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Abstract 

Confocal Scanning Laser Tomography (CSLT) techniques 
capture high-quality images of the optic disc (the retinal re-
gion where the optic nerve exits the eye) that are used in the 
diagnosis and monitoring of glaucoma. We present a hybrid 
framework, combining image processing and data mining 
methods, to support the interpretation of CSLT optic nerve 
images. Our framework features (a) Zernike moment methods 
to derive shape information from optic disc images; (b) classi-
fication of optic disc images, based on shape information, to 
distinguish between healthy and glaucomatous optic discs. We 
apply Multi Layer Perceptrons, Support Vector Machines and 
Bayesian Networks for feature sub-set selection and image 
classification; and (c) clustering of optic disc images, based 
on shape information, using Self-Organizing Maps to visualize 
sub-types of glaucomatous optic disc damage. Our framework 
offers an automated and objective analysis of optic nerve im-
ages that can potentially support both diagnosis and monitor-
ing of glaucoma.  
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Introduction 

Glaucoma is an eye disease that is characterized by slow pro-
gressive damage to the optic disc and corresponding deteriora-
tion of the patient’s vision [1]. At present, there is a gap in the 
understanding of the cause, the types and the natural course of 
glaucoma. The use of sophisticated imaging technologies, 
such as Confocal Scanning Laser Tomography (CSLT), cap-
ture 3-dimensional images of the optic disc that are used for 
diagnostic purposes [2]. However, the interpretation of CSLT 
images is a manual and subjective process—a trained profes-
sional has to manually define the margins of the optic nerve 
based on his/her training and expertise and then classify the 
optic nerve as normal or glaucomatous. The current process 
allows for misjudgments/errors in the interpretation of the 
CSLT image, inability to distinguish between actual and noisy 
images and variance in the diagnostic recommendations over a 
set of practitioners. The challenge, therefore, is to automate 

the analysis of CSLT images of the optic disc, in an objective 
and quantifiable manner, to support practitioners in the diag-
nosis and therapeutic management of glaucoma.  

Researchers have analyzed optic nerve data and CSLT based 
images with varying results. Bowd et al [3], working with 
retinal tomography images applied forward and backward 
feature selection methods for training Multi Layer Perceptron 
(MLP), Support Vector Machine (SVM) and linear discrimi-
nant functions; Park et al [4] used correlation analysis and 
forward wrapper model to select features from optic disc data 
for training SVM classifiers; Swindale et al [5] used a wrapper 
model for feature selection to train SVM classifiers.  

We have developed a data-driven Glaucoma Diagnostic Sup-
port (GDS) system that features the automatic interpretation of 
CSLT topography images of the optic nerve to support (a) the 
classification of the optic disc images to distinguish between 
healthy and diseased optic discs; (b) the identification of the 
sub-types of glaucomatous optic disc damage. This is to help 
further sub-classify the glaucoma patients in order to provide 
treatments in line with the specific morphological patterns of 
damage [6]; and (c) the visualization of the temporal progres-
sion of the disease for a patient over a period of time.  

In this paper we present an automated approach to CSLT to-
pography image analysis to support glaucoma diagnosis. Our 
multi-stage approach is a hybrid of image processing and data 
mining methods. In Stage 1, we apply image-processing tech-
niques to CSLT images to derive image-defining features. In 
Stage 2, we apply data classification methods to the image’s 
shape-defining features to develop classifiers that can dis-
criminate between healthy and glaucomatous optic discs. An 
important task at this stage is feature selection whereby we 
select an optimal subset of image features that exhibit high 
image classification capabilities. In Stage 3, we apply data 
clustering techniques to the optimal subset of image-defining 
features in order to identify the different sub-types of glauco-
matous images in the image data-set. The emergent image 
clusters are subsequently used to both visualize the progres-
sion of the disease and the identification of noisy optic nerve 
images. In Stage 4, we apply rule-induction techniques to the 
optimal subset of features to induce classification rules (not 
discussed here). These symbolic rules provide practitioners 
with a justification of the diagnostic recommendations by our 



image classifiers. For our experiments, we worked with 1257 
tomography images taken at different time intervals from 136 
subjects (51 healthy subjects and 85 glaucoma patients). 

Methods 

Figure 1 illustrates the functional design of our GDS system. 
We explain the methods developed for each processing stage.  

