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Abstract 

The availability of modern imaging techniques such as Confocal Scanning Laser 

Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for 

developing automatic and objective methods for supporting clinical decision-making in 

glaucoma. We present a hybrid approach that features the analysis of CSLT images using 

moment methods to derive abstract image defining features, and the use of these features to 

train classifiers for automatically distinguishing CSLT images of healthy and diseased optic 

nerves. As a first step, in this paper, we present investigations in feature subset selection 

methods for reducing the relatively large input space produced by the moment methods. Our 

results demonstrate that our methods discriminate between healthy and glaucomatous optic 

nerves based on shape information automatically derived from CSLT tomography images.  

 

1. Introduction 

Confocal Scanning Laser Tomography (CSLT), a modern eye imaging technique, 

captures 3-dimensional optic nerve images that can be analyzed, in an automatic 

manner, to provide support in the clinical care of glaucoma patients [1]. Yet, to date, 

most diagnostic tools require human intervention—a trained professional has to 

manually define the margins of the optic nerve (a process that is somewhat subjective in 

nature and highly dependent on training and expertise). Whilst CSLT image analysis 

has tremendous potential to improve the clinical care of glaucoma patients, current 

methods for image analysis fail to detect optic nerve damage sufficient accuracy [2]. 
In this on-going project, we are working towards the development of a data-driven glaucoma 

diagnostic support system (shown in figure 1) that features the automatic interpretation of CSLT 

images by (a) applying image processing techniques to derive image-defining data that can be 

applied to a suite of data mining algorithms; (b) selecting a subset of image features that exhibit 

optimal classification capabilities for distinguishing between healthy and diseased optic nerves, 

and between different subtypes of optic nerve damage; (c) inducing classification rules in order to 

provide domain experts a symbolic explication of the data and the inherent class structures.  

 

 
Figure 1. Functional design of a glaucoma diagnostic support system 



In this paper we present an automated approach to CSLT image analysis via feature 

subset selection leading to classification of the optic nerve images. First we present, the 

derivation of image-defining features from CSLT images using Moment Methods [3, 4]. 

Classification of CSLT images based on image features (or moments) is constrained by 

the relatively large input space—i.e. image features—produced by moment methods, 

thus prompting the need to applying feature selection methods [5, 6, 7, 8] to select a 

feature subset that offers optimal classification accuracy for classifying CSLT images 

of normal and glaucoma patient. We have developed a two-pass feature subset selection 

method that is a hybrid of wrapper and filter methods. In the first pass, wrapper models 

of Multilayer Perceptron (MLP) [9] and Support Vector machines (SVM) are used in a 

forward data selection manner to identify an optimal subset of lower order image-

defining moments that offer optimal classifications. In the second pass, the Markov 

blanket filter method [10] is used to select the highly relevant moments/features from 

the feature subset selected in pass 1. At the completion of the two feature selection 

passes we identify the smallest possible set of moments/features that provide the 

highest classification accuracy. Our results will demonstrate the efficacy of our 

automated approach to discriminate between healthy and glaucomatous optic nerves, 

based on shape information derived from CSLT topography images.  

Analysis of optic nerve data, and CSLT based images in particular, using different 

feature subset selection and data classification methods has been actively pursued by 

researchers, with varying results [11-15]. Bowd et al [11], working with retinal 

tomograph images applied forward and backward feature selection methods for training 

MLP, SVM and linear discriminant functions; Park et al [12] have used correlation 

analysis and forward wrapper model to select features from optic nerve data for training 

SVM classifiers; Swindale et al [13] used a hill climbing wrapper model for feature 

selection to train SVM classifiers; whereas Cheng et al [14] and Peters et al [15] did not 

apply feature selection prior to their respective image analysis methods.  

 

2. Optic nerve image processing using moment methods 

The Heidelberg Retina Tomograph (HRT) is a CSLT system that uses a low-intensity 

monochromatic laser beam to scan the back of the eye sequentially in two dimensions 

to acquire a series of images from consecutive focal planes. Within each image series, 

the relative height of the retinal surface structure can be inferred by finding the focal 

plane in which maximum reflectance of each pixel occurs (topography image). After 

several image series for an eye are acquired (as shown in figure 2), the final mean 

topography images are used for diagnosis [1]. 

 
Figure 2. Confocal laser scanning image series of the optic disc 



We use an image processing technique, referred to as Moment Methods [3], to 

extract features from CSLT images. Moment features are properties of connected 

regions in binary images that are invariant to translation, rotation and scale and can 

describe the image content with respect to its axes and capture both global and detailed 

geometric information about the image.  

