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bDepartment of Experimental Medical Science, Lund University, BMC F10, 22184 Lund, Sweden

Received 9 January 2004; received in revised form 5 December 2004; accepted 20 December 2004

Communicated by T. Heskes

Available online 5 February 2005
Abstract

This paper explores the possibility of providing robots with an ‘inner world’ based on

internal simulation of perception rather than an explicit representational world model. First a

series of initial experiments is discussed, in which recurrent neural networks were evolved to

control collision-free corridor following behavior in a simulated Khepera robot and predict

the next time step’s sensory input as accurately as possible. Attempts to let the robot act

blindly, i.e. repeatedly using its own prediction instead of the real sensory input, were not

particularly successful. This motivated the second series of experiments, on which this paper

focuses. A feed-forward network was used which, as above, controlled behavior and predicted

sensory input. However, weight evolution was now guided by the sole fitness criterion of

successful, ‘blindfolded’ corridor following behavior, including timely turns, as above using as

input only own sensory predictions rather than actual sensory input. The trained robot is in

some cases actually able to move blindly in a simple environment for hundreds of time steps,

successfully handling several multi-step turns. Somewhat surprisingly, however, it does so

based on self-generated input that is not particularly similar to the actual sensory values.
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1. Introduction

‘‘The world is its own best model’’ was one of the central tenets of Brooks’
formulation of the behavior-based approach to robotics and artificial intelligence
(AI) [3]. Accordingly, his notion of situatedness was that robots should or need ‘‘not
deal with abstract descriptions, but with the here and now of the world directly
influencing the behavior of the system’’. However, although Brooks was certainly
right in his critique of traditional AI in general, and the traditional view of
representation in particular, many researchers have argued that the notion of
representation cannot be abandoned completely, or that it would have to be replaced
or complemented by alternative theories of how memory and internal states affect
behavior (e.g. [6–8,12,29,38]). Obviously, relying on the ‘‘here and now of the world’’
for behavioral guidance at each and every point in time is problematic in cases where
autonomous agents need to remember the past, plan the future, or deal with the
present in the absence of sufficient, reliable sensory input. In such cases, it has been
argued, some kind of ‘inner world’ would have to stand in for the real world.
This paper is organized as follows: the following background section discusses

what is meant by an ‘inner world’, some of the evidence that humans and other
animals actually have such an inner world, and possible accounts for how it might be
realized. Sections 3 and 4 then report on our experiments exploring the possibility of
an inner world based on simulation of perception, using a simulated Khepera robot
guided by artificial neural networks (ANNs). Section 5, finally, summarizes and
discusses the work presented in this paper.
2. Background

2.1. Motivation: the inner world

Introspection seems to tell us that we are able to have sensory (or quasi-sensory)
experiences in the absence of external stimuli. Examples of this phenomenon could be
the visual experience of ‘seeing an apple’ upon reading the word ‘apple’ in a text or the
auditory experience of ‘hearing the Moonlight Sonata’ upon a request to imagine a
piece of music by Beethoven. This kind of ability has further been implicated by
experimental psychological results of, e.g., Lee and Thompson [18]. In a series of
experiments they demonstrated the accuracy with which humans can guide their
behavior based solely on internally generated sensory experiences. A group of subjects
were first instructed to look at their surroundings (a room) and direct specific attention
to certain objects, such as marks on the floor and different obstacles. They were then
blindfolded and asked to perform different tasks such as walking to the marked
locations, avoiding the obstacles and throwing objects at different targets in the room.
The subjects performed these tasks almost as accurately with eyes closed as when they
were free to look. One explanation of these results could be that the subjects actually
did ‘see’, ‘walk’ and ‘throw’, but did so internally—in their inner world where sensory
experiences and consequences of different behaviors may be anticipated.
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Evidence from experiments with rats seems to imply a similar interpretation.
When rats are allowed to move freely in a maze environment on several trials
without receiving food reward, presumably no navigational behaviors are reinforced
and thus not learnt [35]. Later, when food is placed at one location for a number of
trials, these rats will soon find that location and avoid dead ends just as reliably as a
group of continually rewarded rats (a phenomenon known as latent learning). The
evidence implies that maze topography is actually learnt while moving around
although no rewards are given. It has been argued that such observations should be
understood as the result of an internal cognitive map being built up in the rat nervous
system from sensory experiences. The map is then supposedly consulted when
navigating to the food location.
The traditional cognitive-scientific explanation for how such an inner world might

