
 

 

A HYBRID OF CONCEPTUAL CLUSTERS, ROUGH SETS AND ATTRIBUTE 
ORIENTED INDUCTION FOR INDUCING SYMBOLIC RULES 

QINGSHUANG JIANG, SYED SIBTE RAZA ABIDI 

Faculty of Computer Science, Dalhousie University, Halifax B3H 1W5, Canada 
E-MAIL: sraza@cs.dal.ca 

Abstract: 
Rule induction is a data mining process for 

acquiring knowledge in terms of symbolic decision rules 
from a number of specific 'examples' to explain the 
inherent causal relationship between conditional factors 
and a given decision/outcome. We present a Decision 
Rule Acquisition Workbench (DRAW) that discovers 
conjunctive normal form decision rules from 
un-annotated data-sets. Our rule-induction strategy 
uses (i) conceptual clustering to cluster and generate a 
conceptual hierarchy of the data-set; (ii) rough sets 
based rule induction algorithm to generate decision 
rules from the emergent data clusters; and (iii) attribute 
oriented induction to generalize the derived decision 
rules to yield high-level decision rules and a minimal 
rule-set size.  
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1. Introduction 

Rule induction is the process of acquiring knowledge 
(i.e. symbolic decision rules) from a number of specific 
'examples' (i.e. the data-set), to explain the cause-and-effect 
relationship between conditional factors and a given 
decision/outcome. However, rule induction algorithms are 
supervised in nature and typically work on annotated 
data-sets, yet there is a case for interpreting un-annotated 
data-sets in terms of Conjunctive Normal Form (CNF) 
symbolic rules.  This can be achieved by inductively 
clustering the data-sets and then explaining the 
relationships between the attributes, that manifest as data 
clusters, in terms of symbolic decision rules [1, 2, 3].  

In this paper we present a rule induction framework 
that discovers CNF decision rules from un-annotated 
data-sets. We use rough sets as the base rule-induction 
method, which has been successfully applied for this task 
[4]. Additionally, we present techniques to (a) reduce the 

size of the rule-set; and (b) to generalize the rules to 
high-level concepts. We present a hybrid rule-induction 
strategy that uses (i) conceptual clustering to cluster the 
un-annotated data-set (to acquire the underlying class 
information) and to generate a conceptual hierarchy that 
describes the data at different levels of abstraction [5]; (ii) 
rough sets based rule induction algorithm to generate 
decision rules from the emergent data clusters [6]; and (iii) 
attribute oriented induction in conjunction with the data’s 
conceptual hierarchy to generalize the derived decision 
rules to high-level decision rules [7], and in the process 
minimizing the rule-set size without compromising 
classification accuracy. The rule induction framework is 
implemented in terms of DRAW (Decision Rule Acquisition 
Workbench), as shown in figure 1, and is evaluated with 
standard machine learning datasets.  

 

Figure 1. The Functional Architecture of DRAW 

We applied DRAW to derive decision rules for 
classifying Confocal Scanning Laser Tomography (CSLT) 
images of the optic disk for the diagnosis of glaucoma. The 
decision rules are expected to provide: (a) insight into the 
relationships between optic disk’s shape features in relation 
to glaucoma damage; and (b) a description of different 
classes (healthy, glaucoma, focal, senile, myopic damage) 
in terms of the features. The derived decision rules can be 
used for the classification of a new CSLT image—i.e. 
whether the patient is a normal or has a specific type of 
glaucoma.  



 

 

2. Rule Induction with Rough Sets 

Rule induction is an active machine learning research 
area with a wide variety of existing algorithms—to 
construct, classify and prune the rules—grounded in 
different theoretical principles [8, 9, 10]. Statistical 
methods, classified as classical and modern (such as Alloc 
80, CASTLE, Naïve Bayes) methods, are based on linear 
discrimination and estimation of the joint distribution of the 
features within each class, respectively. Decision tree based 
rule induction methods, such as ID3, CART, C4.5 and 
CAL5, partitions the data points in terms of a tree structure 
such that the nodes are labeled as features and the edges as 
attribute values [11].  

