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Abstract. In this paper we present a strategy together with its computational 
implementation to intelligently analyze data clusters in terms of symbolic 
cluster-defining rules. We present a symbolic rule extraction workbench that 
leverages rough set theory to inductively extract CNF form symbolic rules from 
un-annotated continuous-valued data-vectors. Our workbench purports a hybrid 
rule extraction methodology, incorporating a sequence of methods to achieve 
data clustering, data discretization and eventually symbolic rule discovery via 
rough set approximation. The featured symbolic rule extraction workbench will 
be tested and analyzed using several well-known biomedical datasets. 

1.   Introduction 

The on-going information revolution is generating volumes of data, from sources 
as diverse as banking transactions, scientific explorations, telecommunication 
networks, space science, medical systems, human genome research and so on. Indeed, 
there is an imperative on the intelligent analysis of such large volumes of data so as to 
derive intrinsic strategic knowledge—knowledge encoded in terms of trends, patterns, 
associations, constraints, business rules, etc.—that can impact to optimize decision-
support, business competitiveness and other services-oriented portfolios.  

Data clustering is a popular data analysis task that involves the distribution of ‘un-
annotated’ data (i.e. with no a priori class information), in an inductive manner, into a 
finite sets of categories or clusters such that data items within a cluster are similar in 
some respect and unlike those from other clusters. If one regards data as an 
underlying quantitative statement about a system’s behavior—either human or 
engineered—within a particular environment, then exploratory data clustering 
algorithms attempt to learn the topology of the data by analyzing the inherent 
similarities and differences of the individual data items in the untagged data set.  

Notwithstanding the efficacy of traditional data clustering techniques, it can be 
argued that the outcome of a data clustering task does not necessarily explicates the 
intrinsic relationship between the various attributes of the dataset. What we mean here 
is that the output of a data clustering task does not provide the value-added 
knowledge—most preferably in a symbolic formalism such as deductive rules—
defining both the structure of the emerged clusters and the cluster membership 
principles. From an intelligent data analysis perspective, cluster-defining knowledge 



is highly desirable as it can provide interesting insights into the complex inter-
relationships between the various data attributes.  

The featured work is motivated by the desirability of deriving cluster-defining 
knowledge for a priori defined data clusters [1]. We present a multi-strategy approach 
for the automated extraction of cluster-defining Conjunctive Normal Form (CNF) 
symbolic rules from un-annotated data-sets. The motivation for our work stems from 
the individual effectiveness of various data analysis mechanisms: (1) cluster 
formation via unsupervised clustering algorithms, (2) data-set simplification and 
attribute selection via attribute discretization, and (3) symbolic rule extraction via 
rough set approximation [2]. We have implemented a generic Symbolic Rule 
Extraction Workbench (see Figure 1) that can generate cluster-defining symbolic rules 
from continuous-valued data, such that the emergent rules are directly applicable to 
rule-based expert systems [3]. 
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Fig. 1.  The Functional Architecture of the Symbolic Rule Extraction Workbench 

2.   Rough Sets: A Brief Overview 

The main objective of rough set mediated data analysis is to form approximate 
concepts about the data based on available classification or decision information [2]. 
These data-defining approximate concepts generated via rough set analysis are 
typically represented as succinct symbolic rules that provide an explanation about 
inter-attribute dependencies, attribute importance and topology-defining information 
vis-à-vis an annotated data-set. 

In rough set framework, annotated data is represented as a decision system, Γ 
defined as a pair Γ = (U,A), where U is a finite set of objects called the universe and A 
is a finite set of attributes. For every a ∈ A, a:UÆ Va , where Va ≠ ∅ is called the 
values set of a. Attributes in A are divided into two disjoint sets, A = C U {d}, where 
{d} ∉ C is the singular decision or class attribute and C is the set of condition 
attributes. Hence Γ can be denoted as Λ = (U, C U{d}).  

Rough sets based data analysis, leading to symbolic rule extraction involves the 
following processing steps: 
� Definition of an approximate space by finding indiscernibility relations between 

objects in the universe. Two objects, x, y∈U are indiscernible when they are 
equivalent with regards to their attributes and values. With any subset B ⊆ A – {d} 
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or B ⊆ C, an indiscernibility relation I(B) partitions the universe into separate sets 
called equivalence classes, [x]I(B) , which denotes the set of all objects equivalent to 
x in terms of all attributes in B. The indiscernibility relations are used to reduce the 
size of the universe such that only a single element of the equivalence class is 
required to represent the characteristics of the entire class. 

