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Abstract 

This paper presents a series of experiments testing the 

feasibility of employing image-processing techniques 

for the feature extraction stage in the implementation of 

a basic optic nerve image classifier. Such a scheme 

completely removes the need for manually identifying 

the edge of the optic nerve. In this work, Zernike mo-

ments are extracted from Confocal Scanning Laser 

Tomography images of optic discs for the purposes of 

classifying the disc as healthy or damaged using a linear 

discriminant function derived from a linear perceptron. 

Our preliminary results, when compared with the per-

formance of conventional feature sets, demonstrate the 

appropriateness of this approach. 

1 Introduction 

It is estimated that approximately 300,000 Canadians 

suffer from glaucoma, an age-related disease that slowly 

and painlessly damages the optic nerve, causing loss of 

vision and potentially blindness. Glaucoma rarely 

causes symptoms until the later stages of the disease, 

and epidemiology surveys in North America and Europe 

have shown that approximately 50% of cases are unde-

tected. As yet there is no single diagnostic test that pro-

vides both high sensitivity and specificity. 

Medical decision support systems, leveraging an as-

sortment of intelligent techniques, are routinely used by 

healthcare practitioners for diagnostic support in a vari-

ety of clinical scenarios. Medical image processing, vis-

à-vis the application of sophisticated image processing 

techniques to medical images, provides a viable mecha-

nism to not only highlight the salient aspects of the 

image but also to automatically classify the medical 

image into pre-defined categories of diagnostic rele-

vance.  

At present, glaucoma is diagnosed by visual evalua-

tion of the optic nerve (which requires highly trained 

specialists) and examination of the visual of vision 

(which is time-consuming and difficult for inexperi-

enced patients). However, the process has recently been 

augmented by the availability of Confocal Scanning 

Laser Tomography (CSLT) technology. Such systems 

provide mean topography and reflectance images from 

scans of the optic disc.  

The availability of CSLT image capture systems 

naturally provides the potential for the automated classi-

fication of optic nerve images. However, historical 

practice has been to base any diagnostic analysis on 

optic disc profiles or contours that require human inter-

vention to accurately define. Thus for each image, a 

trained professional is required to define the margins of 

the optic disc profile by manually outlining the optic 

disc of the patient (a process that is highly subjective in 

nature).  This contour line is then used to extract fea-

tures (stereometric indices) that are sensitive to the 

profile provided on which the current classification is 

based.   

As a first step to the fully automatic diagnosis of op-

tic nerve damage, an investigation is made into the ap-

plicability of Moment Methods. A study is therefore 

made between features extracted using common practice 

and those provided by the orthogonal Method of 

Zernike Moments. A clear preference is demonstrated 

for the Moment Method under a simple linear classifica-

tion rule. 

2 Objective and Methodology 

The objective of this work was to qualify the appropri-

ateness of Zernike Moment features derived directly 

from CSLT topography and reflectance images. Mo-

ment Methods are utilized specifically on account of 

their orthogonal properties and support for invariance’s. 

Moreover, the application domain provides “well 

framed” image content. The implication being that a 

feature method based on global image properties facili-

tated, providing the basis for a single step process for 

extracting appropriate features (no separate segmenta-

tion stage). 
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At the classification stage, the basic objective is to 

separate control from glaucoma patient data. The ensu-

ing study considers the significance of feature selection 

under two classifier systems: linear perceptron, and C5, 

as follows,  

1. Conventional features from HRT software 

2. Zernike features extracted from topography images  

3. Zernike features extracted from reflectance images  

4. Combined topography and reflectance Zernike fea-

tures

Performance on these feature sets will be measured 

in terms of sensitivity and specificity for the classifier in 

question. Pre-processing, based on quartile and Wil-

coxon hypothesis testing is used to identify subsets of 

features appropriate for the linear classifier. A simple 

pruning technique is used to further identify features 

that are of most discriminant value to the classifier.  

The significance of this study lies in the departure 

from previous practices in which little or no use of fea-

tures derived from image processing techniques has 

been made. Moreover, reflectance images have not been 

previously used for these purposes. 

3 Optic Nerve Imaging  

The optic nerve consists of ganglion cell fibers which 

relay the information from the retinal photoreceptors to 

the visual cortex. Glaucomatous damage manifests as 

loss of neural tissue at the optic disk where the nerve 

fibers collectively exit the eye. This damage is often 

difficult to detect because there is tremendous biological 

variation in the size and shape of the optic disk even 

between healthy subjects.  

