold with seven input patterns. We initialized a 25 unit
map with optimal weights (see axis 1 in Figure 3) to maximize the total activity

VieV (12)

bmuty TKM update

Figure 1. A piece of aTKM during training. The units, and their Voronoi cells, are marked with asterisks ()
and the input sequence with little circles (o). The plus (+) is drawn at the activity maximizing weights. The
arrows show the optimal and the actual TKM update directions.
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Figure 2. Approximation of the mean bias between the activity maximizing update directions and the TKM
update directions for a regular 7 x 7 grid of input patterns in a 2D input manifold. We considered all
sequences of length seven and computed the approximation for d = 0.15 for the time delay.
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Figure 3. A map initialized with near optimal weights and trained with the TKM approach. Notice how most
of the units are drawn into the edges.

when the 1D inputs were 1...7 and the leaking coefficient d was 0.1429. The
selection of d leads to a nearly uniform optimal distribution of weights in the input
manifold. The nearly optimally initialized map was further trained by randomly
picking one of the inputs, thus creating long random sequences, and updating
the weights using the stochastic training scheme. The samples of the random
sequences were corrupted with additive Gaussian noise ~ N(0, 0.125).

Figure 3 shows the progress of a sample run for the TKM. The TKM quickly
‘forgets’ the initial weights because they do not satisfy the steady state criterion
we derived earlier. Notice how the units are drawn toward the extremes of the input
space leaving only a couple of units to cover bulk of the space. Similar 1D experiment
with the RSOM in Figure 4 yields a practically unchanged result.
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Figure 4. A map initialized with near optimal weights and trained with the RSOM approach.

We can intuitively explain the reason for the units being drawn toward the edges in
the TKM with Figures 1 and 2. For sequences that end near the edges of the input
manifold the activity maximizing TKM weights and consequently the bmus are
systematically closer to the center of the manifold than the last samples of the
sequences which the units are updated toward. We can see this bias in Figure 1
in the difference between the activity maximizing update direction and the actual
update direction. The bias causes units to be attracted toward the edge and especially
corner samples. Once a unit is close enough it will no longer be the bmu for any non
trivial sequence of moving value.

Figure 2 shows an approximation of mean bias between the activity maximizing
update directions and the TKM update directions for a regular 7 x 7 grid of input
patterns in a 2D input manifold. We considered all sequences of length seven
and computed the approximation using d = 0.15 for the time delay. The bias is zero
only at the center of the manifold and becomes larger the closer the input is to
the edge. The lengths and the directions of the arrows show the relative magnitude
and direction of the bias for the sequences ending at that particular input. Formally

uj ~ E:Xj—ka

XA»ES/

where uj is the arrow drawn at input x;, S; is the set of sequences the last sample of
which is xj, X is a sequence in §; and wx, are the activity maximizing TKM weights
for X;. The arrows form what resembles a gradient field of smooth bump. The
behavior of the TKM in the 2D simulations supports the intuitive result in the figure.

In the 2D simulations we trained hundred TKM and RSOM maps to estimate the
weight distributions in the input manifold with Gaussian kernels. The maps were
trained with Luttrell’s incremental approach [13]. The maps were trained with
random sequences by picking one of the possible input patterns and corrupting
it with additive Gaussian noise ~ N(0,0.125). We used two 2D input manifolds
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TKM quantized TKM neighborhood

Figure 5. Kernel density estimates for the weight distributions of 4 x 4 TKM and RSOM maps in 2D man-
ifolds with four input patterns one in each corner. The figure depicts how the weight vectors of the hundred
independent runs were distributed into the input manifold. As the manifold was the same the optimal dis-
tribution is a four by four grid, where each of the 16 locations encodes one of the 16 possible combinations
of two out of the four input patterns. Lighter shade signifies higher density in other words higher probability
of a weight vector to appear at that spot.

where the sparse manifold had patterns only in its four corners. This simulation
essentially repeats the experiment in [3]. The other manifold was denser and had
49 input patterns arranged in a regular 7 x 7 grid.