� Concept approximation is achieved by the reduction of the data-set by retaining 
only those attributes that contribute towards the preservation of the indiscernibility 
relation. The minimum subset of attributes retained to maintain ‘indiscernibility’ of 
all objects in the data-set—i.e. the minimal set of attributes that can differentiate all 
equivalence classes in the universe—are called reducts. A set of reducts are next 
computed by eliminating superfluous attributes a when there exist B’ ⊆ B where a 
∈ B, a ∉ B’ and I(B’) = I(B).  

� Symbolic decision rules can next be synthesized from the set of reducts. A decision 
rule provides a definitive description of the concepts within the universe in terms 
of a statement of the form “if Conditions are True then Outcomes are True”. In 
practice, a decision rule is synthesized by superimposing the reduct with the 
decision system—i.e. by taking for each attribute in the reduct its corresponding 
value from objects in the dataset together with their decision values. For instance, 
given the reduct {a1, a3}, where ai ∈ C, i = 1,…,C and the values set of ai, Va

i 
and the values set of D, Vd, where d ∈ D, the decision rule for Γ is 

IF a1 = Va
1(j) and a3 = Va

3(j) THEN  D = Vd(j), for j = 1, 2, …,U. (1) 

Finally, the decision rules are assessed in terms of their measure of accuracy—i.e. 
how well they perform in predicting the class or outcome of new data patterns.  

3.   Extracting Cluster-Defining Symbolic Rules: A Multi-Strategy 
Approach 

In our work, we intend to extract symbolic rules from un-annotated datasets 
comprising an undifferentiated collection of continuous-valued multi-component 
data-vectors S , for which the classification attribute c  for 

α ∈ [1, k] is unknown [5]. We have postulated a multi-strategy approach that dictates 
the systematic transformation of un-annotated data-sets to deductive symbolic rule-
sets via a sequence of phases, as described below: 

}]n,1[i:{xi ∈= α=)(xi

3.1  Phase 1 - Data Clustering 

Given an un-annotated dataset satisfying the above assumption, we first partition it 
into k clusters, where each cluster comprises data-vectors with similar inherent 
characteristics. Note that the data clustering task is carried out with no a priori 
knowledge about the intrinsic class structure—i.e. how the data is inherently 
partitioned into distinct clusters. In practice, the data clustering algorithm inductively 



derives the class information and partitions the data-set accordingly. We use the 
popular K-Means data clustering algorithm primarily due to its effectiveness and 
procedural simplicity [6]. The net outcome of this phase is the availability of k 
number of data clusters, which forms the basis for subsequent discovery of symbolic 
rules that define the structure of the discovered clusters. 

3.2  Phase 2 - Data Discretisation 

The motivation for this phase is driven by the fact that ordinal or continuous valued 
attributes are proven to be rather unsuitable for the extraction of concise symbolic 
rules. Henceforth, the necessity to discretise continuous-valued attributes to discrete 
intervals—i.e. reduce the domain of values of an attribute to a small number of 
attribute-value ranges—where each interval can be represented by a label/token.  
More attractively, the data discretization phase not only reduces the complexity and 
volume of the data-set, but also serves as a attribute filtering mechanism, whereby 
attributes that are deemed to have minimum impact on the class specification can be 
eliminated. In our work, we employ two data discretisation methods: (1) statistical 
discretization via Chi-2 [7] and (2) class information entropy reduction via MDL 
partitioning [8]; their respective results provide for an interesting contrast.  

3.3  Phase 3 - Symbolic Rule Discovery 

We use rough set approximation—an interesting alternative to a variety of 
symbolic rule extraction methods [9,10]—to derive symbolic rules that explain the 
inherent dependencies, attribute significance and structural characteristics of the 
annotated and clustered data-set. We have devised a three step methodology for the 
generation of symbolic rules from annotated data. 