In patients with glaucoma, the spectrum of optic 

disk appearances is still larger. There are several distinct 

morphological patterns of optic disk damage, all of 

which probably carry different prognoses for the pro-

gression of the disease and have implications for clinical 

management [1].  

Traditionally, ophthalmologists have relied on visual 

assessment of the optic disk (by in-vivo microscopy and 

stereo-photography) to observe the optic nerve. These 

procedures are time-consuming and highly subjective, 

giving rise to substantial disagreement even between 

highly trained experts. This applies to the detection of 

optic disk damage [2], to the evaluation of its progres-

sion [3], and to the distinction between different pat-

terns of damage [4]. 

3.1   Confocal Scanning Laser Tomography  

Confocal scanning laser tomography (CSLT) is a new 

imaging technology that is rapidly establishing its role 

in clinical practice. Using a low-intensity laser beam to 

scan the back of the eye, the instrument rapidly acquires 

a series of images from 32 consecutive focal planes. 

After an image series has been acquired, the software of 

the CSLT device (in this case the Heidelberg Retina 

Tomograph, or HRT, Heidelberg Engineering, Dossen-

heim, Germany) pre-processes the images using stan-

dard alignment algorithms, compensating for shifts, tilt 

and rotation that may result from a patient's inadvertent 

eye movements during image acquisition, and stores the 

series in a proprietary format. Within each image series, 

the peak of the luminance distribution occurs where the 

focal plane corresponds closest to the imaged structure 

and can therefore be used to infer the relative height of 

that structure (topography image).  

The sum of the luminances within each image series 

relates to the reflectance (i.e. brightness and color) of 

the structure. Owing to the use of monochromatic laser 

light, the reflectance image is similar to a filtered black-

and-white photograph. After several series have been 

acquired and aligned, the software of the instrument 

computes mean reflectance and topography images.  

As it is reproducible and objective, confocal laser 

scanning tomography bears great promise to improve 

diagnostic decisions in glaucoma. Statistical methods 

have already resulted in previously unattainable preci-

sion in detecting change over time [5]. 

3.2   Current CSLT Analysis Tools 

The software of the commercial CSLT device supports 

several different diagnostic algorithms to distinguish 

between images of healthy and glaucomatous optic 

disks. With all of these methods, the user is required to 

manually outline the edges of the optic disk on the re-

flectance image. Identifying the contour of the optic 

disk is a skilled and highly subjective task, thus contour 

lines differ significantly and systematically even be-

tween expert users. 

After the contour line has been drawn and stored, the 

software calculates the location of a ‘reference plane’ on 

which the subsequent computations of stereometric 

parameters (which aim to summarize the structural 

features of the optic disk) are based. Although the refer-

ence plane is essentially arbitrary, its location is de-

pendent on the contour line and therefore has similar 

variability. However, current tools for analysis of CSLT 

data suffer from several shortcomings: 

1. Although even healthy optic disks show tremen-

dous biological variation in their size and shape, 

current diagnostic analyses extract mainly area- 

and volume parameters from the topographic im-

age and largely disregard valuable information on 

the shape of the optic disk and the spatial pattern 

of the glaucomatous tissue loss; 

2. Current CSLT analyses use the topographic (3-D) 

image only. It is likely that valuable information is 
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also contained in the reflectance image, which is 

disregarded; 

3. Current area- and volume-parameters depend 

largely on the essentially arbitrary definition of a 

reference plane which may vary significantly from 

one examination to the next; 

4. A trained operator has to manually outline the con-

tours of the optic disk, a process that is subjective 

and introduces variability and scope for human er-

ror. 

4 Data Set 

Confocal Scanning Laser Tomography data have been 

collected at the Department of Ophthalmology since the 

end of 1991, as part of an ongoing longitudinal study on 

glaucoma. To date, 111 healthy controls and 115 pa-

tients with open-angle glaucoma have been participating 

in this study for up to ten years. The glaucoma patients 

were enrolled consecutively from clinics at the depart-

ment, and the healthy control subjects were recruited 

from patient's relatives, hospital employees and from 2 

private companies in Halifax so that the entire group 

constitutes a mixture of cases representative of a typical 

glaucoma practice in Nova Scotia. All of these subjects 

have had concurrent visual field examinations which 

contribute independent diagnostic information. Almost 

all glaucoma patients have also undergone optic disk 

photography, and these images have already been classi-

fied (according to subtype of damage and confidence 

rating) independently by two glaucoma specialists. 