 
Figure 1 – Functional design of our GDS system 

Stage 1: CSLT Image Processing 

This stage involves the extraction of shape-defining features 
from CSLT images. These features are used to develop the 
image classification and clustering models. We use an image 
processing technique referred to as Moment Methods that de-
scribes the properties of connected regions in binary images as 
Moment features. We use Zernike moments [7] which use a 
set of complex polynomials to describe the image’s properties 
by their order (n) and repetition (m) with respect to a digital 
image—the low order moments capture gross shape informa-
tion and high order moments incrementally resolve high fre-
quency information (representing detail) of the digital image. 
Two attractive features of Zernike moments for our purpose is 
that (a) moments can be made invariant to shifts, rotations and 
magnification changes; and (b) the optic nerve is centered in 
the image, thus avoiding the requirement for an independent 
segmentation stage in which the object is explicitly identified. 

For each CSLT image we generated 254 Zernike moments, 
grouped in an incremental order ranging from 1 to 29—each 
group comprises a set of ordered moments. Low order mo-
ments capture fundamental geometric properties and high or-
der moments represent detailed information of the image [7].  

For efficient classification of CSLT images, it was important 
to select an optimal number of lower order moments. This is a 
non-trivial task because: (a) there is no objective measure to 
determine the exact number of (low order) moments needed to 
achieve high classification accuracy; and (b) there is no dis-
cernable relationship between the moments that can be util-
ized. Given these challenges, next we pursue feature subset 
selection in conjunction with image classification. 

Stage 2: Classification of CSLT Images 

In the previous stage, we derived a 254 moment based repre-
sentation for each CSLT image. In this stage, we pursue the 
classification of CSLT images based on a sub-set of low order 
moments. This stage therefore involves two tasks—i.e. firstly 
feature (sub-set) selection and secondly image classification. 
We have developed a two-pass image classification method 
that incorporates feature sub-set selection as an integral ele-
ment (see Figure 1). In the first pass, MLP and SVM based 
wrapper models are simultaneously used to generate a Moment 
Feature Subset (MFS) consisting of low order moment fea-
tures. In the second pass, we apply a Markov blanket filter 
method [8] based on an inferred Bayesian network to select 
the highly relevant moments from the MFS—i.e. the Optimal 
Moment Feature Subset (OMFS)—that offers reasonably high 
image classification despite using a small number of moments. 

Pass I: Using MLP and SVM 

In the absence of any guiding principle to determine the size 
of the MFS, we devised an accumulative feature subset selec-
tion strategy as follows: (a) Generate training-set by incremen-
tally adding the next higher order moments to an existing 
training set. We exploited the intrinsic partitioning of the 254 
moments in terms of their order ranging from 1 to 29. There-
fore, feature subset1 included moments with order2, feature 
subset2 includes moments with order 2 and 3, and so on. In 
total 29 different training sets were generated, where each 
training set covered all the images based on the moment or-
ders chosen to represent it; (b) Train both a MLP and a SVM 
classifier separately using the 29 training sets. In total, 29 dif-
ferent MLP and SVM classifiers were trained. For training the 
MLP and SVM, we partitioned the images so that 75% images 
were used for training and 25% images were used for testing. 
For training the SVM, based on the training data a 5-fold cross 
validation was performed to find the optimal hyper parame-
ters: C and λ; and (c) Determine the classification accuracy of 
both classifiers, using the test images that are represented by 
the same number of moments as used to train the classifier.  

The next step was to determine the size of the MFS and based 
on it to select the most efficient MLP and SVM classifier. Our 
objective was to select the largest possible number of mo-
ments without compromising the classification accuracy. To 
do so, we plotted the classification accuracy of both classifiers 
and then identified the highest accuracy point on the plot (i.e. 
with respect to n moment groups) just prior to a downward 
trend in the classification accuracy as a result of the inclusion 
of the next higher moment group. The most low order moment 
groups that achieved the highest classification accuracy were 
selected as the MFS. And, the MLP and SVM classifiers 
trained using the MFS were deemed as the most efficient.  

A comparison of the classification accuracy trends for both the 
MLP and the SVM classifiers (see figure 2) shows that both 
classifiers exhibited a similar classification accuracy trend—
i.e. they both start with a relatively high accuracy with the first 
moment group and then the accuracy drops with the addition 
of the next few moment groups. But later the accuracy starts to 
pick up again such that for the MLP it peaks when the feature 
subset constitutes the first 8 moment groups, whereas for the 



SVM the accuracy peaks for the first 11 moment groups. It is 
interesting to note that the classification accuracy with higher 
order moment groups is relatively low as compared to the 
peak achieved with just the lower order moments. 

