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Abstract. The computerization of paper-based Clinical Pathways
(CP) can allow them to be operationalized as a decision-support and
care planning tool at the point-of-care. We applied a knowledge man-
agement approach to computerize the prostate cancer CP for three
different locations. We present a new prostate cancer CP ontology
that features the novel merging of multiple CP based on the similar-
ities of their diagnostic-treatment concepts, whilst maintaining the
unique aspects of each specific CP, to realize a common unified CP
model. In this paper we will highlight the main components of our
prostate cancer CP ontology, and discuss the concept of CP branch-
ing and merging nodes. We conclude that our computerized CP can
be executed through a logic-based engine to realize a point-of-care
decision-support system for managing prostate cancer care.

1 INTRODUCTION

Prostate cancer is the most common type of cancer among Cana-
dian men, with an estimated 22,300 newly diagnosed cases and 4,300
deaths in Canada in 2007 alone. In the Canadian healthcare sys-
tem, the diagnosis and treatment of prostate cancer follows an inte-
grated approach involving multiple disciplines dispersed across mul-
tiple care setting and engaging multiple health professionals with
different specialities and roles. This integrated approach demands
an effective partnership between various disciplines such as family
medicine, urology, radiation oncology, nursing, and psychological
support resources. Despite the clinical significance of such an inte-
grated approach, its on-the-ground implementation presents various
challenges, such as (a) how to navigate and manage a patient’s care
activities throughout the longitudinal care trajectory? and (b) how to
coordinate the respective activities of the different care providers in
a timely and efficient manner?

In an attempt to support the coordination and integration of health-
care services spanning multidisciplinary settings and care providers,
healthcare institutions develop Clinical Pathways (CP) as a means
to both chart and streamline the diagnostic-treatment cycle. CP are
evidence-based patient care algorithms/charts that describe the care
process for specific medical conditions within a localized setting [2].
At present, most CP are paper-based and therefore cannot be conve-
niently shared and directly deployed at the point-of-care, regardless
of the location of the patient and the attending care provider. We
argue that the computerization of paper-based CP can help to oper-
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ationalize them as (a) point-of-care clinical guide; (b) patient infor-
mation sharing medium between different care providers; (c) patient
navigation and care coordination tool; and (d) a decision-support tool
to help provide standardized, timely, cost-effective and safe clinical
care to prostate cancer patients [1].

In this paper we present our knowledge modeling work leading
to the development of a prostate cancer care planning and manage-
ment system. The overall project involves three phases: (i) the de-
velopment of prostate cancer CP for three different Canadian cancer
care institutions in Halifax, Winnipeg and Calgary. In this knowledge
engineering phase, oncologists, urologists and nursing experts were
engaged to elicit the CP in their respective institutions, thus yielding
three location-specific prostate cancer CP; (ii) the modeling of the
CP knowledge in order to computerize and subsequently execute the
CP (with patient data) at the point-of-care. We present our ontology-
based knowledge modeling approach that led to the development of
a comprehensive OWL-based prostate cancer care ontology. The fea-
ture of our modelling approach is that it allows the merging of these
location-specific CP along common processes, actions and recom-
mendations; and (iii) the execution of the ontologically-modeled CP
using a logic-based execution engine that connects with a patient-
data source to guide both the respective care-provider and the patient
through the prostate cancer care pathway.

In this paper we will describe our ontology based CP knowledge
modeling approach and highlight the novel merging of the three
location-specific CP into a single computer-interpretable model. We
will highlight the main components of ontology, especially the merg-
ing and branching nodes introduced within our CP ontology. We will
demonstrate that an ontology based CP representation allows the in-
stantiation of three paper-based prostate cancer CP and in turn yields
an executable CP.

