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Abstract.   Predictive modelling, in a knowledge discovery context, is regarded 
as the problem of deriving predictive knowledge from historical/temporal data.  
Here we argue that neural networks, an established computational technology, 
can efficaciously be used to perform predictive modelling, i.e. to explore the 
intrinsic dynamics of temporal data.  Infectious-disease epidemic risk 
management is a candidate area for exploiting the potential of neural network 
based predictive modelling—the idea is to model time series derived from 
bacteria-antibiotic sensitivity and resistivity patterns as it is believed that 
bacterial sensitivity and resistivity to any antibiotic tends to undergo temporal 
fluctuations.  The objective of epidemic risk management is to obtain forecasted 
values for the bacteria-antibiotic sensitivity and resistivity profiles, which could 
then be used to guide physicians with regards to the choice of the most effective 
antibiotic to treat a particular bacterial infection.  In this regard, we present a  
web-based Infectious Disease Cycle Forecaster (IDCF), comprising a number 
of distinct neural networks, that have been trained on data obtained from long-
term clinical observation of 89 types of bacterial infections, being treated using 
36 different antibiotics. Preliminary results indicate that IDCF is capable of 
generating highly accurate forecasts given sufficient past data on bacteria-
antibiotic interaction.  IDCF features a client-server based WWW interface that 
allows for remote projections to be requested for and displayed over the 
Internet.  

1 Introduction 

Electronic data repositories are vastly expanding with an upward trend towards 
storing continuous historical data, such as stock markets, foreign exchange rates, 
weather patterns, medical  monitoring and so on.  Usually, temporal or time series 
data streams embed within recurring patterns of behaviour/activity.  Knowledge 
discovery or data mining then entails the detection of intrinsic recurring patterns from 
past temporal data, thereby rendering the opportunity to exploit the discovered 
knowledge to predict future behaviours (given the present and past states) of the 



system.  Mathematically, any prediction system attempts to predict future values—
x(t+∆t) = f(x(t), x(t-∆t), x(t-2∆t), …  ) given sufficient data collected over some 
elapsed time period.  

Predictive modelling based on temporal data (or in general time-series forecasting), 
in a knowledge discovery or data mining context, is regarded as the problem of 
deriving predictive knowledge from historical data—information about past 
behaviour is used to automatically generate a model of the system that can be used to 
predict future behaviour[1] [2].  For example, a foreign exchange broker might want 
to predict the future currency exchange rates; a hospital administrator might want to 
predict the rate of admission of patients to the hospital; healthcare professionals might 
want to assess the future effects of certain drugs on particular infectious organisms; a 
marketing executive might want to predict whether a particular consumer will switch 
brands for a specific product and so on.  In summary, time-series forecasting is widely 
employed for complex non-linear systems in areas ranging from financial markets to 
weather to medicine [3] [4] [5] [6].  

Risk management is an innovative domain that can benefit from knowledge 
discovery activities. Modern risk management strategies advocate the use of large 
quantities of historical data (collected from the subject system) to build models that 
can assess future risk situations—to predict beforehand a possible disaster situation 
and to circumvent it by taking pre-emptive measures.  In the realm of risk 
management we are particularly interested in applying predicting modelling 
techniques for infectious-disease epidemic risk management.  In a typical infectious-
disease control scenario, the strategy is to eradicate the culprit bacteria before it has 
the chance to spread and infect a larger population.  The most widely practised 
method to eradicate bacterial organisms is the use of stipulated antibiotics.  Each 
infectious disease is propagated by a particular type of bacteria that is susceptible to 
only a few distinct antibiotics (these antibiotics may differ in chemical composition 
yet they instigate the same mode of action towards the bacteria).  Nevertheless, 
bacteria are quite resilient—they have the tendency to develop a temporary immunity 
towards a certain antibiotic, hence rendering it temporarily ineffective.  Although, 
doctors know the bacterial origin of each infectious disease and the corresponding set 
of effective antibiotic drugs, yet they have no means of ascertaining the current 
effectiveness of an antibiotic towards the treatment of a certain bacteria.  In practice, 
doctors choose an antibiotic from the set of effective antibiotics, in case the first 
choice antibiotic is ineffective then another antibiotic is prescribed with the hope of it 
being relatively more potent.  In this scenario, prior knowledge of an antibiotic’s 
effectiveness in treating a bacterial organism can potentially play a major role in 
controlling an infectious disease epidemic.  Effective infectious-disease epidemic risk 
management then encompasses predictive modelling, based on past bacteria-antibiotic 
interactions, to determine the future effectiveness of candidate antibiotics towards a 
bacteria, and then choosing the most effective antibiotic to culminate the spread of the 
infectious disease.  