Rough sets provide an alternative method for rule 
induction due to their unique approach to handle 
inconsistencies in the input data. Rough set based data 
analysis involves the formulation of approximate concepts 
about the data based on available classification information 
[4, 12]. Functionally, rough sets based rule induction 
involves the formation of approximate concepts based on a 
minimum number of features—the approximate concepts, 
also called dynamic reducts, are capable of differentiating 
the various classes within the data. Rule induction involves 
the representation of dynamic reducts as succinct symbolic 
if then decision rules that potentially can inter-attribute 
dependencies and attribute significance and class 
information. There is no standard approach to rough set 
based rule induction, hence rough sets can be used at 
different stages a rule induction process [13, 14]. A number 
of rough set based rule induction approaches has been 
suggested such as System LERS [13, 15]; Discernibility 
matrix 16] leading to a computational kernel of the system 
Rosetta [17]; RoughDAS [18, 19] that allows users to 
specify conditions; rule induction framework, involving 
rule filtering methods, to generate cluster-defining rules [2, 
3]; and so on.. 

3. A Hybrid Rule Induction Strategy 

The featured work is an extension of the rule induction 
framework proposed by Abidi [3], in that we have 
introduced methods to generate generalized decision rules 
and to minimize the rule-set size. We have postulated a 
hybrid rule induction approach that dictates the systematic 
transformation of un-annotated data-sets to deductive 
symbolic rule-sets via a sequence of phases, as described 
below: 

3.1 Phase 1 - Data Clustering and Conceptual Hierarchy 
Generation 

Given an un-annotated dataset, the first step involves 
the unsupervised clustering of the data into k clusters in 
order to derive classification information that is required for 
subsequent rule induction. We have adapted a Similarity 
Based Agglomerative Clustering (SBAC) algorithm that is 
based on a similarity measure from a biological taxonomy 
[5]. The clustering process is driven by two factors 1) the 
criterion function for evaluating the goodness of partition 
structure and 2) the control algorithm for generating the 
partition structure. The similarity measure used allows us to 
process both numeric and nominal valued attributes within 
a common framework, and can be conveniently coupled 
with a simple agglomerative control strategy that constructs 
a conceptual hierarchy.  

To derive the conceptual hierarchy, the original 
algorithm [5] is modified as follows: (a) Each attribute of 
the data-set is applied the SBAC individually such that the 
similarity matrix is calculated based on the similarity 
measure among the values of each attribute instead of the 
combination of all the attributes; and (b) based on the 
similarity matrix of each attribute, the distinct values of an 
attribute are clustered agglomeratively such that a tree-like 
structure is formed, where the lowest level is made up of 
the distinct attribute values and the higher level is made up 
of clustered values which contain the values from lower 
level. The root of the conceptual hierarchy recursively 
contains all the distinct values of the attribute, which 
provides the most general attribute information (as shown 
in Table 1). 

The outcome of phase I is two fold: (i) the data is 
partitioned into k number of data clusters; and (ii) a 
hierarchical concept tree is constructed to form the basis for 
attribute-oriented induction and the generalization of the 
cluster-defining symbolic rules. 

3.2. Phase 2 - Symbolic Rule Discovery 

Given an annotated and discretized data-set together 
with the conceptual hierarchy that describes the 
characteristics of the data-set, the task in phase II is to 
generate a set of symbolic CNF rules that model the 
data-set in terms of class-membership principles and 
complex inter-relationships between the data attributes. In 
our work, we implemented a symbolic rule generation 
approach based on the Rough Set approximation [4, 12], as 
it provides a sound and interesting alternative to statistical 
and decision tree based rule induction methods

 



 

 

Table 1. Conceptual hierarchy derived from the TGD data set. Attribute values are discretized into intervals. Intervals labeled by letters 
are at the higher level. Intervals labeled by numbers are on the lower level of the hierarchy and can be merged to form a more 
generalozed interval.  