be organized is based on symbolic world models, internal maps and planning
mechanisms. This view has been questioned since the mid-1980s by many researchers
(e.g. [1,2,5,6,30,31,36,38]) who de-emphasize the role of internal world models in the
traditional sense, and instead emphasize the situated and embodied nature of
intelligence as well as the reactive nature of many of the mechanisms underlying the
interaction between agents and their environments. Accordingly, robots or other
autonomous agents, controlled by subsumption architectures, ANNs, classifier
systems, or similar mechanisms, have in many cases exhibited good performance in
tasks that could be solved in a more or less reactive fashion. Purely reactive
mechanisms, however, seem ill suited to explain the above capacity to simulate/
anticipate sensory experience and to behave appropriately in the absence of external
stimuli. Hence, it is unclear how such more or less reactive systems could handle
tasks that might require planning and action in the absence of sufficient external
sensor input.
An alternative to representational world models in the traditional sense is Hesslow’s

simulation hypothesis which accounts for the inner world in terms of internal simulation

of perception and behavior [13,14]. Similarly, Clark and Grush in [7] argue that ‘‘the
capacity to think about the distal and absent is grounded in the use of systemic stand-
ins and emulation-based strategies’’. They discuss the notion of internal emulation

based on forward models in their account of a ‘‘minimal robust representationalism’’.
Whether or not an internal simulation or emulation, or the results thereof, should be
referred to as an internal representation is, of course, a controversial issue (cf. [7,12]).
This question is not addressed in further detail in this paper, which in the following
uses Hesslow’s non-representational account and terminology.
Neurophysiological findings indicate that the neural structures involved in

perception and initiation of overt behavior are also responsible for covert behavior

and mental imagery. As illustrated in Fig. 1, an agent’s overt behavior when
interacting with the environment could be described as a sequence of stimulus-
response pairs. In the initial situation a stimulus (S) triggers a response (R), which
changes the environment from the agent’s perspective into a new situation (S0) which
functions as a stimulus triggering another response (R0), which in turn causes S00 and
R00 and so on. All these steps go via internal processes where sensory states (s) cause
motor response preparations (r).
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Fig. 1. Stimulus-response sequence during overt behavior. S refers to the stimulus or situation, s to the

neural sensory activity, r to the neural motor activity, and R to the behavioral response.
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The simulation hypothesis [13,14] assumes three mechanisms in order to explain
the ‘inner world’ phenomenon. The first assumption is covert behavior, i.e. an ability
to generate neural motor responses that do not become observable bodily actions but
only neural activation patterns, which remain purely internal. Secondly, the existence
of a sensor reactivation or imagery mechanism is assumed. This allows for internally
generated activation of sensory areas in the brain, so as to produce the simulated
experience of a stimulus, but without the presence of that external stimulus. Finally,
the existence of an anticipation mechanism is assumed, i.e. an ability to predict or
simulate the sensory consequences of a motor response (a bodily movement).
Support for each of these assumptions can be found in the neuroscience literature.
Covert behavior and imagery (sensor reactivation) are discussed by, e.g. Jeannerod
in [15], and imagery further by Kosslyn et al. in [17]. Finally, several neuroscientists
consider the cerebellum a prime candidate module involved in prediction and
anticipation (e.g. [22,23,34,37]).
With these three mechanisms in place (covert behavior, sensor reactivation and

anticipation), it would be possible, to internally simulate the above overt behavior
sequence (cf. Fig. 1) as illustrated in Fig. 2. In the initial situation, a stimulus (S)
causes a sensory activation (s) which triggers a motor response preparation (r). But
instead of causing the overt response (R), the motor response preparation could
cause a new (anticipated) sensory activation (s0) via a mechanism for anticipation of
the sensory consequences and, in turn, a sensor reactivation mechanism. This new
(internal) sensor activation triggers another motor response preparation (r0), which
in turn causes a new sensory activation (s00) which triggers a motor response
preparation (r00) and so on. Instead of overtly interacting with the environment, the
agent internally simulates this interaction.