3.3.1  Step 1: Construction of Dynamic Reducts 
First we randomly partition the discretized data into two disjoint sets: a bigger 

training set (70% of the dataset) and a smaller testing set (30% of the dataset). Next, 
we create 50 sub-samples of the training data-set by selecting 10 different random 
samples comprising 90% of the training data, and likewise 10 different random 
samples each of 80%, 70%, 60% and 50% of the training data. The rationale for this 
approach is to give multiple perspectives of the training data to the rule discovery 
algorithm in order to accumulate a larger set of rules and also to ensure a self-
critiquing mechanism, whereby inter-sample rules critique each other for rule veracity 
purposes. From the 50 sub-samples of the training data, we compute multiple 
dynamic reduct-sets using genetic algorithm based methods [11,12,13,14]. Finally, we 
select dynamic reducts—i.e. those reducts that have a high frequency of occurrence 
across all the available reduct-sets—from all the available reduct-sets generated from 
the multiple data sub-samples. Standard search methods are employed over all the 
available reduct-sets to collect a unified set of dynamic reducts that is representative 
of the entire data.  
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3.3.2  Step 2: Generate Symbolic Rules 

We proceed to generate symbolic rules from the set of dynamic reducts. Instead of 
using all the dynamic reducts to generate a large set of symbolic rules, we attempt to 
generate symbolic rules from the shortest possible length dynamic reducts; the 
rationale being that shorter length dynamic reducts have been shown to yield concise 
rule-sets that exhibit higher classification accuracy and generalization capabilities [4]. 
This implies the need to initially select dynamic reducts of the shortest possible length 
followed by the generation of rules from the selected dynamic reducts. Our rule 
generation strategy therefore involves: (1) the selection of dynamic reducts that have 
a short length and (2) the generation of rules that satisfy a user-defined accuracy level. 
Our strategy for generating symbolic rules is as follows: 
Step 1 :  Specify an acceptable minimum accuracy level for the rule set. 
Step 2 : Generate 50 random sub-samples of different sizes as described in section 

(3.3.1). 
Step 3 : Find dynamic reducts from the sub-samples and place in set DR. Note that 

DR will comprise reducts with varying lengths. 
Step 4 :  From the reducts in DR determine the shortest reduct length (SRL).  
Step 5 :  From DR, collect all reducts that have a length equal to SRL and store them 

as set SHRED. 
Step 6 :  Generate symbolic rules from the reducts placed in SHRED. 
Step 7 : Determine the overall accuracy of the generated rules with respect to the test 

data. 
Step 8 : IF Overall accuracy of the generated rules is lower than the minimum 

accuracy level AND there exist reducts in the DR set with length > SRL 
THEN Empty SHRED AND Update the value of SRL to the next highest 
reduct length in DR AND Repeat from step 6. 
ELSE  
Symbolic rules with the desired accuracy level cannot be generated. 

At the conclusion of the above rule generation strategy we will ideally have a non-
empty SHRED that will contain reducts yielding a set of rules that satisfy the 
acceptable accuracy level.  

3.3.3  Step 3: Rule Filtering 

The rule-set generated in Step 2 (3.3.2) will then undergo a filtering process guided 
by the following filtering criteria: (1) Right-hand-side (RHS) support of a rule—i.e. 
the number of patterns in the training set which support the consequent of a rule; (2) 
Left-hand-side length (LHS) length—i.e. the number of attribute-value pairs in the 
antecedent (or condition) of a rule; and (3) Overall testing accuracy—i.e. the number 
of correct classification or predictions made by the rule-set when applied to unseen 
before objects in the testing set. Rule filtering involves the stepwise elimination of 
less significant rules from the rule-set based on user-specified filtering criteria, for 
instance select rules that have RHS support greater than 1. The filtering criteria is 
progressively increased by fixed steps until the currently reduced set of rules no 
longer satisfies the user-specified accuracy level. The previous rule-set satisfying the 



user-specified accuracy level is finally deemed as the optimum rule-set—i.e. 
comprising rules with the highest accuracy level, shortest possible length and 
maximum RHS support.  

4.   Experimental Results 

In this paper we will present experimental results based on two medical datasets: 
The Wisconsin Breast Cancer (WBC) and New Thyroid Gland (NTG) datasets. These 
datasets were chosen for two reasons: (1) all their data vector components being 
continuous-valued and (2) all the class-subsets are well-separated—i.e. with inter-
mean distances fairly large compared to the radii or diameters. The characteristics of 
the datasets is indicated in Table 1 below. 