4.1   CSLT Images 

At present our study database contains approximately 

4300 optic disk images, i.e. aligned series of 32 images 

(256 by 256 pixels) acquired from consecutive focal 

planes, from which topography- and reflectance-images 

can be calculated using standard algorithms. The image 

series are saved in a proprietary format, which can be 

exported to the standard bitmap format using the soft-

ware of the CSLT device. 

For these experiments, we are relying on a relatively 

small amount of locally available CSLT image data 

acquired from the HRT device.  In total, the data set 

consists of 127 unique patients that have been labeled a

priori by specialists as control or glaucoma, outlined in 

table 1.  

Table 1: Composition of Control and Glaucoma Dataset 

Label Total Age  Male Female 

Control 46 61 39 7 

Glaucoma 81 74 26 55 

Each image plane is a 256 by 256 digital grayscale 

image of intensity values in the range of [0, 255].  In the 

work presented here, the topography and reflectance 

images are extracted from the proprietary HRT format 

and pre-processed using our own MATLAB image 

processing tools [6]. 

4.2   Partitioning  

Patient image data was separated into three sets, re-

ferred to as training, validation and test partitions to be 

used in conjunction with the classification stage.  For 

each patient, only the baseline examination is used, 

while repeat (follow-up) examination data is discarded. 

For this study, ten different partitions were gener-

ated for each of training, validation and test sets. Each 

partitioning of the data is created by randomly assigning 

patients to one of training, test or validation such that 

70% of patterns appear in training while 15% appear in 

each of test and validation.  Control and glaucoma data 

are stratified in order to achieve proportional representa-

tion from each class within the three partitions. Note 

that the test and validation partitions represent disjoint 

sets (‘unseen’ patients) from the classifier’s perspective 

(the training set).  This property of the partitioning 

scheme affords analysis of the classifier’s generalization 

ability across the patient population. 

5 Image Analysis 

Machine vision systems typically consist of five generic 

stages [7]: image capture; pre-processing; segmentation; 

extraction of relevant features; and classification. The 

first two stages (capture of the digital topographic optic 

disk image and pre-processing by compensation for 

shifts, tilt and rotation) are carried out by the HRT de-

vice. These present a significant advance over the tradi-

tional approach based on visual inspection. The latter 

three stages (segmentation, feature extraction, and clas-

sification) are of particular interest to this research.  

5.1   Image Segmentation and Pre-processing 

As indicated earlier, segmentation of the CSLT image 

currently relies on the subjective definition of a contour 

line and is therefore subject to random and systematic 

error. However, for the purposes of this study, a two-

part pre-processing step is applied to each image in 

composing the feature set in order to control for degen-

erate border pixels (due to the HRT device’s alignment 

process) and outlier points over the three image samples 

that are available per patient scan:  

1. Each digital image is taken as the median image 

(implemented through the application of a 2D me-
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dian filter, size 4 by 4) of the three image samples 

available. 

2. The image border of width 25 pixels is replaced by 

the median image’s average intensity value. 

5.2   The Moment Method 

Features are extracted from CSLT images using an 

image processing technique referred to as the Moment 

Method. Orthogonal moments have been used exten-

sively in image processing and are well known for their 

superior performance and robust representation proper-

ties under noisy image conditions [8-10]. An attractive 

property of this analysis is that these moments can be 

made invariant to shifts, rotations and magnification 

changes, which can affect CSLT images when patients 

are unable to maintain steady eye position during imag-

ing. Moreover, the optic disc is centered in the image, 

thus avoiding the requirement for an independent seg-

mentation stage in which the object is explicitly identi-

fied. 

The moments employed here are the orthogonal 

moments of Zernike [9], the set of which are defined by 

the projection of the image function, in terms of the 

image pixel intensities, onto the orthogonal bases of 

Zernike functions. Each Zernike moment describes 

image properties and is used as an element of the feature 

set representing the digital image [8-10].    

5.2.1   General Zernike Algorithm 

The Zernike moments are defined by their order (n) and 

repetition (m) with respect to a digital image, where the 

low order moments capture gross shape information and 

high order moments incrementally resolve high fre-

quency information (representing detail) of the digital 

image.    