For the sparse manifold we trained maps with sixteen units arranged in four by
four grid using d = 0.3 for the time delay in the TKM and o = 0.7 for the RSOM
leaking parameter. The resulting estimates of weight distributions in the input
manifold are in Figure 5 where lighter shade means that the likelihood of a weight
appearing at that point is higher. The distributions are meaningful because the
optimal weights as derived in the previous section are linear combinations of the
patterns in the input sequences. As a consequence the way that the maps partition
the input manifold directly reflect the way they partition the sequence space as well.
When quantized with the zero neighborhood the, TKM concentrates all its units
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TKM quantized TKM neighborhood

RSOM quantized RSOM neighborhood

2 4 6 8 10 2 4 6 8 10

Figure 6. Kernel density estimates for the weight distributions of 10 x 10 TKM and RSOM maps in 2D
manifolds with 49 input patterns in regular 7 x 7 grid. Like with the sparse manifold the linear combinations
of the 49 possible input patterns somewhat uniformly span the manifold and hence the optimal distribution
of the weights is a regular 10 x 10 grid of units. The RSOM roughly satisfies this condition with or without
the neighborhood at the end but the TKM fails in both cases because of the learning rule discrepancy.
In the case of the TKM the weights of all hundred maps are scattered mainly in the corners while some
are left along the edges when the neighborhood was left on. Lighter shade signifies higher density. This
experiment demonstrates how TKM systematically loses much of its expressive power by concentrating
all of its units near the edges of the manifold.

at the four input patterns as expected from the update rule. When the neighborhood
is not turned off the map forms a four by four grid of units where each unit is
sensitive to one of the 16 possible combinations of two input patterns. With the
RSOM the result is not very dependent on the treatment of the neighborhood.
The map creates a four by four grid of units which in the case when the neighborhood
was retained was slightly denser.

The situation changed when we used the more densely sampled input manifold and
100 unit maps units arranged in 10 x 10 grid. For this simulation we set the time
delay factor at d = 0.15 and « = 0.85 accordingly. The resulting estimates of the
weight distributions are in Figure 6. Again without the neighborhood the TKM
concentrated all its units near the corner inputs reflecting the intuitive result in
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Figure 2. With the neighborhood, more units were left to cover the core of the
manifold as the neighborhood stiffens the map up but the improvement is not
as significant as it was with the sparse manifold. Increasing the radius of the
neighborhood made the phenomenon more pronounced. The properties of the model
are such that the conflicting activity and update rules force units toward the corners
of the manifold but stiffening the map up with strong neighborhood partially
counters this effect.

Now recall the optimal weights we derived for TKM and RSOM in Equations (9)
and (10) respectively. TKM concentrated most of its units in the edges and the
corners of the manifold leaving only a few units to cover the bulk when all input
patterns were not in the corners of the manifold. In the sparse manifold the
conflicting activity and update rules were countered with the neighborhood but
the same neighborhood radius did not help with the dense manifold. Increasing
the neighborhood radius would help in the simple manifold but this approach could
not be used in more complicated manifolds since the large neighborhood radius
would not allow the map to follow the manifold. In our opinion using the
neighborhood to correct the inherent problem in the model design is not the correct
approach. In these simulations the TKM model wasted a considerable part of it
expressive power. The RSOM on the contrary systematically learned weights that
nearly optimally spanned the input manifold. The problem with the TKM could
be resolved if the TKM was trained with a rule that did not require gradient
information. The chances are, however, that such a rule would be computationally
very demanding because it would require repeated evaluations of the target function.

5. Conclusions

In this paper the RSOM is compared against the TKM both analytically and with
experiments. The analysis shows that the RSOM is a significant improvement over
the TKM, because only the RSOM allows simple derivation of an update rule that
is consistent with the activity function of the model. In a sense the RSOM provides
a simple answer to the question regarding the optimal weights aroused in [3] but
possibly at the cost of biological plausibility, which motivated the original TKM.
The RSOM approach has been applied in an experiment with EEG data [17]
containing epileptiform activity and in time series prediction using local linear
models [11].
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