Table 1. Characteristics of Datasets Used 

DATASETS # OF 
PATTERNS # of CLASSES ATTRIBUTES 

New 
Thyroid 
Gland 

699 
(683 used as 
16 patterns 
had missing 
information) 

3 
1 = Normal 

2 = Hyperthyroidism 
3 = Hypothyroidism 

5 (excluding class label) 
(1) T3-resin uptake test, (2) Total serum 
thyroxin, (3) Total serum triiodothyronine, 
(4) Basal thyroid-stimulating hormone 
(TSH), (5) Maximal difference of TSH 

Wisconsin 
Breast 
Cancer 

215 
2 
 

0 = Benign 
1 = Malignant 

9 (excluding class label) 
(1) Clump thickness, (2) Uniformity of cell 
size, (3) Uniformity of cell shape, (4) 
Marginal adhesion, (5) Single epithelial cell 
size, (6) Bare nuclei., (7) Bland chromatin, 
(8) Normal nucleoli, (9) Mitoses. 

4.1. Phase 1: Data Clustering Using K-Means Clustering Algorithm 

Prior to clustering the actual classification information is removed from each 
dataset—i.e. we work with an un-annotated dataset.  The K-means algorithm is used 
to inductively cluster the data patterns. Upon completion of the clustering process the 
members of each cluster are associated with their respective class label (see Table 2). 

Table 2. Results of K-Means clustering for both datasets 

DATASET CLASS 
ACTUAL CLASS 
DISTRIBUTION 

(%) 

CLUSTER 
DISTRIBUTION 

(%) 

CLUSTERING 
ACCURACY 

(%) 
Benign 65.01 66.33 Wisconsin 

Breast Cancer Malignant 34.99 33.67 96.1 

Normal 69.77 70.70 
Hyperthyroidism 16.28 13.02 New Thyroid 

Gland Hypothyroidism 13.95 16.28 
85.6 
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4.2. Phase 2: Data Discretization  

After the successful clustering of the datasets, we employ the Chi-2 data 
discretization technique [7] to (1) discretise the continuous data values into 
meaningful intervals—i.e. nominal values and (2) perform attribute elimination—i.e. 
attributes that yield only a single discrete value are deemed insignificant and 
eliminated from the dataset. Table 3 shows discretization results for both datasets. It 
may be noted that two attributes for each data-set have been eliminated by the data 
discretisation process. More importantly, we achieved around 65% reduction of data 
values in both data-sets, consequently yielding a smaller data-set from which cluster-
defining symbolic rules are to be generated.  

Table 3. Results of data discretisation using the Chi-2 technique. The representation [x, y) 
means greater than or equal to x but less than y. 

WISCONSIN BREAST CANCER DATASET 

Attributes Clump Thickness Uniformity Of 
Cell Size 

Uniformity Of 
Cell Shape 

Marginal 
Adhesion 

Single 
Epithelial 
Cell Size 

# of 
Intervals 2 2 2 0 2 

Interval 
Value 

1 = [ _ , 7.0) 
2 = [7.0, _ ) 

1 = [ _ , 3.0) 
2 = [3.0, _ ) 

1 = [ _ , 3.0) 
2 = [3.0, _ ) 

Attribute 
Eliminated 

1 = [ _ , 3.0) 
2 = [3.0, _ ) 

Attributes Bare Nuclei Bland 
Chromatin 

Normal 
Nucleoli Mitoses 

# of 
Intervals 3 2 2 0 

Interval 
Value 

1 = [ _ , 2.0) 
2 = [2.0, 8.0) 
3 = [8.0, _ ) 

1 = [ _ , 4.0) 
2 = [4.0, _ ) 

1 = [ _ , 3.0) 
2 = [3.0, _ ) 

Attribute 
Eliminated 

 

NEW THYROID GLAND DATASET 
Attributes T3 Resin Uptake Serum 

Thyroxin 
Serum 

Triiodothyronine Basal TSH Absolute 
Diff. of TSH 

# of 
Intervals 5 3 0 2 0 

Interval 
Value 

1 = [ _, 97.0) 
2 = [97.0, 100.0) 
3 = [100.0, 118.0) 
4 = [118.0, 125.0) 
5 = [125.0, _ ) 

1 = [ _, 5.7) 
2 = [5.7, 14.2) 
3 = [14.2, _ ) 

Attribute 
Eliminated 

1 = [ _, 4.30) 
2 = [4.30, _ ) 

Attribute 
Eliminated 

4.3. Phase 3: Symbolic Rule Discovery  

In the next step, symbolic rules were generated from the discretized data-set to 
explicate the underlying structure of the derived clusters. We randomly partition the 
dataset into a training set (70 % of the dataset) and testing set (30 % of the dataset). 
Since data partitioning is stochastic in nature, we generate n randomly partitioned data 
samples of the same dataset and generate symbolic rule-sets for each sample. Note 



that each sample following the same 70:30 distribution of training and testing data, 
respectively. The eventual rule-set for a dataset will be derived by performing a union 
of all the rules generated across the n number of data samples. For demonstration 
purposes, we have created 3 partitioned samples of both the datasets.  