Based on classification accuracy trend for both classifiers 
(shown in figure 2), we determined the MFS to contain the 
first 11 moment groups—i.e. the first 47 moments. With 11 
moment groups the SVM exhibited the highest accuracy and 
the MLP produced its second highest accuracy level.  
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Figure 2 - Classification accuracy for both MLP and SVM 

Pass II: Using Markov Blanket and Bayesian Network 

In the second pass, we attempt to further reduce the size of the 
MFS in order to generate the OMFS that comprises only the 
highly salient moments. We use a filter model based on a 
Bayesian Network (BN) and the Markov blanket of the class 
label [8]. The choice of Markov blanket is guided by the ob-
servation that the correlation between most of the moments 
and their class label is weak, and the same is true for correla-
tion between different moments. Hence, correlation based 
feature selection methods are not suitable here. We decided to 
use the Markov blanket approach as it considers every fea-
ture’s probability dependence relationship during the learning 
procedure of the Bayesian network's structure.  
In a BN where CA is the set of children of node A, and QA is 
the set of parents of node A, the subset of nodes containing 
QA, CA and the parents of CA is called Markov blanket of A 
[8]. The Markov blanket of a specific feature is a subset of 
nodes in the BN; it comprises the feature's parent nodes, child 
nodes and all parent nodes of the child nodes. If we consider 
the class label node as the root node to learn a BN from data, 
then all nodes within the Markov blanket of the class node 
have probabilistic dependence relationship with it.  

The steps to generate the Markov blanket were as follows: 
Step 1: We used the K2 algorithm to learn the BN. Initially, 
the 47 moments in the MFS were discretized using an entropy-
based method, resulting in 29 moments to be discretized into a 
single value. These moments were removed from the MFS. 
Thus we were left with only 18 moments for training the BN. 
The following moments were retained: moments {1, 2, 5, 6, 7, 
12, 16, 21, 23, 25, 27, 33, 36, 37, 43, 44, 45, 46}. Step 2: A 
BN was trained using the18 moments in their original order. 
Five-fold stratified cross validation was used to evaluate the 
classification accuracy (see table 2 for results). Step 3: The 18 
moments were ordered based on the chi squared statistical test 
score x2 between the moments and their class labels. The mo-
ments with the highest x2 were: {1, 43, 16, 25, 21, 23, 6, 5, 36, 

2, 27, 33, 37, 7, 46, 45, 44, 12}. A BN was learnt using the 
ordered moments (see table 2 for results). Step 4: From the BN 
learnt in step 3, we inferred the Markov blanket of the class 
label and found that only six (6) moments {1, 6, 16, 21, 37 
46} were within the Markov blanket of the class label. These 
six moments were selected to form the OMFS. Step 5: In order 
to determine the classification capability of the selected 
OMFS we used them to train a BN. Next, 5-folds cross valida-
tion's classification accuracy was calculated (see table 2 for 
results) and it was noted that the OMFS offers quite high clas-
sification accuracy.  

Stage 3: Clustering of CSLT Images 

In this stage we pursued the clustering of the CSLT optic 
nerve images, represented using the 47 moments in the MFS, 
to differentiate between the different subtypes of healthy and 
glaucomatous optic nerves. It may be noted that an important 
theme in glaucoma research is to develop an understanding of 
the large variation in the appearance of the optic nerve, both 
within groups of healthy subjects and in patients with glau-
coma. It is therefore important, from a clinical standpoint, to 
recognise and differentiate between such patterns. However, 
the problem with the sub-classification of patterns of optic 
nerve damage is that it is a subjective task, giving rise to con-
siderable levels of disagreement between trained experts. In 
this context, our aim was to develop an objective and auto-
mated method to characterize optic nerve images.  

Our two phase clustering strategy was to: (a) partition the im-
ages into distinct clusters using Self Organizing Maps (SOM); 
and (b) draw clear and distinct boundaries around the clusters 
using the Expectation Maximization (EM) algorithm [9].  

