

Storage Model for CDA Documents

Zheng Liang, Peter Bodorik, Michael Shepherd
Faculty of Computer Science, Dalhousie University

Halifax, Nova Scotia, Canada B3H 1W5
zhengl@cs.dal.ca, bodorik@cs.dal.ca, shepherd@cs.dal.ca

Abstract

The Health Level 7 Clinic Document Architecture

(CDA) is an XML-based document markup standard that
specifies the hierarchical structure and semantics of
“clinical documents” for the purpose of information
exchange. In this research, issues arising with the design
and implementation of a DB to support efficient retrieval
from CDA documents and data mining for statistical
analysis purposes are explored. Both an object-relational
approach and a traditional relational approach were
explored and compared in terms of design,
implementation issues and efficiency. Although the
object-relational approach results in a simpler design,
implementation is more complicated as object methods
must be programmed. In the relational design, queries
were more complex to express than in the object-oriented
design, but more efficient to execute. It was concluded
that the DB design should use standard relational tables
while using objects only when required for specialized
processing, such as processing of graphs or scans.

1. Introduction

With the rapid development of the Internet and the

World Wide Web, the computer-to-computer exchange of
business documents in a structured, predefined standard
format has become more and more significant. This
exchange has been greatly facilitated by the development
of extensible structured markup languages such as XML.
A similar need for the electronic exchange of clinical
documents exists in healthcare. Until recently, however,
standards for clinical document exchange among clinical
systems covered messaging of fielded data but did not
meet the need for semantic processing of hierarchical,
structured, clinical documents. This has now been
addressed by the Clinical Document Architecture (CDA).

ANSI/HL7 CDA R1.0-2000 is the first nationally
certified XML-based standard for healthcare [1]. It has
been developed by Health Level 7 (HL7), an ANSI-
accredited Standards Developing Organization operating
in the healthcare arena. HL7’s mission is to enable
clinical interoperability through the provision of “…

standards for the exchange, management and integration
of data that support clinical patient care and the
management, delivery and evaluation of healthcare
services.” [7].

As the CDA becomes used more widely and databases
of CDA documents are created, the efficient retrieval of
data from these documents and the statistical analysis of
the contents of these documents become an issue. Right
now, most hospitals and health related organizations are
using relational databases due to their wide availability,
powerful query and analysis tools and flexibility to
integrate with existing business databases. These
organizations may use, for various reasons such as legacy
information systems, a hierarchical database to store
operational data, and then dump this data into relational-
based data warehouses for statistical analysis and data
mining. However, when CDA documents are mapped into
a relational database, the native hierarchical structure of
the XML encoding and the hierarchical structure of the
CDA may be lost. In addition, relational databases are
weak in supporting the nesting and recursive structures
inherent in CDA documents.

In this research, the relational database management
(RDBMS) and the object-relational database management
system (ORDBMS) are examined and compared for the
purpose of storage and query of CDA documents. The
ORDBMS is able to handle complex, object-centric,
persistent data while keeping the powerful query and
analysis tools of the RDBMS. ORDBMS are often
considered to be a bridge between RDBMS and
OODBMS (object-oriented DBMS) by combining the
ease of use of RDBMS and the flexibility of OODBMS to
handle complex data types. For the comparison,
simplicity, flexibility, coverage, query performance and
storage space are considered.

Section 2 of this paper briefly presents an overview of
the Clinical Document Architecture with examples from
the Structured Discharge Summaries used in previous
research [10]. Section 3 briefly discusses the selection of
DBs to support processing of CDA documents and also
briefly contrasts the ORDBMS with the RDBMS. In
Section 4, the DB design is presented by first developing
an ER model and then translating it to the relational and

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

object-relational data models. Section 5 discusses results
of the preliminary comparison of the relational and object-
relational DBs in terms of several characteristics, such as
delays, for a set of queries. The final section offers a
summary and concluding remarks.

2. CDA Overview

The Clinical Document Architecture has been in

development since 1996, originally as the Kona
Architecture [8], then as the Patient Record Architecture
(PRA), and now as the CDA [4]. It is a document markup
standard for the structure and semantics of exchanged
“clinical documents”. A CDA document is a defined and
complete information object that can exist outside of a
message and can include text, images, sounds, and other
multimedia content.

CDA documents derive their meaning from the HL7
Reference Information Model (RIM) [5]. The RIM
provides a coherent shared information model that
contains all data content relevant to HL7 messages, and is
an essential part of the HL7 Version 3 development
methodology. It represents the semantic and lexical
connections between the information carried in the fields
of HL7 messages and has evolved to a flexible and
general model of clinical information.

The Clinical Document Architecture is a three-layer
architecture implemented in XML, where each level is
defined by a DTD. Level One is the root of the hierarchy
and each additional level adds further specificity and
constraints to the architecture. Level One specifies the
semantics of the header, codes for the document type and
sections within the body of the document [6]. It consists
of three technical specifications: the CDA Header, the
CDA Level One Body, and the HL7 Version 3 data types.
Level Two uses the same codes as Level One for the
document type and sections but will allow further
constraints to be imposed. Level Three will define
observations and services within the document body. At
this time, Levels Two and Three have not yet been fully
defined by HL7.