2.2. Related robotics work

Sensory prediction or anticipation has been addressed in a number of robotic and
neurocomputational studies. Tani and Nolfi [32,33], for example, investigated how a
recurrent ANN robot controller could acquire an internal model of the world
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Fig. 2. Sequence of internally simulated sensorimotor interaction.
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through training on sensor prediction while moving around in a two-room
environment. After learning, the controller had developed internal dynamics
corresponding to environmental features (or concepts) such as ‘corner’ and ‘corridor’
and specific sequences of such low-level concepts were also used to form higher-level
concepts such as ‘room A’ and ‘room B’.
Drawing on psychological, physiological and neuroanatomical data on the

properties of the cerebral cortex, Gross et al. in [11] presented a neurocomputational
model of perception (called MASIM) in which sensor anticipation/prediction played
a central role. In a series of robot experiments the MASIM architecture was used to
guide the selection of motor responses based on anticipated sensor flow. Their results
showed that anticipating robots displayed better navigation abilities, with higher
speeds and fewer collisions when compared to reactive robots. Perhaps most
significantly, evasive maneuvers in order to avoid obstacles could be initiated much
sooner.
However, the work that influenced our initial experiments most are Meeden,

McGraw and Blank’s experiments [20,21] with a toy-car-like robot controlled by a
so-called simple recurrent network (SRN; [9]). The robot’s task was to alternate
between approach and avoidance of a light source in one corner of its rectangular
environment while avoiding obstacles. It was shown that through the use of internal
feedback (short-term memory) the robot could exhibit behavior that Meeden et al.
described as ‘‘plan-like’’ for the following reasons [21]: (a) the robot associated
abstract behavioral goals with sequences of primitive actions; (b) its behavior could
be described in hierarchical terms (e.g., light seeking was comprised of the sub-
behaviors orient towards light and go to light which in turn were realized as primitive
actions of moving and turning); (c) the robot maintained its overall strategy even
when reacting flexibly to the environmental conditions. On the other hand, the
behavior was clearly not plan-like at all in the traditional sense that the robot would
actually ever explicitly anticipate or plan future situations.
Meeden et al. also conducted experiments in which the robot was additionally

trained on predicting the next time step’s sensory input [21]. The results showed that
this additional training did have a positive effect on the behavior learning. However,
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no analysis was presented regarding the quality of the robot’s sensor predictions or
the robot’s capacity to actually make use of its own prediction instead of external
input. Tani and Nolfi in [33], on the other hand, illustrated that the output of their
sensory prediction networks in the above experiments was indeed similar to the
actual sensory input. Using phase space plots they also showed that the networks’
dynamics during interaction with the environment were to some degree similar to the
networks’ intrinsic dynamics, i.e. the dynamics when the networks used their own
prediction as input in the next time step. Like Meeden et al., however, they did not
analyze if the robot’s sensory prediction was accurate enough to allow ‘blindfolded’
interaction with the world. These issues were therefore addressed in our initial
experiments which will be discussed in the following section.
3. Initial experiments

As mentioned above, our initial experiments (see [16] for details) are built on the
work of Meeden et al. [21]. The basic idea behind our extension of their work was
this: If, using the ANN control architecture shown in Fig. 3, the robot’s sensory
predictions were sufficiently accurate, then it should be able to use them instead of
actual sensory input. If this were done repeatedly in consecutive time steps, as
illustrated in Fig. 4 (cf. Fig. 2), then it should enable the robot to behave
appropriately, at least for some time, in the absence of external stimuli, i.e. based on
self-generated or simulated stimuli alone, just as Lee and Thompson’s [18] human
subjects presumably did.
Our initial experiments were carried out using a Khepera robot [25] simulator (cf.

Fig. 5) based on sensor and motor measurements obtained from a real Khepera
robot [24]. The experiments have been documented in detail in [16], but here are the
main points: Recurrent ANN controllers were trained using a fairly standard
evolutionary algorithm (EA), similar to those used in [10,26,27]. The controller
networks received as input the sensory activation values of the robot’s eight infrared
proximity sensors, and the motor outputs controlled its two motors directly
predicted sensor
input

motor
output

contextsensor input

1:1 copy

Fig. 3. Robot control architecture used in the initial experiments. Solid arrows indicate fully connected

layers of weights between layers of units (indicated by dotted lines). The dashed arrow represents a 1:1

copy connection.
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Predicted sensors

Motor output

Context

1:1 copy

Predicted sensors

time: t

Motor output

Sensor input

Fig. 4. Internal simulation of perception. Instead of real sensor readings the previously predicted sensor

activation vector was used as input in each time step. Overt behavior during a simulation phase was thus

solely based on the robot’s predictions about sensor states. Solid arrows indicate fully connected layers of

weights, dashed arrows indicate 1:1 copy connections.