Phase A: Data Clustering Using SOM 

We used a SOM to cluster the CSLT images based on the 
similarities between image shapes, where each cluster may 
represent a different subtype of healthy and glaucomatous 
optic nerves. The training of the SOM was conducted as fol-
lows: (i) we determined the topology of the SOM to be hex-
agonal lattice comprising 192 units that were arranged as 16 
rows and 12 columns; (ii) The units were linearly initialized 
along the two greatest eigenvectors of the covariance matrix 
of the training data—i.e. images represented using the 47 
moments in the MFS; (iii) The SOM was trained using a se-
quential training algorithm by first running a rough training 
phase comprising 100 epochs starting with a large neighbour-
hood radius of 12 that was linearly reduced to 3 with a learn-
ing rate of 0.5. This was followed by a second fine-tuning 
phase comprising 1000 epochs with a small initial neighbour-
hood radius 3 that was reduced to 1 with learning rate of 0.1. 
In both cases a Gaussian neighbourhood function was used 
and the learning rate function was set to be inversely propor-
tional to the training epochs; (iv) Finally, we achieved a 
trained SOM that placed similar images into close proximity, 
thus leading to the image clusters. We applied principal com-
ponent projection to the learnt SOM to determine its projec-
tion. This was followed by developing a U-matrix representa-
tion of the learnt SOM by spreading a colour map on the pro-
jection. Based on the visualization offered by the SOM, it was 
noted that the data was partitioned into discernable clusters.  



Phase B: Defining the Cluster Boundaries 

After determining broad clusters of CSLT images, in this 
phase we objectively determine the cluster boundaries. The 
processing was guided by our assumption that the distribution 
of the clusters within the learnt SOM is Gaussian. Therefore, 
we used the EM algorithm [9] as it is suitable to find distinct 
components in the case of Gaussian mixtures. Functionally, 
the EM algorithm initiates with an estimate of the number of 
components and their parameters. Our strategy was to maxi-
mize the likelihood of the optic nerve images into distinct 
clusters given the parameters and a maximum likelihood 
measure that indicated how well the Gaussian mixtures fit the 
data into clusters. We used a Bayesian Information Criterion 
(BIC) [9], where the best estimate (e.g., number of clusters) 
was chosen based on the highest BIC value. 

To achieve the cluster boundaries, using the EM method with 
BIC, we initialized the EM using 10 random re-starts method, 
and then selected a parameter setting to maximize the log-
likelihood of our clusters from the SOM. EM clustering was 
performed for different number of clusters. Table 1 shows that 
the maximum BIC is achieved when K = 4. Hence, we deter-
mined that given the learnt SOM there are 4 clusters—one 
cluster represents health images and the three clusters for sub-
types of glaucomatous images—in it that best fit the data (see 
Table 1). To finalize the cluster boundaries for the 4 clusters, 
we calculated the assignment probabilities of each CSLT im-
age to all the cluster labels, the cluster label with the highest 
probability value was assigned to the CSLT image. Figure 2a 
shows the SOM with the emergent clusters, the clusters are 
coded using grey scale for visualization purposes.  

Table 1 – Number of clusters vs. BIC values 

K 2 3 4 5 6 7 8 
BIC  29100 30409 31354 30516 29125 27456 25486 

Evaluation and Discussion 

In this section we present the evaluation results for the various 
methods developed for stages 2 and 3 of our GDS system.  

Evaluation 1: Evaluating CSLT Image Classification  

Table 2 presents the CSCLT image classification accuracy for 
the different classifiers trained in phase 2, using test images 
not previously seen by the classifiers. It is interesting to note 
that both the MLP and the SVM classifiers offered higher ac-
curacy with the MFS as compared to the original 254 mo-
ments. This vindicates our hybrid feature sub-set selection 
strategy, and also confirmed the theoretical assumption that 
low order moments contain more shape information that is 
relevant for classification as compared to the information con-
tent of high order moments. In the second pass, we determined 
that the MFS could be further reduced to just 6 moments—i.e. 
the OMFS—without compromising the classification accu-
racy. The highest accuracy for MFS was offered by the 
SVM—i.e. 86.96%. The highest accuracy for the OMFS was 
83.82% offered by a BN. Therefore, the compromise in classi-
fication accuracy is just 3 %, yet the gain in computational 
efficacy is quite significant. Note that the BN (with Markov 
Blanket) offers the most optimal classification results when 

compared with both MLP and SVM trained on the OMFS. We 
therefore selected the BN classifier trained with the OMFS to 
distinguish between healthy and glaucomatous optic nerves.  