As indicated above, CDA documents derive their
meaning from the HL7 Reference Information Model
(RIM). The elements and attributes and the relationships
among these elements and attributes are drawn from the
RIM and expressed in XML. For example, Figure 1
illustrates the use of the caption, coded caption and
vocabulary domains in the Body of the document instance.

The caption for the section is “Most Responsible
Diagnosis”. The caption for the paragraph is “Unstable
Angina”. The RIM code representing Unstable Angina is
I20.0 and is taken from the source vocabulary, ICD10
(2.16.840.1.113883.6.3). This permits the caption to be

displayed and/or read by a human and the corresponding
code to be processed by a computer application.

The CDA Header contains the metadata describing
this clinical document. It consists of four logical
components:
• Document information, including relationships to other

documents
• Encounter data
• Service actors (such as providers)
• Service targets (such as patients)

<caption>Most Responsible Diagnosis</caption>
<section>

<caption>Unstable Angina
<caption cdV=I20.0 S="2.16.840.1.113883.6.3"/>

</caption>
<paragraph>

<content>Y</content>
</paragraph>

</section>
</caption>
Figure 1. Captions, coded captions and vocabulary

The major elements of the clinical_document_header

include: id, set_id, version_nbr, document_type_cd,
origination_dttm,confidentiality_cd, document_relationship,
patient_encounter, legal_authenticator, originator,
originating_organization, originating_device, provider, patient,
local_header. Many of these elements may have sub-
elements. For instance, as illustrated in Figure 2, the
patient element may have sub-elements.

<patient>

<patient.type_cd V="PATSBJ"/>
<person>

<id EX="12345" RT="2.16.840.1.113883.3.933"/>
<person_name>

<nm>
<GIV V="John"/>
<FAM V="Doe"/>

</nm>
<person_name.type_cd V="L"

S="2.16.840.1.113883.5.200"/>
</person_name>

</person>
<birth_dttm V="1932-09-24"/>
<administrative_gender_cd V="M"

S="2.16.840.1.113883.5.1"/>
</patient>

Figure 2. Example of coding sub-elements

The CDA Level One body is comprised of nested

containers, including non_xml data, sections, paragraphs,

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

lists, and tables. The sections may be nested, in that a
section may recursively have further sections, and may
also contain paragraphs, lists, and tables. The containers
may have captions and contents and may be coded. Each
container also has confidentiality and origination
attributes. This enables the sharing of information to
groups with different confidentiality levels.

3. Database Type Selection

Before discussing what type of a storage system is

most appropriate for management of CDA documents,
some general comments on the business environment and
the architecture of the information system are appropriate
as they would have critical influence on the type of a DB
system that is chosen. We assume that the information
system must support two types of business processes,
operational (statistical analysis) and also investigative in
that querying facilities must be provided.

CDA (XML) documents are generated by various
organizations, such as hospitals, clinics, and physicians,
and then processed, resulting in the storage of relevant
information in a DB – forming operational processing of
health (business) documents. Many of the documents
would have to be processed with transactional properties
that provide for correct processing of concurrent requests
and provide reliability in the face of various types of
failures that can occur in such an environment. The DB is
also accessed by users that wish to query the DB using DB
facilities in order to find information of their interest. If a
relational or an object-relational DB is used then the DB
is accessed using SQL.

So far no published research has compared various
storage strategy to determine which is the most suitable
for CDA documents. One of the reasons, perhaps, is that
the answer may be derived in a relatively straight-forward
manner that we shall adopt here. There are two general
alternatives for storing and manipulation of CDA
documents: either utilize a file system together with a set
of customized programs or use a DB system or use some
type of a DBMS. Storing CDA documents in a file system
can be viewed as relatively straightforward if all that is
required is storage and retrieval while using the document
ID as the key. However, such a system is not likely to be
under serious consideration in any realistic scenario as it
does not provide flexible query and data manipulation
facilities and suffers from lack of the tools and features
that are provided by database systems, features such as
concurrency control and recovery management, and tools
such as those for producing reports, forms, and DB
statistics.

DB systems that can be considered for management of
CDA documents can be categorized by the data model on
which they are based and we shall briefly consider the

following that we assert, without proof, that they apply
here: native XML DBs, true Object-Oriented DBMS
Systems (OODBMS), Relational DBMSs (RDBMS), and
Object-Relational DBMS. We shall discuss briefly each
one together with their strengths and weaknesses in their
role in supporting management of CDA documents.

A native XML database is built specifically for storing
XML data, supporting the DOM model and declarative
querying. At first, this appears to be ideal for the
application at hand. However, there are a number of
factors that render this option as unlikely in the near
future, and in the authors’ opinion, in the distant future as
well. That such systems can be ruled out in the near
future is supported by the fact that currently no
commercial-graded systems are available and also the fact
that when such systems do become available it will take
time for developers to become familiar and comfortable
with them. In the long term, their viability to replace
relational DB for general purpose business processing is
also doubtful because of the hierarchical nature of the
XML documents. It should be remembered that
hierarchical DBMSs had been around for some time
before relational DBs came about; yet, relational DBs are
dominant today. Another big and simple reason is that
business organizations have invested greatly in the
relational DB technology. Thus, in our opinion, native
XML DBs will not replace relational DBs in most
business type settings, of which our environment is a
small example. Yet, we do believe native XML DBs will
play an important role in scenarios where their use is
advantageous. For instance in our scenario, the CDA
documents would likely be archived for auditing and also,
perhaps, for data mining purposes. There might very well
be an additional, native XML DB used to archive the
CDA documents.