Fig. 5. (a) Khepera robot built by K-Team SA (www.k-team.com). (b) Schematic drawing of the robot

with infrared proximity sensors (1–8), left and right wheel (controlled by independent motors). The robot’s

diameter and sensor range are about 55mm. The direction of forward motion in the reported experiments

is indicated by the arrow.
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(cf. Fig. 5). Only weight values were evolved during training, while the network
topology remained static. Three experiments were carried out in two environments
(one of which is shown in Fig. 6). First, in order to establish that the architecture was
suitable for the task, controller networks without sensory prediction were evolved
(successfully) to simply control collision-free corridor following. Then networks of
the type illustrated in Fig. 3 were evolved (from scratch) to control the above
behavior and to additionally predict the next time step’s sensory input as accurately

http://www.k-team.com
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Fig. 6. Robot during context building phase (frame 1; 200 time steps), internal simulation phases (even-

numbered frames; 10 steps each) and context-rebuilding phases (odd-numbered frames from 3; 40 steps

each). The top part illustrates the robot’s behavior in the environment (each time step represented by a

circle, with the line indicating the heading). The bottom part illustrates the controller network output and

hidden activation values during the above phases.

T. Ziemke et al. / Neurocomputing 68 (2005) 85–10492
as possible (a two step selection/fitness function was used; for details see [16]).
Finally, we let the robots trained in the above second experiment act
blindly, repeatedly using their own prediction instead of the real sensory input,
as shown in Fig. 4. Fig. 6 illustrates the behavior generated by a represent-
ative controller network. The odd-numbered frames show its behavior during
context (re-) building phases during which it receives the real sensor input, whereas
even-numbered frames depict its behavior in the internal simulation phases during
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which it receives only self-generated sensor input but still acts (blindly) in the
environment.
As the even-numbered frames in Fig. 6 show, the third experiment was not

particularly successful. The robot seems to correctly continue its turn in frame 10,
but in both frames 4 and 6 it fails to initiate the turn in time, and in frame 8 it turns
in the wrong direction. A more detailed analysis (cf. [16]) of the evolved sensory
prediction revealed that the networks managed to capture the most relevant sensors
to the left and to the right, but they typically failed to anticipate when the frontal
sensors became active, i.e. when it was about to collide with an obstacle and a turn
was required. However, as the hidden and output activation values show (cf. Fig. 6),
the controllers do not lack internal dynamics. That means, it is not the case that the
robot during internal simulation phases just blindly keeps repeating the same action.
Instead, the problem seems to be that, due to the short range of the robot’s proximity
sensors (approximately the same as its diameter), the frontal sensors are active so
seldom that for the EA it does not pay off sufficiently to predict them accurately.
Hence, the controllers seem to learn just not to predict any changes in front sensor
activation, but instead to make the fairly good ‘guess’ that the activation remains
the same as in the current time step (similar problems have been reported in [28]
and [19]).
4. New experiments

4.1. Experimental setup

The set of experiments documented in this section was directly motivated by
the problems encountered in the above initial experiments. These new experi-
ments were carried out using our YAKS Khepera robot and ANN simulator [4].
However, instead of the previously used short-range proximity sensor, the
long-range ‘rod sensor’ illustrated in Fig. 7 was used. This sensor is to some
degree similar to the Khepera robot’s K213 linear vision turret, but some of the
properties are significantly different. The rod sensor covers an angle of
about 30 degrees and has a range of about 30 cm. It distinguishes between black
and white objects, but detects no gray levels. It also provides information about
the proximity to objects, ranging from 0 (maximum distance) to 1 (touching). Hence,
the most significant property for the experiments documented in the following is
that, unlike the short-range sensors changing rather abruptly in the previous
experiments, now the rod sensor activations change relatively continuously during a
longer period of time while approaching rods. In the following experiments
activation values of a simulated retina with a 10-bit resolution were mapped to 10
input units.
In addition to different sensors, a simpler world was used (cf. Fig. 8), consisting of

four equally long corridors. It should be noted that the walls are below the rod
sensor level, such that the rod sensor can only see the four rods which are placed
outside the corridors, one at the end of each.
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Fig. 7. Simulated ‘rod sensor’ (top) and an input pattern (bottom). See text for detailed explanation.

