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Abstract  
We present a data mining framework to cluster optic nerve images obtained by Confocal 
Scanning Laser Tomography (CSLT) in normal subjects and patients with glaucoma. 
We use self-organizing maps and expectation maximization methods to partition the 
data into clusters that provide insights into potential sub-classification of glaucoma 
based on morphological features. We conclude that our approach provides a first step 
towards a better understanding of morphological features in optic nerve images 
obtained from glaucoma patients and healthy controls. 
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1. Introduction  

Glaucoma is an eye disease that is characterized by damage to the optic nerve and 
corresponding losses in the field of vision [1, 2]. The prevalence of the disease increases 
strongly with age, making the disease the second most important cause of blindness in North 
America and Europe. At present, neither the cause nor the natural course of the disease is 
well understood. However, novel eye imaging technologies such as confocal scanning laser 
tomography now allow for accurate and reproducible structural measurements of the optic 
nerve and surrounding retina, thought to be the key site of damage in glaucoma [3]. Over the 
last decade, imaging technologies have become more widely used clinically, mainly with the 
objective of improving the accuracy of diagnostic decisions in the care of glaucoma patients. 
The data from imaging devices are not, as yet, as well understood as those from older 

technologies [4]. Also, our understanding of the multi-factorial nature of the disease itself is 
evolving rapidly. An important theme in glaucoma research is the large variation in the 
appearance of the optic nerve, both within groups of healthy subjects and in patients with 
glaucoma [5], and the sub-classification of glaucoma patients according to morphological 
features is likely to be an important task in the future. It is now thought that patients with 
certain patterns of nerve damage may behave differently during the course of the disease [6], 
making it more important clinically to recognise and differentiate between such patterns. One 
principal problem with the sub-classification of patterns of optic nerve damage is that it is a 
subjective task, giving rise to considerable levels of disagreement even between highly 
trained experts.  
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Previous work in this area has largely focused on diagnostic accuracy, i.e. the distinction of 
diseased from healthy optic nerves. Artificial Neural Networks have been used for diagnostic 
decision-making with Confocal Scanning Laser Tomography (CSLT) images. This work 
suggested that machine classifiers can lead to small though significant gains in diagnostic 
accuracy over more traditional classifiers such as linear discriminant analyses [7].  
The equally important task of supporting the differentiation between different subtypes of 

healthy and glaucomatous optic nerves has not previously been attempted. Since there may 
not be any clear boundaries, we posit that unsupervised clustering of imaging data might be a 
way forward to identify different subtypes of healthy and glaucomatous optic nerves. Given 
the apparent lack of an objective characterization of optic disk images, our initial aim here is 
to propose an objective and automated method to characterize optic disk images into multiple 
sub-types. Our approach is not to pursue hard partitioning of the images into explicit 
sub-classes (that can be related to existing studies and evidence), rather seek a data-driven 
characterization of the optic disk images so as to acquire a smooth partitioning of the images 
into potential sub-classes (as inherent within the data) with flexible boundaries. The rationale 
here is that by analyzing the morphological features leading to these smooth partitioning we 
may be able to better understand their role and can relate them to other variables that might 
even be able to provide insights into the progression of the disease.  
Taking a data-driven approach and using machine learning algorithms, in particular 

self-organizing unsupervised neural networks, we learn and abstract from the glaucoma (and 
normal) image data the inherent class and sub-class structures. We posit that intra-cluster 
analysis may highlight the similarities between patients and give us an understanding of the 
role of the different morphological features in determining similarities at this level, whereas 
inter-cluster analysis may lead to objective, data-driven characterization of the disease in 
terms of broad classes and sub-classes of the disease patterns.  
In this paper we present a data mining framework that uses a mix of data clustering 

techniques to partition the optic disk data (of both normal subjects and glaucoma patients) 
into meaningful clusters. In particular we demonstrate the use of Self-Organizing Maps 
(SOM) [8] for the analysis of CSLT data with the objective of increasing the understanding 
of the data. We apply multiple test readings taken at intervals—i.e. multiple CSLT images 
obtained from the same subject —to analyze the dispersion of the test results within and 
across clusters. We present our results and conclude that our approach provides intuitive 
insight into the inherent relationships between the morphological features provided by CSLT 
imaging. We conclude that further study of the emergent clusters may enhance our 
understanding of optic nerve damage in glaucoma and may ultimately lead to more informed 
clinical care of patients with this disease. 