For a given order, n, there are a total of (n / 2 + 1)(n

+ 1) Zernike moments, each of which is invariant to 

rotation in the digital image and which may be further 

normalized to effect invariance to image translation and 

scale.   

Given a set of Zernike moments (of order n) it is 

possible to approximate (or reconstruct) the original 

digital image, where the reconstructed approximation 

approaches the original image function as n approaches 

infinity.  In this way, Zernike moments can be easily 

calculated to arbitrary order sufficient to characterize 

the desired level of detail in the reflectance and topog-

raphy images.   As suggested by the orthogonality prop-

erty, particularly descriptive Zernike moments of a 

given image can be easily isolated based on their contri-

bution to the reconstruction process.   

An example of the reconstruction process for a to-

pography images is illustrated in figure 1.  In this exam-

ple the upper left image is the original; the upper right is 

the result of an edge filter applied to extract the outline 

(or shape) of the original image; the lower left cell is the 

reconstructed image from Zernike moments (up to and 

including order 35 for figure 1); the lower right cell 

plots the original edge image overlaid on the recon-

structed Zernike image for comparative purposes. 

Figure 1: Example topography and reconstruction using Zernike 

Moment Method. 

5.2.2   Moment Calculation 

Invariance to translation, rotation and scale of overall 

image geometry may be achieved through the use of 

invariant Moment features [8, 10].  These features are 

termed Moment invariants and may be defined as a set 

of non-linear functions on the regular, geometric mo-

ments of an image as follows.  Geometric (or regular) 

moments map the image function f(x, y) onto the mo-

nomial xp yq. The (p + q)th order of geometric moment 

for an N M image function, f(x, y), is defined as: 
M

x

N

y

qp

pq yxfyxm
1 1

),(  (1) 

where Zqp,

Furthermore, the (p + q)th central geometric moment 

is defined so as to normalize regular moment calcula-

tions with respect to the image centroid, thus yielding 

moments invariant to object translation: 

),(
1 1

yxfyyxx
qp

M

x

N

y

pq   (2) 

where yx,  are coordinates of the image centroid ob-

tained from: 

00

10

m

m
x  and 

00

01

m

m
y   (3) 

Similarly it is possible to scale-normalize the target 

image through the use of low-level moments by defin-

ing a scale factor 00/ ma [10] (where is a pre-

determined scaling constant), and mapping the original 

image function, f(x, y) into g(x, y) as follows: 
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Unfortunately the basis set for geometric moments is 

not orthogonal and the resulting moments, therefore, 

lack many desirable properties in the context of feature 

selection.  The complex-valued Zernike polynomials 

[9], however, form an orthogonal basis set over the unit 

circle, 122 yx .   

Orthogonal Zernike moments are defined by the pro-

jection of the image function f(x, y) within the unit cir-

cle onto the complex Zernike polynomials.  The Zernike 

invariants are the magnitudes (the hypotenuse) of the 

real and imaginary components of the resulting mo-

ments.   

When composed in terms of scale and translation 

normalized images or in terms of the regular, low-level 

central geometric moments, the Zernike invariants have 

the additional property of being invariant to rotation as 

well as invariance to translation and scale, given an 

image function of sufficient resolution within the unit 

disc.   

The set of Zernike polynomials is denoted by 

),( yxZnm , or equivalently in their polar form by 

),(nmZ .  The general form of these polynomials 

being:

)exp()(),(),( jmRZyxZ nmnmnm

where ,;, yx  correspond to Cartesian and polar 

coordinates respectively Zn , Zm , constrained 

to || mn  even, nm ||

),(nmR is the radial polynomial:     

2/|)|(
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2
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The complex, orthogonal Zernike moments are then 

defined by: 
M

x

N

y

nmnm Zyxf
n

A
1 1

* ,),(
1

    (6) 

5.5   Features and Subset Selection 

Zernike moments were extracted to order 30 to provide 

us with 254 features for each reflectance and topogra-

phy image, for a total of 508 Zernike features per image.  

The unit circle normalization, required for the extraction 

process, corresponds to the largest circle fitting com-

pletely within the image.  The resulting feature sets 

were converted to UCI format (a widely used machine 

learning format) for future use. 

Normalization of features, relative to the maximums 

and minimums across all feature values in the training 

set, is performed in each instance prior to training, vali-

dation and test runs.  