The emergence of the artificial Neural Network (NN) paradigm has provided an 
innovative methodology for temporal data analysis, in that temporal data can be 
supplied as ‘training’ input—so as to produce empirically correct relationships 



between past, present and predicted future values.  This paper primarily introspects 
the possible efficacy of NNs towards knowledge discovery activities, in particular 
predictive modelling.  The argument is extended further by demonstrating how NNs 
can be effectively used for predictive modelling—the problem domain addressed is 
epidemic risk management.  In this regard this paper examines the temporal 
fluctuations in bacterial susceptibility towards a given antibiotic, which medical 
professionals have long suspected of possessing a “recurrent” pattern.  Such recurrent 
patterns of a bacteria’s susceptibility towards antibiotics are captured by a NN system 
that later provides a forecast of the behaviour of a bacteria towards various antibiotics 
[7].  It is argued that having a predictive model for bacteria-antibiotic interactions 
would be enormously useful, in that doctors usually have a choice of several 
antibiotics with which to treat a particular bacterial infection.  Reliable “future” 
knowledge of how one antibiotic, amongst a possible choice of several antibiotics, 
can be used with optimal effect at a particular time can have significant implications 
towards the control of spread of infectious diseases.  Finally, we present a web-based 
Infectious Disease Cycle Forecaster that allows for projections to be requested for by 
remote healthcare practitioners and displayed over the Internet. 

2 The Essence of Predictive Modelling 

Knowledge discovery manifests a synergy of a diverse set of computational 
technologies to address a central objective: to glean information that is buried in the 
enormous stocks of collected data and to develop and underpin strategies for 
improved decision making support.  Of the many facets of data mining, we are 
particularly interested in predictive modelling—the analysis of historical data to 
discover predictive patterns [8] [9]. 

Typically, the exercise of mining useful information from data is predicated by the 
specification of the needs and goals.  But, it is also true to state that the nature of the 
data circumscribes the nature of the knowledge that can be derived from it—the 
available data defines the scope of the problem, more so the data defines the problem 
and in turn the extractable knowledge [10].  Predictive modelling is characteristic of 
such data-defined problems as the mathematical model of the system generating the 
time-series data is not available, rather the phenomenon/functions realising the time-
series data are concealed within the collected data.  Predictive modelling encompasses 
the formation of a descriptive model of the system in question, either by inductive or 
deductive means, and then exploiting the model to predict future system behaviour.  
For that matter, within the knowledge discovery paradigm, predictive modelling can 
be regarded as a discovery-driven data-mining operation.   

Mining predictive quality information is more an inductive problem—in the 
absence of both an abstract specification of the system generating the data and the 
non-linear and non-monotonic relationships between the data items in the data set, 
inductive learning techniques are more appropriate to produce a ‘generalisation’ of 
the functions governing the system, i.e. a descriptive model of the system.  The 
generalisation—maybe a ‘trained’ NN—interpolates between and extrapolates beyond 



the data items used for its construction and hence can compute relations/values 
beyond those used to develop it.  In a knowledge discovery context, predictive 
modelling of time-series data within an inductive learning paradigm can be 
understood as follows: The inductive learning system—a NN for that matter—is 
given a set of instances (derived from the data set) of the form (x, y), where y 
represents the variable that needs to be predicted by the system, and x is a vector of 
representative features deemed relevant to determining y.  The inductive learning 
system is to induce a general mapping from x vectors to y values by way of building 
(or rather implicitly learning) a prediction model, y = f(x) of the unknown/inherent 
function f, that allows the prediction of y values from unseen x vectors.  For any 
prediction activity, knowledge about the current state of the system is essential as the 
predicted value is a function of the current state(s).  In sum, the inductive learning 
system accounts for the regularities hidden within a seemingly arbitrary data set and 
uses the ‘learnt’ generalisation to predict future values of some variables.   