T3r 
(10) 

Sthy 
(5) 

Stri 
(6) 

bTSH 
(3) 

mTSH 
(10) 

1 = [ _ , 97) 
2 = [97, 100) 
3 = [100, 118) 
4 = [118, 125) 
5 = [125, _ ) 
 
a = [ _ , 100) 
b = [100, 125) 
c = [125, _ ) 
e = [ _ , 125) 
f = [125, _ ) 
 

1 = [ _ , 5.7) 
2 = [5.7, 14.2) 
3 = [14.2, _ ) 
 
a = [ _ , 14.2) 
b = [14.2, _ ) 

1 = [ _ , 1.25) 
2 = [1.25, 3.65) 
3 = [3.65, 3.95) 
4 = [3.95, _) 
 
a = [ _ , 3.65) 
b = [3.65, _ ) 

1 = [ _ , 4.30) 
2 = [4.30, _ ) 
 
a = [ _ , _ ) 

1 = [ _ , 0.35) 
2 = [0.35, 0.65) 
3 = [0.65, 7.25) 
4 = [7.25, 10.5) 
5 = [10.5,  _) 
 
a = [ _ , 0.65) 
b = [0.65, 10.5) 
C = [10.5,  _) 
e = [ _ , 10.5) 
f = [10.5,  _) 

   

 

 
Our rule induction methodology is as follows: 
Step 1: Dynamic Reducts Computation: We use 

k-fold cross validation to split the data-set into training and 
test sets. From the training data (for each fold), we compute 
multiple dynamic reduct sets, such that each reduct set is 
found through the identification of minimum attribute sets 
that are able to distinguish a data point from the rest of the 
data set. This is achieved via (a) vertical reduction whereby 
the redundant data objects are eliminated and (b) horizontal 
reduction whereby the redundant attributes are eliminated 
since logically duplicated attributes cannot help distinguish 
a data point from the rest of the data set. At the completion 
of the reduction process we end up with a minimum set of 
attribute values that can distinguish any data point from rest 
of the data-set—i.e. a reduct set. Dynamic reducts are the 
reducts that have a high frequency of occurrence across all 
the available reduct-sets, and are of particular interest for 
rule generation purposes. The search for dynamic reducts is 
an NP-hard problem—the time complexity for finding the 
minimum attribute set increases exponentially with respect 
to the linear increase of the data set—and a genetic 
algorithm based reducts approximation method is used to 
compute the dynamic reducts [20, 21].  

Step II: Symbolic Rule Generation via Dynamic 
Reducts: After computing the dynamic reducts we generate 
symbolic rules from them. Instead of using all the dynamic 
reducts to generate a large set of symbolic rules, we attempt 
to generate symbolic rules from the shortest possible length 
dynamic reducts; the rationale being that shorter length 

dynamic reducts have been shown to yield concise rule-sets 
that exhibit higher classification accuracy and 
generalization capabilities [2, 3]. Our rule generation 
strategy therefore involves: (1) the selection of dynamic 
reducts that have a short length and (2) the generation of 
rules that satisfy a user-defined accuracy level. Our strategy 
for generating symbolic rules is as follows [3]: 
Step 1 :  Specify an acceptable minimum accuracy level 
for the rule set. 
Step 2 : Find dynamic reducts from the sub-samples and 
place in set DR. Note that DR will comprise reducts with 
varying lengths. 
Step 3 :  From the reducts in DR determine the shortest 
reduct length (SRL).  
Step 4 :  From DR, collect all reducts that have a length 
equal to SRL and store them as set SHRED. 
Step 5 :  Generate symbolic rules from the reducts placed 
in SHRED. 
Step 6 : Determine the overall accuracy of the generated 
rules with respect to the test data. 
Step 7 : IF Overall accuracy of the generated rules is 
lower than the minimum accuracy level AND there exist 
reducts in the DR set with length > SRL 

THEN Empty SHRED AND Update the value of SRL 
to the next highest reduct length in DR AND Repeat 
from step 6. 
ELSE Symbolic rules with the desired accuracy level 
cannot be generated. 



 

 

3.3. Phase 3 – Rule-Set Generalization 

Typically, The rule-set generated in phase II is quite 
large and might contain low quality rules, thereby 
compromising the classification efficiency of the classifier. 
In phase III, we attempt to minimize the rule-set size by 
generalizing the induced rules—i.e. a large number of low 
level concepts represented in the rules can be generalized to 
fewer higher-level concepts. For rule generalization we 
have adapted a set-oriented induction method—called 
Attribute-Oriented Induction (AOI) [7]—that employs the 
concept hierarchy generated in phase I.  