2. Clustering of CSLT Images: Methodology and Methods 

To meet the above-objectives we have designed a CSLT Images Clustering System, that 
firstly conducts a broad clustering of the data-set to partition the data into distinct clusters, 
and secondly draw soft boundaries around the prevalent clusters using EM algorithm [9]. 
There are three benefits of using SOM as the first abstraction level in the clustering [10]. First, 
the computational cost is reduced. Even with a relatively small number of samples, many 
clustering algorithms become intractably heavy. Second, data noise is significantly reduced 
because the prototypes are local average of the data and hence less sensitive to random 
variations than the original data. Third, the two dimensional SOM map allows a topological 
representation of the data and provides visualization of the clusters. The sequence of 
operations is as follows: 
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2.1 Step 1: Data and its Pre-Processing 

The CSLT data-set comprises 3479 optic disc images of 100 glaucoma patients and 63 
healthy controls, obtained in intervals of 6 months over a period of up to 9 years. Using the 
software of the Heidelberg Retina Tomograph [11], 17 morphological features were 
extracted from these images using a surface-fitting algorithm [12]. The features have 
continuous values and hence required some pre-processing. Since the SOM algorithm uses 
Euclidian metric to measure distances between data vectors, scaling of variables was deemed 
to be an important step and we normalized the variance of all variables to unity, and their 
means to zero. 

2.2. Step 2: Data Clustering Using SOM 

SOM is based on a competitive learning algorithm which leads to the formation of a 
topographic map of the input patterns in which the spatial locations (e.g., coordinates) of the 
units in the lattice are indicative of intrinsic statistical features contained in the input patterns. 
The principal goal of the SOM is to transform an incoming signal pattern of arbitrary 
dimension into a two-dimensional discrete map, and to perform this transformation 
adaptively in a topologically ordered fashion. The SOM learning algorithm involves three 
main processes—i.e. competition, cooperation, and synaptic adaptation—that constitute two 
phases of topological ordering of the data—in the first phase broad clustering is done to 
demarcate the data into potentially broad clusters, and then in the next phase fine-grained 
clustering is achieved by fine-tuning the emergent clusters and even breaking larger clusters 
into more meaningful and compact clusters.  
In our experiments, the topology of the SOM is a hexagonal lattice. The number of units is 

set to 5*sqrt (N), where N is number of input data vectors. Given the number of data vectors, 
we set the SOM to comprise 300 units arranged as 20 rows and 15 columns. The units were 
linearly initialized by first calculating the eigen-values and eigenvectors of the given data. 
Then, the map weight vectors are initialized along the two greatest eigenvectors of the 
covariance matrix of the training data. The SOM was trained using the sequential training 
algorithm in two phases: a rough training phase comprising 100 epochs starting with a large 
neighbourhood radius of 12 linearly reduced to 3 with learning rate 0.5. Then second 
fine-tuning phase runs for 1000 epochs with a small initial neighbourhood radius 3 that is 
reduced to 1 with learning rate 0.1. In both cases the neighbourhood function is Gaussian and 
the learning rate function is inversely proportional to time in order to ensure that all input 
samples have approximately equal influence on the training result. The resultant is a learnt 
SOM map that manifests clusters of similar data vectors, shown in Figure 1. Next, the 
projection of trained map is investigated by applying a principle component projection on the 
trained SOM (as shown in Figure 2). A U-matrix representation of the learnt SOM is used to 
observe the cluster structure of SOM. It shows distances between neighbouring map units: 
high values of the U-matrix indicate a cluster border, uniform areas of low values indicate 
clusters themselves. The U-matrix is achieved by spreading a colour map on the projection in 
figure 2. Based on the visualization offered by the SOM (figures 1-3), one can notice the 
presence of data clusters, hence the need to identify the cluster boundaries for a clearer view 
of the data.  
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Figure 1: Topological 
ordering of the data point on 
the SOM. Also shown is the 
number of hits each units 
receives for the entire 
data-set. 

Figure 2: Projection of the 
learnt SOM depicting the 
dispersion of the clusters. 

Figure 3: U-Matrix 
representation of the learnt 
SOM in figure 1. The 
representation does not exact 
indicate cluster boundaries. 

2.3. Step 3: Fine-Grained Clustering by Defining the Cluster Boundaries 

In this step, we attempt to objectively determine cluster boundaries, given our assumption 
that the distribution of the clusters within the trained SOM is Gaussian. Clustering using 
finite mixture models is a popular method. In this approach, the input data is generated from 
a mixture of component density functions where each component density function represents 
a component. The probability distribution function is given by: 

f (Xi | Φ) = π jP(Xi |θ j )j=1

k∑  

fj (Xijθj) is the probability density function for cluster j, πj is the proportion weight of cluster 
j, k is the number of clusters, Xi is a input data vector, θj is the set of parameters for cluster j, 
Φ = (π;θ) is the set of all parameters and f (XijΦ) is the probability density function of our 
observed data vector Xi given the parameters Φ. There is one method to estimate Φ by 
calculating Φ which maximizes the log-likelihood, log f (XjΦ) = ∑i=1

N log f (XijΦ). In order 
to get f (XijΦ), we find the assignments of all data points to the finite mixtures.  
The Expectation Maximization (EM) algorithm [9] is suitable to find distinct components in 

the case of Gaussian mixtures, it initiates with an estimate of the number of components and 
an initial guess of the component parameters. In general, the following steps were observed: 
Expectation step: This is the E step in which we determine the posterior probability for 

each component (cluster). 