Given that predictive modelling involves inductive model-development activities, 
the computing literature offers a suite of inductive techniques that are candidates for 
performing predictive modelling—e.g. decision rule or decision tree induction, 
classifier rules, statistical linear discriminants, case based (nearest neighbour) 
methods, genetic algorithms and NNs [11].  Typically, predictive modelling is carried 
out using symbolic-induction techniques as the generated models are expressed as sets 
of if-then rules, and are therefore comprehensible and explainable.  Yet, recently with 
the emergence of NNs as a powerful computational tool, with learning capabilities, 
there is a strong case for using NNs for predictive modelling.   

3 The Efficacy of Neural Network for Effective Knowledge 
Discovery/Data Mining Activities 

NNs have a natural propensity to learn–they learn how to solve problems from 
acquired/generated data (from the problem domain) as opposed to solving problems 
based on explicit problem specification.  Furthermore, the learning characteristics of 
NN enable them to deal efficiently with noisy data—partial, incorrect and potentially 
conflicting data—and generalise well in situations not previously encountered.  
Hence, it can be argued that NN are well suited for data mining tasks, in particular to 
tackle data defined problems [12] [13]. 

Data mining literature does not seem to support the above conjecture.  Despite the 
above-mentioned efficacy of NNs towards various knowledge discovery and data 
mining activities, predictive modelling being a prime candidate, NNs are not 
commonly used for data mining tasks.  One explanation for this apparent lack of 
acceptance of NN by the data mining community is that trained NNs are usually not 
comprehensible—they are ‘black boxes’ with no explanation on how they solved the 
problem.  Below we will attempt to justify the efficacy of NNs for data mining, in 
particular predicative modelling. 



Indeed, NNs when applied for predictive modelling applications do not render any 
symbolic rules or explanations towards the operational characteristics or phenomenon 
governing the system in question.  It is not the case that NN do not possess such 
knowledge; on the contrary, the knowledge learnt from data by the NN—a model of 
the system—is sub-symbolic in nature and it is encoded using real-valued parameters 
(connection weights) and distributed representations within the NN.  

From a pragmatic point of view, the goal of most time-series forecasting/predictive 
modelling applications is to predict  the future values to be generated by the system 
(based on the present state of the system), as opposed to the understanding of the 
phenomenon that would lead to the generation of those values.  Of course, symbolic 
rules and explanations may be desired to get a better understanding of the system 
itself, and for that matter current research efforts in NNs endeavour to generate the 
rules learnt by the NN from the training data [14] [15].  Not withstanding the fact that 
the availability of explicit ‘system defining’ rules would make NNs more favourable 
for knowledge discovery/data mining activities, yet it may be noted that most of the 
rules currently derived from NNs are primarily geared towards classification and 
clustering problems [16].  As much as the rules generated from learnt NNs can 
identify salient/discriminant features (in the data set), responsible for eventual 
classifications of the data items, it is yet to be seen how well NNs being trained on 
temporal data can (a) explicate their knowledge of the complex system they are 
modelling and (b) why and what attributes are significant in determining the future 
values of the system.  It can be argued that the richness and the temporal nature of 
time-series data used in predictive modelling renders difficulties in generating 
meaningful rules.   

In conclusion, we argue that maybe it is not even useful to look for ‘system 
defining’ rules within a NN performing predictive modelling, rather a validation of 
the NN results based on collected data should be used as a benchmark to determine its 
efficacy towards forecasting future values.  In relative terms, the efficacy of NN for 
predictive modelling is further validated by the fact that predictions performed by NN 
are derived from an inherently ‘learnt’ mathematical model of the system.  On the 
contrary, real-life explanations of temporal systems are at best speculative—experts 
within the area of investigation usually provide a subjective and speculative analysis 
of the causes for the temporal behaviours of the system—devoid of credible 
mathematical models of the system.  