Table 2 - Classification accuracy for different classifiers 

Feature Subset Size Classifier Accuracy 
Pass I 
254 moments MLP 72.88% 
254 moments SVM 77.50% 
47 moments in MFS MLP 74.00% 
47 moments in MFS SVM 86.96% 
Pass II 
18 moments (original order) BN 77.21% 
18 moments (chi2 order) BN 80.88% 
6 moments in OMFS BN 83.82% 
6 moments in OMFS SVM 80.26% 
6 moments in OMFS MLP 72.84% 

Evaluation 2: Examining the CSLT Image Clusters 

Evaluation of the clustering stage involved mapping a series 
of optic nerve images for individual patients (i.e. test cases 
with explanations provided by experts) onto the SOM and 
noting the Compactness Factor (CF) between the activated 
units. The CF measures how close the images are with respect 
to each other in terms of the average distance between the cen-
troid of all active units. The CF is an objective measure for 
evaluating the clustering goodness based on our initial obser-
vation that for a patient the series of optic nerve images are 
quite similar over a period of time; over time the differences 
are quite minute and should not lead to large variations be-
tween consecutive images. This implies that when visualizing 
the optic nerve images for a subject, the active units should be 
in close proximity and therefore yield a low CF. 

  

Figure 2a – SOM showing all 
images mapped to a unit 

Figure 2b – SOM showing all 
images mapped in one cluster 

Figure 2a show that the results for patient 4209643, and it 
maybe noted that the 7 optic nerve images, taken over a period 
of time, map on to a single SOM unit resulting in a compact-
ness factor of to 0. The numeral within the active unit shows 
the number of images mapping on to that unit. This demon-
strates the best possible clustering outcome as the learnt SOM 
recognizes the similarity between all the ‘healthy’ optic nerve 
images for this patient. Figures 2b shows the 11 optic nerve 
images of patient 112455 being mapping on to 4 neighboring 
SOM units within one cluster, with a compactness factor of 
0.20808. This result again implies the close proximity of the 



images for this patient. These results are in line with the visual 
observations of these images by experts, who also concurred 
that the images for these patients are quite similar in shape.  

Evaluation 3: Visualizing Disease Progression Over Time 

We use the learnt SOM to visualize the disease progression 
for a patient over a period of time. Images taken over time for 
a patient were mapped onto the SOM. The pattern of the ac-
tive units indicated the potential progression of the disease 
from one cluster to another, where each cluster may represent 
images of a specific glaucoma sub-type. In Figure 3a the im-
ages fall into two adjoining clusters, and the path across the 
clusters suggests the progression of the disease from one sub-
type to another. Figure 3b shows the progression over time. 
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Figure 3a - SOM showing 
the dispersion of images 

over two adjoining clusters 

Figure 3b – The disease pro-
gression path. Note the high 

CF between the images 

  

Figure 4a - SOM showing a 
noisy image that is distant 

from the other images.  

Figure 4b – The spike shows 
that the 2nd image is noisy, as 
it does not follow the pattern. 

Evaluation 4: Identifying Noisy CSLT Images 

We used the learnt SOM to identify noisy CSLT images that 
typically occur due to various factors related to the capture of 
the optic nerve image. With the knowledge that consecutive 
images do not manifest drastic changes, if an image is noted to 
be significantly dissimilar from its neighbors it can be re-
garded as a noisy image. At present there are no objective 
means to identify noisy CSLT images. Figure 4 (a-b) shows 
14 images for a patient, where the 2nd image is identified as a 
single noisy image because it is in a different cluster, whereas 
the remaining images all map onto just two other units that are 
very close to each other.  

Concluding Remarks 

We presented a data mining framework to objectively analyze 
medical images, and applied it to investigate glaucoma. The 
novel features of our approach are that: (a) we process CSLT 
images to derive shape information by using image processing 
techniques. This is in contrast to the traditional approach of 
using morphological features to analyze CSLT images; (b) we 
have developed a feature selection strategy that identifies the 
most salient image-defining features without compromising 
the classification accuracy; and (c) we are able to visualize the 
CSLT images in terms of clusters of similar images. These 
clusters provide an opportunity to visualize the dispersion of 
multiple observations for a subject, and we show how this 
information can help to (i) determine a potential progression 
of the disease due to changes in the optic disc over time; and 
(ii) identify noisy CSLT images. We believe that our frame-
work takes a step towards the automated and objective analy-
sis of optic nerve images to support glaucoma diagnostics.  
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