2 PROSTATE CANCER CLINICAL PATHWAYS

In this project we developed prostate cancer CP that illustrates activi-
ties concerning the diagnosis, management and follow up of prostate
cancer patients at three different locations–i.e. Halifax, Calgary and
Winnipeg regional health setting. Each location-specific CP charac-
terizes the following: (a) Organizational level processes to be en-
acted by a team of multidisciplinary actors; and (b) Patient man-
agement processes that require a specialized care team member to
perform a specific action on the patient. A systematic organiza-
tion of this information yielded a prostate cancer CP as a flow-
chart that contains four main components–namely actions, decisions,
branching/merging nodes and recommendations/plans (see figure 1).



All three location-specific CP were divided into four consultations,
where in each consultation a set of tasks were performed by an iden-
tified team member(s) to achieve a defined outcome. Each CP be-
gins with a consultation by a family physician and concludes with
a consultation with an urologist to determine treatment options and
follow-up routines. For each consultation, the CP records the stipu-
lated clinical practices and care resources in terms of the sequencing,
decision criterion, time intervals, actors, expected outcome and rec-
ommendations associated with specific care tasks that need to be per-
formed during a consultation. It was interesting to note that despite
certain variations, the three CP exhibited a good deal of overlap at the
task-level, thus vindicating that these CP conform to widely accepted
Canadian practices for prostate care. The overlap between the CP al-
lowed us to pursue the merging of the different CP to create a com-
mon unified location-independent CP that distinguishes between a
set of tasks common to all locations, whilst allowing location-specific
branches to model those tasks that are unique to a particular location.

Figure 1. Prostate Cancer Clinical Pathway for Calgary

3 KNOWLEDGE MODELING APPROACH FOR
COMPUTERIZING CLINICAL PATHWAYS

Knowledge modeling involves the abstraction of domain-specific
knowledge in terms of concepts that encapsulate the domain knowl-
edge, problem-solving behavior, operational processes, and func-
tional constraints. In healthcare, domain-specific knowledge is cap-
tured in terms of clinical practice guidelines, clinical pathways and

research articles. For this project, the three location-specific prostate
cancer CP served as the domain knowledge artifacts.

We adopted a knowledge management approach, in particular the
use of Semantic Web technologies for modeling the domain knowl-
edge in terms of an ontology [5]. Our prostate cancer ontology cap-
tures the salient diagnostic, treatment and operational concepts, and
relates these concepts using semantic and pragmatic relationships to
form a prostate cancer knowledge model. We used a middle-out ap-
proach for ontology engineering [4], whereby the knowledge model
is iteratively developed-i.e. starting from generic to specific concepts
and relationships–using the three prostate cancer CP. Instead of mod-
eling each CP as a unique model, our CP modeling approach focused
on ways to merge the three different location-specific CP to realize
a unified ontological model for prostate cancer CP. The rationale for
merging CP is to create a flexible knowledge model that not only re-
sponds to the clinical or administrative events in the care process, but
also factors the various constraints, such as the location of the patient,
when discharging recommendations/actions. Technically speaking,
the ability to merge the CP in a flexible yet semantically and prag-
matically correct knowledge model was the main knowledge mod-
eling challenge [3]. CP merging was pursued by modeling the task-
level similarities between the three CP as a single common ontology,
however whenever we encountered a point when a location-specific
CP was pursing a unique set of tasks we created a branch ontology
to model the unique task, treatment or follow-up options practiced
at a specific location. A branch ontology proceeds along a location-
specific path until it reaches a merging node–i.e. a task or a plan that
is common to all locations–that allows multiple branches to merge to
once again realize a common path modeled by the overall common
ontology. In this way, we developed a novel CP modeling approach
that allowed multiple CP from the same domain to be jointly modeled
whilst maintaining the unique behaviors of independent CP. Figure 2
shows a schematic of a unified CP for three different sites that in-
cludes both branching and merging nodes.