Symbolic rules were generated from rough set reducts. For pragmatic reasons, the 
rules discovered were moderated based on two rule-filtering criteria: (1) LHS length 
and (2) RHS support. Finally, a filtered rule-set was selected based on two criteria: (1) 
accuracy of the filtered rules when compared with the testing data; and (2) the number 
of rules in the rule-set—ideally we seek less than 30 rules in the rule-set. In Table 4, 
we show the rule-sets generated from two separate data samples of the NTG data-set, 
whereas Table 5 shows the testing results represented as a prediction matrix—i.e. the 
accuracy of the generated rule-sets vis-à-vis the NTG testing data.  

Table 4. Exemplar Rule-Sets Generated for the NTG Dataset. The legend implies Cl = Class 
and Su = RHS Support 

 Rule-Set 1 (LHS Length =2) Rule-Set 2 (LHS Length =2) 
No Attributes Cl Su Attributes Cl Su 
1 Basal_TSH(1) T3_resin(3) 1 87 Basal_TSH(1) T3_resin(3) 1 89 
2 Serum_Thyrox(2) T3_resin(3) 1 78 Serum_Thyrox(2) T3_resin(3) 1 83 
3 Basal_TSH(1) T3_resin(1) 2 16 Basal_TSH(1) T3_resin(1) 2 15 
4 Basal_TSH(1) T3_resin(4) 1 15 Serum_Thyrox(2) T3_resin(4) 1 13 
5 Serum_Thyrox(2) T3_resin(4) 1 14 Basal_TSH(1) T3_resin(4) 1 13 
6 Serum_Thyrox(3) T3_resin(1) 2 12 Serum_Thyrox(3) T3_resin(1) 2 9 
7 Basal_TSH(2) T3_resin(4) 3 8 Serum_Thyrox(1) T3_resin(4) 3 8 
8 Basal_TSH(1) T3_resin(2) 1 7 Serum_Thyrox(1) T3_resin(5) 3 8 
9 Serum_Thyrox(2) T3_resin(2) 1 6 Basal_TSH(2) T3_resin(4) 3 8 
10 Serum_Thyrox(3) T3_resin(3) 1 6 Basal_TSH(2) T3_resin(5) 3 8 
11 Basal_TSH(1) T3_resin(5) 3 7 Serum_Thyrox(2) T3_resin(1) 2 6 
12 Serum_Thyrox(1) T3_resin(4) 3 7 Basal_TSH(1) T3_resin(5) 3 7 

Table 5. Prediction Matrix for the Two Rule-Sets Generated From the NTG Data-Set 

  0 1 2 Undefi
ned Accuracy 0 1 2 Undefi

ned Accuracy 

0 42 0 0 0 1 41 0 0 3 0.93 
1 2 8 0 0 0.8 0 9 0 2 0.81 
2 1 0 5 7 0.38 2 0 7 1 0.7 

Actual 
Class 

Undefined 0 0 0 0 -- 0 0 0 0 -- 
Average Accuracy     0.84     0.87 

Finally, we get the combined Rule-SetNTG comprising 16 rules, realized via 
performing the union operation over rule-sets 1 and 2—this also illustrates the 
anticipated overlap between rule-set 1 and 2. 

Similar experiments with the WBC data-set yielded 3 separate rule-sets, each 
derived from 3 randomly distributed samples of the WBC data-set. Each rule-set was 
then filtered based on LHS length = 5 and RHS support > 20, comprised 29, 26 and 
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11 rules. In Table 6 we present exemplar rules (first 15 only due to lack of space) 
from rule-set 1 and 2. Again, note the commonalties between rule-sets 1 and 2; the 
common rules being representative of the dominant class structures inherent within 
the data. Since the data for class 0 covers almost 65% of the entire data-vector 
population (see Table 1), the corresponding rules for class 0 have much higher RHS 
support values, as compared to rules defining class 1. The overall predictive accuracy 
of the derived rules for both the data-sets, when compared against their respective 
testing data, was found to be quite high—accuracy for WBC and NTG is about 87% 
and 86%, respectively—which is a measure of the soundness of our approach. 