In our work, we analyze CSLT images using Zernike moments [4] which use a set of 

complex polynomials which forms a complete orthogonal basis set on the unit disc (x
2
 + 

y
2
) <=1 (where x and y define the origin of the pixel). Put simply, Zernike moments 

describe the image’s properties by their order (n) and repetition (m) with respect to a 

digital image—the low order moments capture gross shape information and high order 

moments incrementally resolve high frequency information (representing detail) of the 

digital image. Two attractive features of this analysis is that (a) moments can be made 

invariant to shifts, rotations and magnification changes; and (b) the optic nerve is 

centered in the image, thus avoiding the requirement for an independent segmentation 

stage in which the object is explicitly identified. 

It should be noted that typically the low order moments capture fundamental 

geometric properties and high order moments represent detailed information of the 

image [4]. However, for image classification based on gross shape it can be argued that 

the high order moments do not contribute much information; in fact they can be 

regarded as noise. Given the above assumption, to classify CSLT images between 

normal and glaucoma, the task is to select an optimal number of lower order moments, 

however the problem is two-fold: (a) there is no available objective measure to 

determine the exact number of (low order) moments necessary for achieving high 

classification accuracy; and (b) there is no discernable relationship between the 

moments that can be utilized. Hence, there is a need for a feature selection strategy to 

objectively select an optimal set of moments, starting from the lowest order moments 

and moving towards higher order moments.  

 

3. Hybrid feature subset selection strategy for image-defining moments 

For our experiments we originally had 1257 tomography images taken at different 

time intervals from 136 subjects (51 healthy subjects and 85 glaucoma patients). For 

each CSLT image we generated 254 Zernike moments with order 1 to 29. For the 

Zernike moments generated, the order n and repetition m meet the conditions n-|m| = 

even and |m| <= |n|.  
Given the set of 254 moments for each CSLT image, the objective is to determine a 

set of optimal moments that can provide high classification accuracy. The rationale for 

feature subset selection is based on the observation that a large number of abstract 

moments tend to compromise the accuracy of supervised learning classifiers, the 

classification rules are difficult to understand and the computational cost is high.  

We have developed a hybrid feature subset selection strategy that combines both 

wrapper and filter models of feature subset selection, and operates in two phases. In the 

first phase, MLP and SVM based wrapper models are used to find an Optimal Moment 

Feature Subset (OMFS) which is the set consisting of low order moment feature groups 

that provide optimal data classification accuracy. In the second phase, a filter model 

based on a Markov Blanket (of the class label) [10] is applied to an inferred Bayesian 

network using the OMFS. The moments that have no causal relationship with the class 

are removed from OMFS to realize an even smaller feature sub-set of moments. In this 

paper, we present phase 1 of our feature selection strategy.  

In the absence of any guiding principle to determine the size of the OMFS, we 

devised an accumulative feature selection strategy, whereby we incrementally add 



moments to an existing feature set and train a classifier (MLP and SVM) to determine 

the classification accuracy for the new feature subset. We had two options to generate 

the feature subset for training: (i) to add the next N higher features to the existing data-

set, where N was deemed to range between 1-10 moments. Say, if N = 5, then feature 

subset1 would include moments 1-5, feature subset2 would add the next 5 moments to 

contain moments 1-10 and so on; or (ii) to use the intrinsic partitioning of the moments 

based on their order; the 254 moments were divided into 29 groups based on their order 

ranging from 1 to 29. This implies that feature subset1 includes moments with order2, 

feature subset2 includes moments with order 2+3, and so on. Both from a theoretical 

and experimental point of view, we determined that generating the accumulative feature 

subset based on adding moments of increasing order is the sound option.  

Finally, to determine the size of the OMFS we generate 29 different feature subsets 

(in an accumulative manner), and for each feature subset we train two classifiers—MLP 

and SVM—and determine their classification accuracy. The classification accuracy 

trend for each of the 29 classifiers is plotted; the point on the plot (i.e. the moment 

group) from which the classification accuracy takes a downward trend (with the 

inclusion of the next higher moment group) is determined as the size of OMFS.  

 
4. Experimental results  

Two classifiers—i.e. MLP and SVM—were used as wrappers according to the 

abovementioned methodology to minimize the original set of moment features (totaling 

254 moments) to a reduced feature subset. Determining the OMFS involved training the 

two classifiers with 29 different training sets created in an accumulative manner by 

adding the next higher moment group to the existing moment feature subset. All the 

moments were normalized into [-1, +1] range.  

For training the MLP we partitioned the feature subset—i.e. the data—into a training 

and test set. Different data partitions, ranging from 80%-20%, 75%-25% and 70%-30% 

(training%-testing%), were used. The classification accuracy results for MLP for all the 

moment groups are given in table 1. Figures 3 plots the classification trend for MLP.  