Fig. 8. Robot’s environment, containing walls (‘invisible’ to the robot controller) and four circular rods.
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4.2. Training

Experiments were carried out with different recurrent and feed-forward ANN
architectures, and best results were achieved using the purely reactive feed-forward
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Sensor prediction

Motor output

prediction 
module

sensorimotor
module

Sensor activation

Fig. 9. Robot control architecture, consisting of two separately trained feed-forward modules: one

sensorimotor module (to the right) mapping sensor input to motor output (trained first), and one

prediction module (to the left) mapping sensor input and motor output to a prediction of the next time

step’s sensory input (trained second). When the robot receives real sensory input, it is controlled by the

sensorimotor module alone. When the robot is ‘blindfolded’ and no external sensory input is available, the

prediction module is used to generate/predict the next time step’s sensory input.
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controllers illustrated in Fig. 9. Again, an EA1 was used to evolve network weights
only. Different training regimes were used, and best results were achieved (somewhat
counterintuitively; cf. final section) when training the sensorimotor module first and
the prediction module afterwards.2

The fitness criterion for the sensorimotor module’s training was based on obstacle
avoidance and fast straightforward motion, resulting in collision-free corridor
following. More specifically, the fitness was calculated in each time step as follows:

f ¼ vl þ vr � jvl � vrj,

where vl and vr are the velocity of left and right wheel, respectively (a velocity of 1.0
corresponds to full speed forward motion, 0.0 to full speed backward motion, and
1Population size: 200. Generations: 10,000 or more. Elitist selection was used. Gaussian distributed

weight mutations (variance ¼ 0:5; 68% of mutations between �1:5 and +1.5). Connection weights were

limited to the range �10 to +10.
2For the behavior module experiments were carried out with different rod sensor resolutions (4; 6 or 10

inputs) and different numbers of hidden units (0; 3; 5). The 10–5 combination illustrated in Fig. 9 achieved
best results. For the prediction module different corresponding numbers of inputs (6; 8; 12) and outputs
(4; 6; 10) were tested, as well as different numbers of hidden units (3; 8; 10). The 10–10–10 combination
illustrated in Fig. 9 gave best results.
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0.5 to standing still). The overall fitness of each individual sensorimotor module was
calculated by summing up the fitness over a number of time steps according to the
above formula during ten test epochs starting from 10 different random positions.
It should be noted that the robot and the fitness function do not make use of the

infrared proximity sensors, i.e. the robot has to avoid the walls although it cannot
actually see them. This makes the task more difficult than it might seem at first. The
fitness criterion for the training of the prediction module was actually exactly the
same as above. That means, accuracy in sensor prediction was no longer rewarded as
such,3 but instead the sensor prediction capacity was evaluated indirectly by
evaluating the quality of the behavior it allowed the robot to produce when real
sensors were replaced by predicted ones during internal simulation. Since behavior
was evolved with the robot using real sensor input, the predictions necessarily have
to capture some properties of the real perceptions, otherwise the correct responses
cannot be produced. Successful simulated perception therefore cannot be realized as
just any randomly constructed sequence of activation vectors if the behavior is to be
viable. Real sensor experiences and the corresponding responses thus restrict the set
of viable sensor sequences which may be internally simulated.

4.3. Results

Fig. 10 shows a representative example of collision-free corridor-following
behavior as guided by the trained sensorimotor module receiving real sensor input.
It might be worth noting once more that the robot controller only sees the rods, not
the walls. The turns in Fig. 10 are smooth enough to allow internal simulation, as
shall be documented in the following. Another behavioral strategy was produced by
other sensorimotor modules, a straightforward approach of the rod followed by a
sharp turn, but no prediction module was ever found that could successfully predict/
simulate the corresponding sensory sequence.
Fig. 11 is an extension of Fig. 10. In addition to the previously shown first round

controlled by a trained sensorimotor module receiving real input, the ‘blindfolded’
robot’s trajectory during the second round is shown. It should be noted that during
that second round the robot acted blindly, i.e. with no sensory input whatsoever from
the environment, but solely based on its own internal sensory simulation. Nevertheless,
the second round’s trajectory is collision-free and very similar to the first round (as
indicated by the fact that they are very difficult to keep apart in Fig. 11).