Table 6. Exemplar Rule-Sets Generated for the WBC Dataset. The Legend is: bn = 
bare_nuclei, bc = bland_chromatin, ct = clump_thickness, nn = normal_nucleoli, sez = 
sing_epi_cell_sz, ucp = uni_cell_shape, ucz = uni_cell_size. Cl = Class and Su = RHS Support 

 Rule-Set 1 (LHS Length =5) Rule-Set 2 (LHS Length =5) 
No Attributes Cl Su Attributes Cl Su 
1 bn(1) bc(1) ct(1) nn(1) sez(1) 0 245 bn(1) bc(1) ct(1) nn(1) ucz(1) 0 241 
2 bn(1) bc(1) ct(1) nn(1) ucp(1) 0 243 bn(1) bc(1) ct(1) nn(1) sez(1) 0 238 
3 bn(1) bc(1) ct(1) sez(1) ucp(1) 0 231 bn(1) bc(1) ct(1) sez(1) ucz(1) 0 237 
4 bn(1) ct(1) sez(1) ucp(1) ucz(1) 0 231 bn(1) bc(1) ct(1) nn(1) ucp(1) 0 227 
5 bn(1) ct(1) nn(1) sez(1) ucp(1) 0 229 bn(1) bc(1) nn(1) sez(1) ucp(1) 0 217 
6 bn(1) bc(1) nn(1) sez(1) ucp(1) 0 228 bn(3) bc(2) nn(2) sez(2) ucp(2) 1 66 
7 bn(3) bc(2) nn(2) sez(2) ucp(2) 1 62 bn(3) bc(2) ct(2) sez(2) ucz(2) 1 50 
8 bn(3) ct(2) sez(2) ucp(2) ucz(2) 1 46 bn(3) bc(2) ct(2) nn(2) ucp(2) 1 43 
9 bn(3) ct(1) sez(2) ucp(2) ucz(2) 1 45 bn(3) bc(2) ct(2) nn(2) ucz(2) 1 42 
10 bn(3) bc(2) ct(1) sez(2) ucp(2) 1 42 bn(3) bc(2) ct(2) nn(2) sez(2) 1 39 
11 bn(3) bc(2) ct(2) sez(2) ucp(2) 1 40 bn(3) bc(2) ct(1) sez(2) ucz(2) 1 34 
12 bn(3) ct(1) nn(2) sez(2) ucp(2) 1 39 bn(2) bc(2) nn(2) sez(2) ucp(2) 1 30 
13 bn(2) bc(2) nn(2) sez(2) ucp(2) 1 36 bn(3) bc(2) ct(1) nn(2) ucp(2) 1 29 
14 bn(3) bc(2) ct(1) nn(2) ucp(2) 1 35 bn(3) bc(2) ct(1) nn(2) ucz(2) 1 28 
15 bn(3) bc(2) ct(1) nn(2) sez(2) 1 35 bn(3) bc(2) ct(1) nn(2) sez(2) 1 28 

5.   Concluding Remarks 

We conclude that the theory of rough sets proves to be an effective tool for rule 
discovery because: 
� It can extract rules of various granularity, support and coverage 
� It does not impose any static statistical parameters or models upon the data, 

hence minimizing assumptions and allowing the data to represent itself. 
� It reduces data by reducing attributes that are both redundant and “unimportant” 

towards distinguishing between objects and their classes. 
We report some interesting observations noted from our experiments: 



1. The rough-set approach favors the generation of rules with shorter LHS length. In 
fact, our experiments demonstrate that as the LHS length decreases the accuracy of 
the rules increases—i.e. concise rules are more accurate than long rules, which is a 
desirable effect for knowledge representation purposes. 

2. As the RHS support increases both the number of rules and the accuracy tends to 
reduce. This is in accordance with the theoretical assumptions i.e. as the number of 
rules reduce less predictive power is available, hence the lower accuracy of the 
rule-set. This implies the need for a pragmatic balance between an acceptable RHS 
support value and desired predictive accuracy. 
In conclusion we will like to point out that the proposed sequential application of 

multiple techniques—i.e. data-vector clustering, data discretization, attribute selection 
and finally rough set approximation—for knowledge extraction via symbolic rule 
generation, appears to be a pragmatic methodology for the intelligent analysis of un-
annotated data-vectors with continuous-valued attributes. 
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