4 A PROSTATE CANCER CLINICAL PATHWAY
ONTOLOGY

We used the Web Ontology Language (OWL) via the ontology ed-
itor Protégé to develop our prostate cancer CP ontology. The entire
specifics of our CP ontology are beyond the scope of the paper, yet
below we present its salient aspects. Class names are denoted us-
ing UPPERCASE, relationships with Italics and individuals within
‘quotation marks’.

4.1 Descriptions of the classes and their individuals
Our ontology begins with class PLAN which corresponds to all
four consultations with a team of multidisciplinary CLINICIANS.
DECISION-CRITERIA models the choices to be made in order to
reach the next step, for instance the individuals ‘between 4 and 10’
and ‘greater than 10’ are used as decision criteria for a decision-node
‘PSA/FreeTotalPSA’ which is an individual of INVESTIGATION.
The evaluation of DECISION-CRITERIA results in either a TASK to
be performed or a TEST-RESULT to be generated. TASK represents
the different care tasks performed by the care team. TASK is fur-
ther classified as CONSULTATION-TASK, NON-CONSULATION-
TASK, REFERRAL-TASK and FOLLOW-UP-TASK. The class
FOLLOW-UP represents follow-up visits after each treatment op-
tion, e.g. ‘FirstPostSurgeryFollowUp’. To control the execution of
the pathway, we have defined a class TERMINATION-TASK as



Figure 2. A unified prostate cancer CP with branching and merging nodes

a sub-class of TASK, which has two individuals ‘PathwayEnds’
which specifies the end of the CP and ‘TaskEnds’ which repre-
sents the end of a task. A PLACE is further categorized into CARE-
SETTING with exemplar individual being ‘RapidAccessClinic’, and
PATHWAY-REGION with exemplar individuals ‘Calgary’, ‘Halifax’
and ‘Winnipeg’. PATIENT-CONDITION-SEVERITY specifies the
condition of the patient as being ‘Urgent’, ‘Concerned’ and ‘NonUr-
gent’. TREATMENT represents treatment options, for instance ‘Ac-
tiveSurveillance’, ‘Brachytherapy’ etc. INVESTIGATION captures
diagnostic tests, e.g. ‘Biopsy’, ‘PSA/FreeTotalPSA’.

4.2 Modeling of temporal concepts in the CP
The temporal concepts in the CP are represented by three classes:

1. INTERVAL-EVENT which defines an interval between activities
or wait before a particular task, as a named event, e.g. wait interval
for surgery

2. INTERVAL-DURATION which defines the duration of an inter-
val event, e.g. six to eight week which is wait time for surgery.
Another temporal constraint inherent in a CP is the frequency of
activities within a task.

3. FREQUENCY depicts the frequency of the follow-up activities
noted in the prostate cancer CP, for instance to represent the con-
cept EveryThreeMonths. Preserving FREQUENCY as a separate
class ensures that future changes or addition to frequency of an
activity can be easily incorporated in the model.

4.3 Description of the relationships between the
classes

Our prostate cancer CP ontology models a large number of relation-
ships between classes; here we present some salient relationships.

PLAN, TEST-RESULT and PATIENT-CONDITION-SEVERITY
have relation isFollowedByTask with TASK, because an individual
of any of these classes is followed by a TASK. For example, if
PATIENT-CONDITION-SEVERITY is ‘NonUrgent’ then it isFol-
lowedByTask ‘BiopsyIsNotBookedWithSecondConsultation’an indi-
vidual of CONSULTATION-TASK. A task can be followed by an-
other task, therefore TASK has the relation isFollowedByTask with
itself also. TASK, TREATMENT and FOLLOW-UP have relation-
ship hasInterval with INTERVAL-EVENT, eg. ‘ReferToUrologist’
as an individual of REFERRAL-TASK with hasInterval to represent
‘TimeToReferToUrologist’ which is an individual of INTERVAL-
EVENT. TREATMENT is related to FOLLOW-UP via hasfol-
lowUpCare. A follow-up might refer to follow-up task(s), therefore
FOLLOW-UP is related to TASK via hasTask. For example ‘First-
PostSurgeryFollowUp’, which is an individual of FOLLOW-UP has-
Task ‘RemovalOfStaples’ which is an individual of FOLLOWUP-
TASK. TASK and FOLLOWUP have relationship isFollowedBy with
FOLLOW-UP as its range. For example the TASK ‘RemovalOfSta-
ples’ isFollowedBy ‘SecondPostSurgeryfollowUp’ which is an indi-
vidual of FOLLOW-UP. In turn, ‘SecondPostSurgeryFollowUp’ has-
Task ‘RemovalOfCatheter’ which isFollowedBy ‘ThirdPostSurgery-
FollowUp’ which is an individual of FOLLOW-UP. A snapshot of
this scenario is shown in figure 3.