For training the SVM, each candidate feature subset—i.e. the data—was divided into 

75% training and 25% testing set. Based on the training data, a 5-fold cross validation 

was performed to find the optimal hyper parameters: C and λ. Finally, the testing data 

was used to calculate the SVM’s classification accuracy. In order to minimize the 

stochastic nature of the method, each candidate feature subset was trained 20 times and 

the mean classification accuracy is regarded as the final accuracy (table 1 and figure 3).  
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Figure 3. Classification accuracy for both MLP and SVM 



Table 1. Classification accuracy and standard deviation for MLP and SVM. 
Multilayer Perceptron Support Vector Machine Moment  

Group Accuracy σσσσ Accuracy σσσσ 

1 0.7197 0.0737 0.7618 0.0572 

2 0.7071 0.0735 0.7706 0.0724 

3 0.6868 0.0760 0.7529 0.0740 

4 0.7072 0.0661 0.7103 0.0823 

5 0.6769 0.0702 0.7250 0.0818 

6 0.6832 0.0730 0.7000 0.0736 

7 0.6762 0.0852 0.7147 0.0733 

8 0.7400 0.0685 0.7397 0.0590 

9 0.7297 0.0680 0.7162 0.0679 

10 0.7271 0.0609 0.7044 0.0914 

11 0.7393 0.0752 0.8696 0.0305 

12 0.7224 0.0668 0.7676 0.0464 

13 0.7324 0.0690 0.7721 0.0482 

14 0.7294 0.0647 0.7941 0.0446 

15 0.7268 0.0700 0.7735 0.0427 

16 0.7241 0.0829 0.7662 0.0661 

17 0.7210 0.0708 0.8117 0.0746 

18 0.7359 0.0713 0.7853 0.0652 

19 0.7272 0.0723 0.7662 0.0735 

20 0.7235 0.0925 0.7750 0.0751 

21 0.7390 0.0756 07985 0.0632 

22 0.7271 0.0961 0.7500 0.0667 

23 0.7170 0.0789 0.7912 0.0541 

24 0.7257 0.0726 0.7838 0.0632 

25 0.7176 0.0713 0.7662 0.0792 

26 0.7224 0.0874 0.7882 0.0562 

27 0.7257 0.0718 0.7941 0.0581 

28 0.7288 0.0723 0.7750 0.0659 

29 0.7144 0.0740 0.7941 0.0631 

A comparison of the classification accuracy trends for both the MLP and the SVM 

classifiers (see table 1 and figure 3) shows that both these classifiers have a similar 

classification accuracy trend—i.e. they both start with a relatively high accuracy with 

the first moment group and then the accuracy drops with the accumulation of the next 

few moment groups. But then the accuracy starts to pick up and for the MLP it peaks 

when the feature subset constitutes the first 8 moment groups, whereas for the SVM the 

accuracy peaks for the first 11 moment groups. The classification accuracy peak is not 

sustained for both classifiers with the inclusion of next higher moment groups; in fact 

the classification accuracy noticeably drops off with the inclusion of higher moment 

groups in the accumulative feature subsets. Furthermore, it can be observed that the 

classification accuracy with higher order moment groups is relatively low as compared 

to the peak achieved with the lower order moments.   

Based on the above interpretation of the classification accuracy trend for both 

classifiers, we determined the OMFS to constitute the first 11 moment groups—i.e. the 

first 47 moment features—because the SVM exhibited the highest accuracy and the 

MLP exhibited the second highest accuracy with the first 11 moment groups.   

 
5. Conclusions  

We have presented an alternate approach to analyze CSLT images for glaucoma 

detection. In the next step we plan to derive symbolic rules using rule induction 

algorithms to provide symbolic knowledge for diagnosing glaucoma leading to the 

automation of decision support for glaucoma based on CSLT images.  



Table 2. Classification accuracy before and after feature subset selection 
Feature Subset Size Classifier Accuracy 

All 254 moment features MLP 71.44% 

All 254 moment features SVM 79.41% 

47 moment features in OMFS MLP 74.00% 

47 moment features in OMFS SVM 86.96% 

 

From a practical standpoint, in this paper we have demonstrated again the potential 

of using Zernike moment methods as a viable image-processing approach for working 

with CSLT optic nerve images [16]. Furthermore, we presented a novel feature subset 

selection strategy that allows us to minimize the feature space without the loss of 

information. Table 2 indicates that through the first pass of our feature subset selection 

strategy we managed to reduce the feature set from 254 moments to a much smaller 

feature subset comprising just 47 salient moments, whilst achieving a slight increase in 

the classification accuracy. The second pass of our feature subset selection strategy, 

involves the use of a Markov Blanket as a filter model to the 47 features and we are 

able to further minimize the feature set to just 6 most salient moments whilst 

maintaining the classification accuracy (results to be presented in a separate paper). 
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