4 Neural Network Based Predictive Modelling 

In general, real-life observational data is difficult to model using linear statistical 
models based on auto-regression or moving averages.  NNs [17] have been shown to 
be able to decode non-linear time series data which adequately describes the 
characteristics of the time-series. Information contained in the NN’s weighted 
synaptic connections—assuming a sufficiently rich architecture—enables the NN to 
calculate forecasted values that fit into the non-linear trend presumably present in the 
past values of the time-series. 



NN is an information processing paradigm inspired by the architecture and 
distributed processing methodology of the biological nervous system.  It is composed 
of a large number of functionally simple, but highly interconnected, processing units 
(neurons) which are normally organised into layers i.e. input, output and at least one 
“hidden” layer interposed between the input and output layers.  The inter-neuron 
synaptic connections constitute a connection-weight matrix which can be modified 
during “training” so as to better reproduce the non-linear mappings between the input 
pattern and the corresponding desired output pattern.  Training the NN requires that it 
be supplied with sufficient input-output vectors, from which it will hopefully “learn” 
the inherent behavioural patterns.  NN systems are therefore extremely useful for 
data-defined problems, characterised by the abundant availability of empirical data for 
which an analytic rule-based description is difficult or non-existent. 

Knowledge discovery/Data mining, in particular predictive modelling, using NN 
need to be carried out according to five major steps.  First, time-series data is 
collected.  Second, the data is cleansed—the data is normalised and scaled in order to 
minimise noise.  Third, an appropriate NN capable of capturing the hidden 
regularities within the time-series data is built by experimenting with various 
architectural and training parameters.  Fourth, the NN is trained using the training 
data.  Finally, the ‘learnt’ NN is extensively testing for accuracy using the validation 
and testing data.  After the NN passes the validation criteria it can then be used for 
predictive modelling. 

4.1 Data Collection and Pre-Processing 

The bacterial sensitivity/resistivity data used in our research was provided by 
Universiti Sains Malaysia Hospital located in Kota Baharu, Malaysia.  This data-set 
was compiled to observe the interactions of various microbiological organisms 
against several antibiotics prescribed as treatment.  For each individual patient, 
sensitivity/resistivity variations in the infecting organism towards the antibiotic used 
were periodically recorded.  In total, the original five-year (1993-97) study collected 
data on the sensitivity/resistivity of 89 organisms, for which 36 different antibiotics 
were prescribed.  For our purposes, it was deemed appropriate to sum all occurrences 
of a particular bacteria-antibiotic interaction within a particular month.  We tabulated 
monthly values for bacterial sensitivity (S), resistivity (R) and their difference (S-R); 
thereby producing a data-set with points at regular temporal intervals.   

4.2 Data Cleansing  

Data cleansing was performed in terms of normalising the data i.e. map the tabulated 
values onto the numerical range [0,1] prior to insertion into the input-layer of the 
forecaster.  The numerical range [0,1] was important as the NN employed the binary 
sigmoidal function.  Data normalisation was done firstly by calculating the 
differences between successive monthly values for a particular bacteria-antibiotic 



(BA) interaction ie dBA(ti) = yBA(ti) - yBA(ti-1) where y(ti) is the sensitivity/resistivity 
for the i-th month 

Secondly, we performed linear normalisation with respect to the maximal and 
minimal values for the time-series of differential values i.e.  
 

xBA(ti) = 
dBA(ti) - minBA

 maxBA - minBA
   

with max/minBA = max/min{dBA(ti), for ∀ i in time-series} . 

(1) 

 
This exercise resulted in normalised vector xBA(ti) in N-space for i = -N+1, …,-1,0. 

Prior to embarking on any time-series forecasting exercise it is important to 
establish whether the time-series in question incorporates any sort of inherent trends, 
otherwise by definition forecasting would be impossible.  For our case, the Random 
Walk Hypothesis testing determined that the time-series of interest (for most of the 
BA interactions) exhibited biased random walk behaviour with a “period” of 3 to 4 
months.  This observation implies that the ‘learnt’ generalisations of the inherent 
trends within the time-series data can at best be used to forecast no better than three 
months into the future.  This result allows us to determine an upper limit for the 
memory of the NN forecaster, i.e. N = 3  

4.3 NN Forecaster System: Design and Training 

NN, in particular backpropagation (BP) networks, can be used as effective non-linear 
general-purpose function approximators—the BP network is simply taught historical 
data of the time-series and the learnt BP network can be used to predict future 
outcomes. 