This work compares results of classification using 

eight feature sets in total, which are summarized in 

Table 2.  Six sets are based on Zernike moments ex-

tracted from Topography and / or Reflectance images 

accordingly, while the remaining two sets are based on 

the conventional stereometric features extracted by HRT 

support software using contours defined by a trained 

technician as described in Section 3.2.   

Feature sets are described as ‘all’ when every feature 

available is used in the training and classification proc-

ess, while the ‘selected’ sets indicate preprocessing for 

feature subset selection based on non-parametric Wil-

coxon rank sum hypothesis testing, as described below. 

Table 2: Exemplar Feature Dimensions 

ID Feature Set Size  

SC Selected Conventional Indices [50-78] 

AC All Conventional Indices 100 

ST Selected Zernike Topography [55-115] 

AT All Zernike Topography 254 

SR Selected Zernike Reflectance [4-34] 

AR All Zernike Reflectance 254 

T+R AT Combined with AR 508 

ST+R ST Combined with SR [59-149] 

In selecting a feature subset, we consider the differ-

ence between the glaucoma and control class sample 

distributions of the training set: the more that a given 

feature differs between these two classes, the simpler 

the decision rule necessary to distinguish the two 

classes.  Here an appropriate indicator is the variance 

normalized inter-class separability (included on median 

feature plots).   

To isolate the features that best discriminate be-

tween classes, we consider a summary of all features for 

each class for both topography and reflectance feature 

types; to this end, we have plotted the median of each 

glaucoma and control feature in the training sets with 

their respective first and third quartile values as error 

bars (figure 2).  For each feature, we plot the result of a 

two-tailed, two sample Student’s T-test (H0: 

glaucomacontrol xx ; Ha: glaucomacontrol xx ) along 

with the non-parametric Wilcoxon rank sum test (H0: 

Equal population medians; Ha: Different population 

medians).  In each instance, lower values indicate better 

strength to reject the null hypothesis. 

An assumption implicit in the use of the Student’s 

T-test is that both samples come from normal popula-

tion distributions. Although we have no clear evidence 

to support the assumption in this case, the t-test result is 

only meant to serve as a guide in locating promising 
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candidate features.  The median and quartile bars along 

with the variance normalized inter-class separability 

were ultimately used to validate the separability of any 

features that are selected with this statistic, although the 

results were invariably consistent with the Wilcoxon 

tests.  Here we simply defined a threshold of 0.01, be-

low which a feature is selected. 

Figure 2: Quartiles, Inter-class separation distance, T-test and Rank 

Sum analysis for Zernike Moments 1 to 32 

5.6  Learning and Classification 

5.6.1  C5 Decision Tree 

C5 is a set of programs, based on the ID3 algorithm for 

decision trees, that inductively construct classification 

models based on known classification instances [11]. C5 

is the latest available incarnation of Ross Quinlan's ID3 

algorithm and is widely accepted as a standard in deci-

sion tree classifiers. 

Due to the relative sensitivity of the C5 algorithm to 

the partitioning of the data into training and test sets, we 

use identical partitions of data patterns as for the Per-

ceptron (rather than employing the f-fold cross valida-

tion function in C5) in order to obtain a more reliable 

and comparable estimate of predictive accuracy under 

C5.

In the interest of clarity these experiments use only 

the basic C5 algorithm.  As such, no boosting, pruning, 

or misclassification weights are used to further augment 

trial runs. 

5.6.2  Perceptron 

The perceptron is a widely studied supervised learning 

algorithm capable of forming linear discriminant func-

tions [12]. Cost function takes the form of the Sum 

Square Error (SSE), and updates to the free parameters 

are made exemplar wise. The basic algorithm takes the 

following form: 

1. Initialize a network of P inputs, xi, O outputs, yj,

and corresponding matrix of initial free parameters 

wij i  {0,...,P}, j  {1,...,O} defined by a uniform 

p.d.f. over the unit interval and x0 = 1. 

2. Present input exemplar vector, x(t), and desired 

output classification vector, d(t);

3. Calculate network output(s), yj(t), 

y j (t) wij (t)xi(t)
i 0

P

     (7) 

4. Update all free parameters, 

wij(t + 1) = wij(t) + dj(t) – yj(t)

5. IF (t mod (# training exemplars) == 0) THEN (es-

timate Sum Square Error over validation data) 

6. IF (SSE(validation) increases) OR (t == 500)) 

THEN (END) ELSE (return to point (2)) 

Thus, early stopping is identified by an independent 

validation set and a test set (also independent) used for 

assessing generalization of the model.  