Figure 3. Interrelationships between the classes TREATMENT,
FOLLOW-UP and TASK

5 MODELLING MERGING AND BRANCHING
WITHIN THE CP ONTOLOGY

We have developed a single prostate cancer CP ontology that is able
to uniquely model the independent characteristics of all the three dif-
ferent CP. Our modeling approach allows the merging of the three
location-specific CP into a unified CP ontology based on the com-
monality of their inherent concepts at the level of clinical pragmat-
ics. Yet, in order to model the non-overalpping concepts between the
CP we have introduced a branching function/node that allows an in-
dependent CP to pursue tasks specific to it. And, through a merging
function/node we allow the branched CP to once again merge with
other concurrent CP to realize a high-level unified CP ontology. Fig-
ure 2 earlier presented the concept of CP merging and branching.

5.1 Branching based on decision criteria
In our CP ontology certain individuals of classes INVESTIGATION,
TASK and FOLLOWUP can also be regarded as decision nodes
in a CP, therefore these classes are related to class DECISION-
CRITERIA through relationship hasDecisionCriteria (as illustrated
in figure 4). As mentioned earlier, the class DECISION-CRITERIA
models the available choices (or paths) when determining the next



step–one of the given choices is selected (based on user input) in
order to proceed to the next specified step. We explain this con-
cept through an example illustrating how next step choices are han-
dled in our ontology. Consider ‘TakePatientConsent’ (an individ-
ual of CONSULTATION-TASK) as a decision node in the CP, with
two possible choices–i.e. ‘PatientGivesConsent’ and ‘PatientDoes-
NotGiveConsent’ (individuals of DECISION-CRITERIA) as the set
of potential values for the relation hasDecisionCriteria. During ex-
ecution, when we arrive at the above-mentioned decision node we
need to select one of these choices in order to direct the flow of the
CP in a particular direction, which is modeled by TASK through
property hasAction–note that DECISION-CRITERIA is related to
TASK through property hasAction. Suppose, in response to the value
‘TakePatientConsent’ the relation hasDecsionCriteria gets the value
‘PatientGivesConsent’, then the value for the nexthasAction relation
will be ‘BookBiopsyWithSecondConsulation’, on the other hand if
value for hasDecisionCriteria is ‘PatientDoesNotGiveConsent’, then
the value for hasAction will be ‘DoNotBookBiopsyWithSecondCon-
sutation’. In this way we are able to model branching effects within
a CP based on decision nodes.