4.4. Analysis

Fig. 12 illustrates the activation values in the sensorimotor module over time
during the two-round trajectory illustrated in Fig. 11. To the left, the values during
3Evolving prediction accuracy had turned out to be a problem in the initial experiments documented in

Section 3. The problems with the frontal sensors might have been overcome by weighting them higher, or

by generally weighting changing sensors higher, but all these solutions would have forced us to set these

parameters manually.
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Fig. 10. One-round trajectory (moving clockwise) produced by a trained sensorimotor module receiving

real input from the environment (no prediction/simulation is used).

T. Ziemke et al. / Neurocomputing 68 (2005) 85–104 97
the first round (based on real input) are shown, and in the center the values during
the second round (based on internal simulation). It should be noted that although
the robot’s behavior is almost identical during the two rounds, the self-generated
input does not appear to be as similar to the real input as one might have expected.
In fact, in our experiments we have found no prediction module that produced self-
generated input patterns with surface similarities to the real input.
To analyze further why self-generated and real sensory input are dissimilar, but

nevertheless lead to almost identical behavior, we had a closer look at the example
illustrated in Fig. 12 to find out exactly how the behavior in both these cases is
controlled by the sensorimotor module. We found that while the robot is using real
sensory input, it is mostly hidden unit h2 that controls the switch between forward
motion and right turning. Hidden unit h2 has a very large positive connection weight
to the right motor output (RM), such that the robot starts to turn right as soon as h2
becomes less active. That happens at the end of the corridor when the robot has
already turned so much that it ‘loses sight’ of the rod which leads to ‘deactivation’ of
h2, which is otherwise activated by sensory input. Consequently, the robot turns
right for five time steps. When the robot uses only simulated, self-generated input, on
the other hand, hidden unit h2 plays no role at all in controlling turns but is
constantly fully activated (cf. Fig. 12). Instead it is now hidden units h1 and h3,
which both have strong inhibitory connections to the right motor output, that
control right turning behavior. In this case, the turning behavior actually only lasts
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Fig. 11. Two-round trajectory. During the first round (black lines) the robot was controlled by a trained

sensorimotor module receiving real input (using no prediction/simulation). During the second round (red

lines) the robot was ‘blindfolded’, i.e. it received no sensory input at all from the environment, but acted

solely based on self-generated sensory simulations.
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four time steps instead of the five steps it takes when using real sensory input. That
means, the turning behaviors are actually not the same, although they are
functionally equivalent in the above observed sense that they lead to very similar
motion trajectories. Another, more crucial difference that explains why self-
generated and real sensory input are not more similar, and to some degree cannot
be, is that while using real sensory input the robot’s behavior is purely reactive,
controlled by the feed-forward sensorimotor module alone (cf. Fig. 9). When using
self-generated input, on the other hand, the robot cannot just react to the
environment, but has to time its turns very accurately, and to do that it has to ‘count’
the number of steps between turns. To some degree, the sensory inputs can play the
role of a counter due to the fact that they increase monotonically as long as they are
active. However, for several time steps during the ‘seeing’ robot’s turn, when none of
the rods is in sight, all sensory activations remain at the same (low) level until
suddenly the sensors become active again, one by one, when they detect the next rod.
Obviously for the ‘blindfolded’ robot this transition (from not sensing any rod for
several time steps to sensing a rod again) would not be possible to simulate with a
purely reactive input–output mapping. The self-generated input therefore has to act
as some kind of short-term memory that keeps track of how many of the required
steps the robot has already carried out. This is reflected in self-generated inputs i2, i3,
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Fig. 12. Activation values over time in the controller network’s sensorimotor module during the two-

round trajectory illustrated in Fig. 12. The left third of the figure show the values (in black) during the first

round (based on real input). The center shows the values (in red/gray) during the second round (based on

internal simulation). Somewhat surprisingly, the real input is, in fact, very different from the self-generated

input, although they lead to almost identical behavior.
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i5 and i9 which exhibit continuous changes in activation, rather than the abrupt
changes that can be observed in the real sensory inputs (cf. Fig. 12).
As a final piece of analysis/illustration of the results, it should be added that even

for the best networks of course not all attempts of internal simulation are 100%
successful. Many of them lead to collisions sooner or later. However, in many of the
cases we have analyzed the mistakes are relatively minor. Fig. 13 shows such an
example. The first round is the same as in Figs. 10 and 11 and was carried out in the
same environment (containing walls and rods) based on real sensory input. The
second round, based on internal simulation, was unsuccessful in the sense that the
robot would have collided relatively quickly through a mis-timed, too early turn to
the right. But, as Fig. 13 shows, when controlling the second round blindly in an
environment without walls or rods, the controller network is still able to simulate the
shape of the environment (or its own trajectory in it) pretty exactly; it just happens to
get the timing and angle of the first turn wrong.
5. Discussion and conclusions