We have used the Back-Propagation (BP) NN with sigmoidal Feed-Forward (FF) 
learning [18] as the basis for our forecaster.  This NN model employs a supervised-
learning algorithm requiring a sample time-series of form xi = x(ti) where ti = t0+i∆t in 
which N past values (including the present) are used as input towards the calculation 
of future values for the time-series.  The limits imposed by the random-walk test 
require three past xBA values (i = -3,-2,-1) and the present (i = 0) to generate three 
future xBA value (i = 1,2,3).  Generation of the training pattern for the subsequent 
computational cycle requires the shifting forward of the 4-month temporal “past” 
window (now i = -2,-1,0,1) in order to generate future xBA values at i = 2,3,4.   The 
observed cyclic parameter, based on a 4 month temporal window, discussed in the 
previous section allows for design of a NN to model the time-series xBA(ti) for 
i = -3,-2,-1,0,1,2,3; with i = -3,-2,-1,0 as input and i = 1,2,3 as output.  This 
coresponds to a NN with 4 input and 3 output units. Experiments subsequently 
determined the optimal network configuration to be one with 10 hidden units. 

Intuitively, one expects the predicted accuracy to degrade with temporal distance, 
this will be demonstrated in the next section.  Finally, we have considered xBA(ti) and 
xBA′(ti) to be independent time-series, essentially for simplicity.  This means we do 



not take into account the effects of interaction BA on interaction BA′, although work 
is currently in progress to quantify this assumption. 

To develop the most efficacious NN model four different time-series representation 
schemes were studied, namely:- 

1. (S – R) time-series data used to train a single NN  
2. S and R data each used to train separate NNs  
3. Differential (dS – dR) data used to train a single NN 
4. dS and dR data each used to train separate NN 

Option four realised the best NN model as it appeared that the difference between 
past values of R/S reflects the magnitude of fluctuations between the R/S values with 
time.  For forecasting purposes this is a more important indicator of the behaviour of 
the system as opposed to the actual values of R/S.  Also, it was observed that keeping 
the S and R values in separate networks yielded better forecasting results.  This 
observation is in accordance with the fact that, in theory, the sensitivity and resistivity 
parameters are not reciprocal to each other.  Hence, in practice, they are not supposed 
to influence each other and can thus be modelled by separate NNs.  

4.4 Discussion of Experimental Results 

The major problem encountered in our work was the occasional absence of 
documented data.  The missing data value are inserted using linear interpolation so as 
to reconstruct the complete time series required for NN training.  When uninterrupted 
data does exist, the performance of the NN forecaster tends to be reasonably accurate.  
Fig. 1 shows, monthly (actual and forecasted) occurrences of Staphylococus Aureus 
sensitivity towards Cefuroxime (Graph P) and Acinetobacter sensitivity towards 
Amikacin (Graph Q).  As can be seen in Graphs P and Q (shown in Fig. 1), the time-
series of 1-month forecasted data tends to “track” fairly well with the actual 
documented incidence of bacterial-antibiotic sensitivity.  The 2-month and 3-month 
predicted time-series are successively less accurate. 
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Fig. 1. Monthly actual and forecasted BA occurrences.  In the legend, (P/Q)0 = Actual 
recorded data; (P/Q)1 = 1-mth; (P/Q)2 = 2-mth and (P/Q)3 = 3-mth predicted data 
 
In order to ascertain the absolute accuracy of the system, we subtracted off the actual 
data values from each predicted time-series.  Fig. 2 shows two graphs illustrating the 



differential comparison of monthly predictions against actual data for Staphylococus 
Aureus sensitivity towards Cefuroxime (Graph P) and Acinetobacter sensitivity 
towards Amikacin (Graph Q).  From Fig. 2, we are thus able to conclude that the 1-
month forecaster for both time-series produces output correct to within ±1 
occurrences of sensitivity, with the 2-month and 3-month predictions being 
successively less accurate.  Note that the discrepancy between predicted and recorded 
data tends to peak at the extremal points on the actual time-series, and that both 
predicted—especially the 1-month time-series—and recorded data tend to share 
similar minima and maxima.  The system is hence able to predict reasonably well 
whether BA sensitivity is increasing or decreasing, information which is probably 
more important than a numerical forecast. Comparable levels of accuracy are typical 
for the BA interactions in our analysis, leading us to conclude that NN-based 
forecasting is indeed a reasonably accurate tool to counter bacterial infections. 
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5 Infectious Disease Cycle Forecaster 