Figure 4. Modeling of decision criteria

5.2 Branching based on location
Another type of branching involves a CP diverging from the unified
ontology based on the location of the patient for a given task, treat-
ment or follow-up options. We model this behavior through branch-
ing nodes that denote an intersection between two classes to repre-
sent a unique individual that is the function of two intersected classes.
We have developed three unique classes–i.e. REGION-TASK-
INTERSECTION, REGION-TREATMENT-INTERSECTION and
REGION-FOLLOWUP-INTERSECTION that serve as branching
nodes based on location. The REGION-TASK-INTERSECTION
represents an intersection between REGION and TASK to signify
a a unique individual, such as a unique TaskA that is perfomed at
RegionB. Likewise, REGION-TREATMENT-INTERSECTION will
have an individual that is a unique TreatmentX that is offered in
a specific region. Note that if TreatmentX was common for all
three regions then there was no need to use an intersection o de-
note a branch, rather TreatmentX would have been part of the uni-
fied CP. The branching nodes have relations hasLocation, hasTask,
includeTreatmenOptions and hasFollowUpCare. REGION-TASK-
INTERSECTION has an object property isFollowedByConsultation,
the range of which is class PLAN, to represent the possibility that a
task at a particular location can be followed by a new consultation as
opposed to a task. These relationships were carefully determined to
ensure that we always have unique individuals of the classes based
on the combination of the values of these relationships. For exam-
ple, an individual of any of the classes PLAN, TASK, PATIENT-
CONDITION-SEVERITY and TEST-RESULT can be followed by

a task that is specific to a certain location only, thus initiating the
branching of that particular segment of the location-specific CP from
the unified CP.

Figure 5. Branching of CP at the level of Consultation-2

We explain the concept of branching using intersections through
the following example, also depicted in figure 5. In the three CP,
it is noted that the activities following consultation-2 are differ-
ent, such that the tasks in Calgary are different from the ones in
Winnipeg and Halifax So during CP execution, when a patient en-
ters ‘Consultation-2’ which is an individual of PLAN, the next task
in this plan depends on the location of the patient. This is mod-
eled by PLAN having a relation isFollowedByRegionTaskIntersec-
tion which in this case has values ‘RegionTaskIntersection-1’ and
‘RegionTaskIntersection-3’, both of which are individuals of the
branching node REGION-TASK-INTERSECTION. At this point,
the unified CP is divided into two branches–one branch for Cal-
gary and the other one for Winnipeg and Halifax. The first branch is
modeled by the individual ‘RegionTaskIntersection-1’ (of REGION-
TASK-INTERSECTION) that has ‘Calgary’ as the value for hasLo-
cation, and the unique task is ‘RecieptOfInformationByPriUrologist’
as the value for hasTask relation. The second branch is modeled
by the individual ‘RegionTaskIntersection-3’ that has ‘Halifax’ and
‘Winnipeg’ as the value for hasLocation, and it has ‘EvaluateTestRe-
sult’ as the value for the hasTask relation. In this way, we were able to
represent the unique activities at a specific location whilst maintain-
ing a common CP structure representing the overlapping activities.
It may be noted that these two branches may subsequently merge
during the CP execution to realize a unified CP (as shown in figure
2).

5.3 Merging of the different CP branches

The merging of different CP is possible at the level of common tasks
or plans. As stated earlier, if a CP branches off then a merging node
allows it to merge back with the unified CP if (a) no further activi-
ties are left in the branch; or (b) the next activity is a common task
or consultation. In figure 6, we illustrate an example of a merging
node, whereby during ‘Consultation-3’ after the task ‘RecieptOf-
BiopsyReportByUrologist’ the CP ontology models three separate
location-based branches because at each location the following task
is different. All the three branches are individuals of REGION-
TASK-INTERSECTION, namely ‘RegionTaskIntersection-9’ that



hasLocation ‘Halifax’, ‘RegionTaskIntersection-10’ with hasLoca-
tion as ‘Calgary’, and ‘RegionTaskIntersection-12’ with hasLoca-
tion having ‘Winnipeg’ as the individual value. These branches have
unique individuals for hasTask and isFollowedByConsultation rela-
tions. However, as shown in figure 6, later on these branches con-
verge on ‘Consult-4’ (an individual of PLAN) which serves as a
merging node to once again realize a unified CP. Note that in Cal-
gary the task ‘RecieptOfBiopsyReportByUrologist’ is followed di-
rectly by ‘Consult-4’, while in Winnipeg the task before the merge
is ‘EvaluateBiopsyReport’. This task is a decision node where the
pathway branches again depending on the result of the biopsy report;
if the result is positive then the branch will converge at ‘Consult-4’.