This paper has presented a number of experiments on internal simulation of
perception using ANN robot controllers, as well as some of the theoretical
background (cf. [13,14,7]). Obviously, the positive results presented in the previous
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Fig. 13. Another two-round trajectory. The first round (based on real sensory input) is the same as in Figs.

11 and 12 and was carried out in the same environment (containing walls and rods). The second round was

based on internal simulation and carried out without walls or rods; it would have led to a collision

otherwise.
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section have been achieved in a very simple environment, and our analysis showed
that the successful behavior was achieved in a different way than one might have
expected. Nevertheless, we think that the results presented so far are interesting, and
the approach taken here is worth further investigation.
Some of our future work will be concerned with more realistic training and test

regimes. The example of the ‘unsuccessful’ run illustrated in Fig. 13 points to one of
the problems: our current fitness evaluation scheme could easily have abandoned this
(partial) solution, due to the fact that in the original environment it would have
crashed and ‘died’ early on. Instead, individuals might be given the chance to recover
from mistakes, similar to the way Lee and Thompson’s [18] human subjects might
have corrected their direction after brief contact with a wall. Furthermore, it may
seem somewhat counterintuitive that no positive results were achieved using an
integrated evolutionary training process for sensorimotor and prediction modules
(cf. Section 4.2). We would have expected such an integration to facilitate the
evolution of behavior that can actually be predicted. Further experiments will be
carried out to investigate this question in more detail. Other questions are raised by
the differences between the initial experiments (cf. [16]) and the new experiments
documented here. In the first case (cf. Section 3), the fitness criterion networks were
selected for the accuracy of their sensory predictions (only one time step ahead), and
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this turned out not to lead to the evolution of a simulation capacity reliable enough
to guide blind behavior. In the second case (cf. Section 4.2), prediction accuracy was
not used as a fitness criterion, but only the quality of the resulting blind behavior.
The resulting ‘simulation’ capacity turned out to generate input without obvious
surface similarities to the actual sensory input, but nevertheless it was in many cases
able to reliably guide the ‘blindfolded’ robot by producing functionally equivalent
behavior patterns. Again, this will have to be investigated further with more
elaborate training and test regimes. Finally, the issue of abstraction will have to be
addressed. Obviously, prediction at the level of individual time steps is useful for
tasks such as motor control, but anticipation and planning should also be possible at
a higher level of abstraction.
The result illustrated in Figs. 11 and 12, i.e. the fact that, at least to our surprise,

the robot manages to act blindly for more than 100 time steps, covering a whole
round including four well-timed turn sequences (in an admittedly simple environ-
ment), without obvious surface similarities between self-generated input and real
sensory values, leads us to ask the following question: is this a case of successful
internal simulation of perception, in the sense discussed in Section 2, or is it not? It
certainly is successful in the sense that it solves the given behavioral task (and that
was the only criterion for the evolutionary training process). But, is it a simulation of

perception? Although the self-generated input successfully stands in for the real
sensory values, it can perhaps not be considered a simulation in a narrow sense
because the input patterns are simply too dissimilar (cf. Fig. 12). But then again, let
us go back to Lee and Thompson’s [18] human subjects (cf. Section 2): when they
saw the world before their ‘inner eye’ they did not see it with their eyes, but perceived
it ‘in’ their brains. Obviously, the comparison makes only limited sense, but it seems
that the robot’s equivalent to a perception might have to be found in the hidden unit
patterns rather than the input patterns. A closer comparison of the hidden unit
activations does indeed show that the patterns there could be considered more
similar than at the input level (they are likely to be since they have to produce
relatively similar outputs). The self-generated hidden unit patterns for h1 and h3
could be considered rough approximations of the respective ‘real’ patterns. But, does
it make sense to consider them perceptions?
To sum, despite many open questions, we think that the results presented here are

encouraging, and we believe that our experimental approach will turn out to be a
useful complement to neuroscientific and philosophical investigations of the inner
world.
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