Following training, a simple pruning rule was im-

plemented to identify features of most discriminant 

value to the classifier.  Pruning proceeds while there is 

some positive improvement in overall performance on 

the validation set as follows:  

1. Iteratively remove each feature input, one at a time; 

2. Eliminate the input that results in the largest overall 

improvement (across the validation set); 

3. IF (improvement increases) THEN repeat ELSE 

stop.

6 Results and Discussion 

The following scatter plots of sensitivity versus speci-

ficity present the mean test results for each of the eight 

feature sets over the 10 partitions, with Perceptron runs 

prior to and following pruning shown in figures 3 and 4, 

respectively, while C5 results are given in figure 5.  

Standard errors (of sensitivity and specificity) for each 

result are reported in figures 6 to 8.   

6.1  Perceptron Classification Results 

Both perceptron models have a distinct preference for 

the moment feature ‘AT’ with respect to sensitivity and 

specificity (in terms of both mean and variance). This 

establishes the best performance irrespective of feature 

set or learning algorithm over all results. For the percep-

tron models, AR and SR (both reflectance only sets) 

always return the worst mean performance. 
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Perceptron Sensitivity  vs. Specificity (Test w ithout prune)
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Figure 3: Perceptron Without Feature Pruning – Mean.

Perceptron Sensitivity  vs. Specif icity (Test after prune)
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Figure 4: Perceptron With Feature Pruning – Mean.

C5 Sensitivity  vs. Specif icity (Test)
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Figure 5: C5 Classifier–Mean. 

Stdevs of Perceptron Sensitivity  vs. Specif icity (Test w ithout prune)
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Figure 6: Perceptron Without Feature Pruning – SD.

Stdevs of Perceptron Sensitivity  vs. Specif icity (Test after prune)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1 0.15 0.2 0.25 0.3 0.35

SC

AC

ST

AT

SR

AR

T+R

ST+R

Figure 7: Perceptron With Feature Pruning – SD.

Stdevs of C5 Sensitivity  vs. Specif icity (Test)
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Figure 8: C5 Classifier – Standard Deviation. 
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SC and SR always demonstrate most variation in 

classification performance; while AT is the most consis-

tent – returning least variance in sensitivity and specific-

ity and matching the low level of classification perform-

ance variation provided by C5.  Features T+R / ST+R / 

AR all provide low sensitivity variance at the expense 

of specificity variance. 

Overall, the perceptron results (other than those for 

AT) show a greater degree of variation across all fea-

tures than for those of C5. 

6.2   C5 Classification Results 

C5 does not indicate a dominant classification perform-

ance for any particular feature set.  The best mean sensi-

tivity value was AC; while the highest sensitivity pair is 

T+R/ST+R.  The highest specificity value was the 

ST/AT pair and worst sensitivity and specificity are the 

SR/AR pair, where this is the only result in common 

with the perceptron. Overall C5 is able to better contain 

the variance in mean classification performance than the 

perceptron. 

7 Conclusions 

The direct classification of optic nerve images has been 

established using the Method of Moments. The Method 

of Moments is particularly appropriate as features are 

constructed ‘globally’. This improves the robustness 

properties of the approach, whilst being facilitated by 

the “well framed” nature of the image content (not nec-

essary to explicitly separate object from background). 

Moreover, the Moment Methods employed are orthogo-

nal – enabling the incremental addition of increasingly 

more specific features – whilst also supporting transla-

tion, rotation and shift invariances [8, 9, 10]. 

The overall scheme removes the remaining subjec-

tive process of optic disk interpretation. Although pre-

liminary in nature, the results do establish the potential 

for using moment methods directly on topography and 

reflectance images of patient records.  More data will be 

necessary to provide the basis for robustly training more 

complex classifiers or additional testing of the perform-

ance on unseen data. 

Further improvements are expected following fur-

ther analysis of features utilized by the classifiers.  

Moreover, pseudo-Zernike features may provide further 

improvements to the effectiveness of the system [8, 10]. 

Other opportunities also available include the analysis 

for topological orderings in the glaucoma cases through 

the use of appropriate unsupervised learning algorithms 

such as Self Organizing Feature Maps. 
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