Input: (i) A CNF rule set, (ii) the learning task, (iii) 
the (optional) preferred concept hierarchies, and (iv) the 
(optional) preferred form to express learning results (e.g., 
generalization threshold). 

Output. A characteristic rule set generalized from the 
input rule set. 

Method. Basic attribute-oriented induction consists of 
the following four steps: 

Step 1. Collect the task-relevant data, 
Step 2. Perform basic attribute-oriented induction 

begin {basic attribute-oriented induction} 
for each attribute Ai (1 ≤ i ≤ n, n = # of attributes) in 
the generalized relation GR do 

while #_of_distinct_values_in_Ai > threshold do { 
if no higher level concept in the concept 

hierarchy table for Ai 
then remove Ai 
else substitute Ai ’s by its corresponding 
minimal generalized concept; 
merge identical rules } 

while #_of_rules in GR > threshold do { 
selectively generalize attributes; merge 

identical rules } 
end. 

Step 3. Simplify the generalized relation, and 
Step 4. Transform the final relation into a logical rule. 

4. Experimental Results 

The experiments reported evaluate the final 
classification accuracy of rules discovered by DRAW, and 
also demonstrate the performance of the individual modules. 
Three experimental scenarios were performed, with 
standard data-sets, to demonstrate the performance of the 
various combinations of modules (as shown in Figure 1):  
a) Rough set based rule induction (with class information) 

--> Decision rules  
b) Conceptual Clustering (without class information) + 

Rough set based rule induction  --> Decision rules  

c) Conceptual Clustering (without class information) + 
Rough set based rule induction + Attribute-Oriented 
Induction --> Generalized decision rules 

4.1 Classification Accuracy for Standard Data-Sets 

Standard machine learning data-set—i.e. Thyroid 
gland data (TGD); Wisconsin Breast Cancer (WBC); 
Balance Scale Weight & Distance (BaS); Iris Plants 
Database (IRIS); Pima Indians Diabetes Database (Pima) 
were used for our evaluation. Table 2 shows the 
classification accuracy for the above experimental scenarios. 
Also, we compared the overall accuracy of our rules with 
rules derived from C4.5.  

From the classification results the following was 
observed: (a) The overall classification accuracy offered by 
DRAW, for both annotated and un-annotated data-sets, is 
quite high and is comparable (in fact better in three cases) 
with the C4.5 method. The classification accuracy for 
scenario A is largely maintained throughout the subsequent 
stages of the process indicating the robustness of the rough 
set based rule-induction method. We conclude that our 
rough set based rule induction method amicably derives the 
underlying class structure from the data; (b) The 
classification accuracy for un-annotated data using SBAC 
conceptual clustering (scenario B) is comparable to both 
scenario A and C4.5, indicating the effectiveness of the 
conceptual clustering approach for rule induction for 
un-annotated data; (c) The classification accuracy for 
generalized rules (scenario C) is comparable to both 
scenario A and C4.5, indicating the effectiveness of the 
AOI method for rule generalization. Although no 
significant gain in the accuracy is noted for scenario C, yet 
the real impact of the AOI approach is noted in the 
minimization of the rule-set size without a discernable loss 
of classification accuracy; (d) Comparison of scenarios B & 
C indicate that the conceptual hierarchy derived in phase I 
is effective for AOI based rule generalization, and the 
generalized rules do not compromise the classification 
accuracy. This vindicates the role of the conceptual 
hierarchy and the AOI method for rule generalization.  

4.1.2 Rule-Set Generalization 

The application of the AOI based rule generalization 
method has reduced the rule-set size without compromising 
the classification (see table 3). Furthermore, different 
degrees of rule generalization takes place (as shown in table 
4):  



 

 

� Case 1 shows single-level generalization, where a single 
attribute mTSH is generalized at level 1 of the 
conceptual hierarchy as [1,2]-> a;  

� Case 2, 3, 4 show multi-level generalization, where 
attribute mTSH is generalized at level 1 of the 
conceptual hierarchy as [1,2]-> a and [3,4]->b, the 
generalization goes on at the level 2 as [a,b] -> e, and 

continues until the root of the conceptual hierarchy tree 
is reached;  

� Case 5 shows that generalization can be performed on 
more than 2 rules, the number of the rules can be 
generalized is determined by the number of children that 
belong to the same parent.