E[zij ]
(t ) = p(zij =1 | X,Φ(t )) =

f j (Xi |θ j
(t ))π j

(t )

fd (Xi |θd
(t ))π d

(t )

d =1

k∑
 

Maximization step: This is the M step that involves updating the component proportion 
coefficients, the cluster means and the covariance matrices in each iteration. The proportion 
coefficient is updated using:  

∑ =

+ =
N

i
t
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t
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In our work we maximize the likelihood of the optic disc image data in distinct clusters 
given the parameters and our model—a maximum likelihood (ML) measure indicates how 
well the Gaussian mixtures fit the data into clusters. We use a Bayesian Information Criterion 
[9], where the best estimate (e.g., number of clusters, parameter estimates) is chosen based on 
the estimate that gives the highest value of BIC, such that BIC ≡ log (f (X|Φ)) – 0.5*P*log (N), 
where log (f(X|Φ)) is the log-likelihood of the observed data X given the parameters Φ. P is 
the number of free parameters in Φ, and N is the number of input data vectors. 
We initialize the EM using 10 random re-starts method, and then select a parameter setting 

to maximize the log-likelihood of our initial clusters. We run the EM clustering with different 
number of clusters. Table.1 illustrates the number of tested clusters K accompanied with their 
corresponding BIC values. Note that the BIC is 7953.1 when there are only 2 clusters, and it 
increases with increase in K such that when K = 5 we get the maximum value of 8799.5 for 
all reasonable values of K. Hence, we are able to determine that given the trained SOM there 
are 5 clusters in it that best fit our data (shown in Table 1).  

Table 1 - Number of clusters (K) vs. BIC values 

# of Clusters (K) 2 3 4 5 6 7 8 

BIC value 7953.1 8384.6 8733.5 8799.5 8697.1 8616.9 8608.9 

To finalize the cluster boundaries for the 5 clusters determined earlier, we calculate the 
assignment probabilities of each data point to all the cluster labels, the cluster label with the 
highest probability value is assigned to the data point. Figure 4 shows the SOM with the 
emergent clusters, the clusters are colour coded for visualization purposes.  

3. Evaluation and Concluding Remarks 

The partitioned SOM, as shown in figure 4, is evaluated in terms of its efficacy in 
representing the optic disc images for individual subjects. This method serves two purposes: 
(1) estimation of the compactness—a measure of cluster goodness—of the emergent clusters 
vindicating the efficiency of the SOM method; and (2) visualizing the dispersion of multiple 
observations from any individual subject.  
In figures 5 (a&b) we applied multiple optic disk images for two healthy control subjects to 

the learnt SOM. The images were obtained over a time period of 3 and 5 years, respectively, 
in intervals of 6 months. It may be noted that the data maps in close proximity to each other, 
and is confined to a small topological area on the map. Moreover, most repeated images 
activate the same map units, demonstrating little variability within the measurement series of 
these subjects.  
Next, we mapped the data from the glaucoma patients to the learnt SOM. For each patient, 

multiple images were available, obtained at intervals of 6 months. Figure 6(a, b & c) show the 
results for three glaucoma patients. The results indicate that the data of each of these three 
patients cluster into different regions of the map. Some dispersion is evident which lead to 
crossing of the cluster boundaries. This dispersion may be due to several factors, primarily 
random variability in the measurements as well as systematic changes in optic disc 
topography over time (disease progression). Based on the evaluation, one can assume that the 
top-left region represents data from normal subjects, while the emergence of 4 other regions 
is tantamount to the presence of four morphological patterns of glaucomatous optic discs 
within the data. 
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Figure 4: The final SOM 
 

Figure 5a: SOM for healthy 
controla 

Figure 5b: SOM for healthy 
controlb 

   
Figure 6a: SOM for 
glaucoma patientx 

Figure 6c: SOM for 
glaucoma patienty 

Figure 6c: SOM for 
glaucoma patientz 

In conclusion, the data-driven clustering approach presented in this paper is the first step 
towards automated characterization of morphological patterns in optic disc data from healthy 
subjects and patients with glaucoma. 
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