The Infectious Disease Cycle Forecaster (IDCF) is the end-product of our research 
efforts.  It allows remote health-care practitioners to forecast the behaviour of a 
bacteria/organism against one or more antibiotics.  With increasing user-acceptance, 
we migrated IDCF from a stand-alone system to a web-based client-server system.  
The clients (remote healthcare professionals) run the user-interface front end using 
any Web browser to the IDCF server.  Transactions between the client and server is 
via HTML pages—the client’s web browser sends forecasting requests (names of 
bacterial organisms, antibiotics, duration of forecast and so on) and BA input values 
to the IDCF server, CGI programs initiate and co-ordinate all NN operations and 
calculations and finally results (i.e. forecast reports and graphs) are again sent to the 
client in the form of HTML pages.  

The first panel in Fig. 3 shows the IDCF main input screen which requires 
specification of the organism, a list of interacting antibiotics, the nature of the forecast 
profile need to be generated, and the predictive time frame.  The forecasted results are 
displayed on a dynamically generated Web-page (as shown in the second panel in Fig. 



3), which illustrates the future S/R trends of the organism against the various selected 
antibiotics.   

Fig. 3. The main screen of IDCF’s web interface, followed by the forecast report for an 
exemplar bacteria-antibiotic interaction 

The numerical data describing the future trend of certain bacteria-antibiotic 
interactions can be viewed as follows:- 

• A single graph depicting either of the S or R profiles for one or more 
antibiotics (first panel of Fig. 4) 

• A single graph showing both the S and R profiles for one antibiotic (second 
panel of Fig. 4) 

with all graphs are generated dynamically from the NN output corresponding to one 
or more BA interactions. 

Fig. 4. Sample graphs illustrating the profiles of 3 different antibiotics against a common 
organism, and the S/R profile of a single antibiotic against a bacteria 

 



6 Concluding Remarks 

Typically, risk management—a scenario in a healthcare context being epidemic 
management—relies on human analysts to perform the necessary analysis of 
historical data and come up with a damage minimisation plan.  However, with large 
databases storing continuous historical data, any attempt at real-life prediction 
involves the introspection of thousands of historical data items, while trying to deduce 
the inter-relations between the data items.  Given this reality, we have argued that NN 
can serve as normative decision-support systems to predictive modelling problems—
NN can tackle data-defined problems by way of generating a mathematical model of 
the system from the collected time-series data.  The NN mathematical model, i.e. a 
generalisation of the system, not only automatically and inductively incorporates all 
the inherent inter-relationships between the various data items but it also exploits the 
‘learnt’ knowledge to predicts future values.   

In a typical disease control scenario, the strategy is to eradicate the culprit bacteria 
before it has the chance to spread and infect a larger population.  In this regard the 
utility of IDCF is paramount as it is able to systematically (and accurately) generate 
“future” knowledge of how one specific antibiotic—amongst a possible choice of 
several drugs—can be used with optimal effect at a particular time. Based on an 
IDCF-supplied prediction, informed decisions, such as discontinuation of less (or 
soon-to-be less) effective antibiotics in favour of more effective antibiotics, can 
subsequently be made by the respective agencies.  Furthermore, major healthcare 
institutions will find it helpful to know ahead of time that they need to maintain 
sufficient quantities of the drugs projected to be most useful in dealing with certain 
infections, while perhaps reducing stockpiles for other less effective ones. 

Finally, our results are significant because we have demonstrated that (a) NNs can 
offer a practical and automated solution to the problem of discovering knowledge 
from historical data to perform predictive modelling, and (b) NN-based learning 
techniques can provide ‘intelligent’ predictive modelling systems at a significantly 
lower cost in time and resource than traditional knowledge engineering.  
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