Table 2: Experimental results for scenarios A-C and the baseline C4.5 method 

Accuracy Sensitivity Specificity Data 
Sets A B C C4.5 A B C C4.5 A B C C4.5 

TGD 0.887 0.892 0.836 0.931 0.968 0.927 0.875 0.973 0.916 0.962 0.955 0.973 
WBC 0.930 0.904 0.932 0.925 0.972 0.915 0.963 0.982 0.957 0.988 0.968 0.982 
BaS 0.620 0.573 0.645 0.643 0.759 0.749 0.728 0.794 0.817 0.765 0.886 0.794 
Pima 0.872 0.889 0.849 0.923 0.941 0.955 0.859 0.963 0.927 0.931 0.988 0.963 
IRIS 0.586 0.589 0.631 0.619 0.727 0.744 0.711 0.739 0.806 0.792 0.882 0.739 

Table3: Rule-set size comparison for the five different data-sets. 

 Clustered Rough-Set Based Rules  
Before AOI After AOI Data 

Sets Acc Sens Spec # 
of Rules Acc Sens Spec # of 

Rules 

Percentage 
Reduction 

TGD 0.892 0.927 0.962 67 0.836 0.875 0.955 52 22.39% 
WBC 0.904 0.915 0.988 103 0.932 0.963 0.968 72 30.10% 
BaS 0.573 0.749 0.765 217 0.645 0.728 0.886 194 10.60% 
Pima 0.889 0.955 0.931 455 0.849 0.859 0.988 357 21.52% 
IRIS 0.589 0.744 0.792 16 0.631 0.711 0.882 15 6.25% 

Table 4: Different degrees of rule generalization achieved via AOI 

Case Decision Rule 
Before AOI 

Decision Rule 
After AOI Explanation 

1 sthy(3) mTSH(1) -> 2 
sthy(3) mTSH(2) -> 2 sthy(3) mTSH(a) -> 2 mTSH(1) and mTSH(2) are 

generalized to mTSH(a) 

2 t3r(3) mTSH(1) -> 1 
t3r(3) mTSH(2) -> 1 t3r(3) mTSH(a) -> 1 mTSH(1) and mTSH(2) are 

generalized to mTSH(a) 

3 t3r(3) mTSH(3) -> 1 
t3r(3) mTSH(4) -> 1 t3r(3) mTSH(b) -> 1 mTSH(3) and mTSH(4) are 

generalized to mTSH(b) 

4 t3r(3) mTSH(a) -> 1 
t3r(3) mTSH(b) -> 1 t3r(3) mTSH(e) -> 1 mTSH(a) and mTSH(b) are 

generalized to mTSH(e) 

5 
ucz(2) bn(1) ucp(4) -> 3 
ucz(2) bn(2) ucp(4) -> 3 
ucz(2) bn(4) ucp(4) -> 3 

ucz(2) bn(a) ucp(4) -> 3 bn(1), bn(2)and bn(4)  are 
generalized to bn(a) 

5. Concluding Remarks 

We have presented an interesting and efficient rule 
induction strategy that ensures the generation of complex 
and high-level decision rules for un-annotated data-sets. 
Rule granularity has been regarded as being an important 
factor in the comprehensibility of the discovered knowledge 
in terms of rules—longer and more specific rules do not 
necessarily provide better classification accuracy as 

compared to shorter and generalized rules. Hence, the need 
for more concise rules and smaller rule-sets. The rule 
induction strategy presented here allows for the 
generalization of rules whilst maintaining classification 
accuracy via the incorporation of attribute oriented 
induction—which integrates machine learning methodology 
with relational database operations—with rough sets based 
rule induction methods. The use of a conceptual hierarchy 
to describe the data is an interesting idea as it allows for 
viewing the data at different levels of abstraction, and 
enables the users to derive rules at a desired level of 



 

 

abstraction.  We also will like to point out that the use of 
the base rough-sets method for rule induction does not 
impose any static statistical parameters or models upon the 
data, hence minimizing assumptions and allowing the data 
to represent itself. 
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