Figure 6. Merging of three branches at Consultation-4

6 MODELING OTHER CP INTERSECTIONS

Our CP ontology accounts for the eventuality that there might be
additional location related CP variations concerning the team mem-
ber performing a task, time interval between the tasks and fre-
quency of an activity within a task. We have modeled such poten-
tial CP variations noted when the classes CLINICIAN, INTERVAL-
DURATION and FREQUENCY intersect with location. The re-
sulting intersection are REGION-CLINICIAN-INTERSECTION,
REGION-INTERVAL-INTERSECTION, REGION-FREQUENCY-
INTERSECTION. To REGION-CLINICIAN-INTERSECTION ac-
counts for the possibility that a specific TASK, TREATMENT or
FOLLOWUP can be performed by a different clinician at a spe-
cific region. Our CP ontology relates these classes to REGION-
CLINICIAN-INTERSECTION with an object property hasRegion-
ClinicianIntersection. Each individual of this class is guaran-
teed to be unique through the relations isPerformedBy and ap-
plyToClinicalSetting which have ranges CLINICIAN and CARE-
SETTING, in addition to the relation hasLocation. These prop-
erties allow expressing different combinations of location, clini-
cians and care-care-setting as unique individuals of class REGION-
CLINICAN-INTERSECTION. An individual of TASK, TREAT-
MENT or FOLLOW-UP can then have a unique relationship in terms
of location of the patient, a certain type of clinician who is going to

perform a task, in a particular care-setting. Similarly an individual
of INTERVAL-EVENT through the relation hasRegionIntervalInter-
section can have a particular interval duration depending on the lo-
cation of the patient. It may be noted that we do not regard these
intersections as branching nodes in a strict sense because they do not
lead to separate CP branches.

7 CONCLUDING REMARKS
We presented a prostate cancer CP ontology that allows the comput-
erization and execution of a location-specific CP to manage, plan and
streamline the prostate cancer care activities. We presented a novel
modeling approach that first established commonalities in the care
processes across the three different regions and then attempted to
merge these individual location-specific CP, at the medical and prag-
matic levels, to realize a high-level prostate cancer CP ontology that
unifies the three different CP. The development of a common unified
knowledge model, in this case to represent CP, allows for (a) im-
proved sustainability of the model to handle future additions and up-
dates; (b) generalizability of knowledge across different regions; and
(c) identification of specialized tasks at each location. This informa-
tion would have been lost if each CP was modeled as a unique entity,
and we would have lost the opportunity to streamline and standardize
the care process across different regions. At the same time introspect-
ing location-specific branches provides CP developers some insights
as to the why some regions are doing things differently and measur-
ing the outcomes of these branches may serve as a guiding principle
for development of more optimal CP for other regions. For instance,
we identified that the different prostate cancer CP tend to branch out
at the Task, Treatment and FollowUp aspects subject to the location
of the patient, and that the different location-specific CP branches
merge at the Task and Plan aspects of a CP. From a modeling stand-
point, we introduced the concept of branching and merging nodes
in concert with various inter-class intersections to model unique CP
branches or node-specific variations. The ontology has been evalu-
ated for semantic correctness and completeness by instantiating the
three prostate cancer CP. These computerized CP can now be ex-
ecuted, when connected with patient data, through a simple logic-
based reasoning engine or a workflow engine. This has been achieved
by establishing a series of interrelations between classes using object
properties–i.e. in our CP model each task identifies the following ac-
tivity thus allowing a sequential execution of the CP. Our future work
involves the computerization of additional prostate cancer CP by in-
stantiating them within our CP ontology. We are in the final stages
of developing a web-based prostate cancer care management system,
based on the CP ontology, to streamline prostate cancer care at the
three Canadian cancer care facilities.
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