When CDA documents are mapped into a relational
database, the native hierarchical structure of the XML
encoding and the hierarchical structure of the CDA may
be lost. This may be fine for operational purposes but not
necessarily for the purposes of an audit trail.
Furthermore, CDA documents exhibit a nested and
recursive structure in their elements.

Object-relational DBs may be better suited than pure
relational DBs because of the object-oriented extensions
that support complex data types and also references.
More importantly, some CDA documents by their nature
will contain information in terms of objects such as graphs
and pictures that require support of specialized methods
for the purposes of querying. In such situations ORDBMs
or OODBMSs are preferred.

To support the required storage and manipulation of
complex objects and their methods, a true OODBMS,
such as ObjectStore O2, may be used. It is our opinion
that ORDMBSs, in comparison to OODBMSs, are
preferred because they are based on the proven and well

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

understood and accepted relational DB technologies. It is
likely that object-orientation purists would disagree, but a
brief contemplation of the investments in resources,
human and otherwise, that were made by companies in
relational DB technology and its integration and
pervasiveness in information systems should be
convincing enough that ORDMBSs is the way to go.

Because we argue that ORDBMS is the DB type of
choice to support processing of CDA documents and as
they are relatively new, a brief description is in order.
ORDBMS are often considered the bridge between
RDBMSs and OODBMS (object-oriented DBMS). One
of the biggest achievements of ORDBMS is to provide a
flexible framework for organizing and manipulating
software objects corresponding to real-world phenomenon
without losing the advantages of RDBMS.

The ORDBMS is based on the relational model. It
uses the same data storage structure approach and also the
same data-access approach based on a standard object-
oriented version of SQL [2]. ORDBMS introduces
object-oriented concepts into the database management
system and thus it has additional OO structural features,
such as inheritance and polymorphism. Because objects
can be stored in tables and objects can have methods
defined on them, it embeds logic into the database. In
comparison, traditional relational DB systems need to
move data out of the database in order to apply the logic
unless triggers or stored procedures are applied. These
new OO features are made possible through new features
implemented in ORDBMS [2]. These include table
hierarchies (tables can include nested tables) and a
number of new data types and features including
structured user-defined types, attributes and behavior,
functions and methods, typed hierarchies (single
inheritance) and typed tables.

ORDBMS are particularly suitable for storage and
manipulation of objects that require manipulations on
them for the purposes of retrieval. Examples include
objects in computer-aided design and the health field.
Because the logic to be applied on the object can be
embedded in the DB, the time for movement of objects
from/to DB is reduced and hence efficiencies are gained.
More fundamentally, development of applications
becomes simpler as methods on objects that are natively
stored in the DB are available. For example, with
ORDBMS, one can ask a question such as “Find all
graphs that satisfy a certain property” where the property
is expressed in terms of a method execution on the object.
In terms of the CDA processing and querying, this is
fundamentally important when searching objects
representing results of medical examinations, for instance,
results of X-rays or various types of scans.

Although we claim that an ORDMS is the clear choice
for storage and manipulation of data contained in CDA
documents, the design of a DB for the ORDMS can take

one of two approaches: in one, the design follows the
natural object-oriented approach while in the second a
relational DB schema is used as much as possible while
objects are used only when necessary. We shall elaborate
on these two approaches and compare them in the
subsequent section.

4. Database Design and Implementation

We follow a traditional design that is based on the

ANSI 3-Tier database model consisting of the conceptual
or external level, logical or internal level and a physical
level. The goal of the conceptual phase is to produce a
conceptual schema for the database that is independent of
a specific DBMS. During the logical level design, the
conceptual schema is mapped into logical schema using a
selected data model, in this case the Object-relational.
The last step is the development of the specifications for
the stored database in terms of its physical storage
structures, low-level algorithms used to perform data
retrieval and management.

4.1. ER Model for CDA Documents

For the conceptual model we use the widely used

Entity Relationship (ER) model. The ER model for
processing of CDA documents is relatively straight-
forward consisting of just three entities and a number of
relationships. Specifically, there are three entity types:
Person, CDA-document, and Organization. There are
eight relationships, each one with attributes: four N:M
relationships and three 1:N relationships between CDA-
document and Person entities and one 1:N relationship
between CDA-document and organization entities. The
specific relationships between the CDA-document and
Person entities are:
• One CDA can be authenticated by 0-N person

(authenticator) and one person can authenticate 0-M
CDA documents (N:M).

• One CDA can be received by 0-N person (intended
recipient) and one person can receive 0-M CDA
documents (N:M).

• One CDA can be originated by 0-N person (originator)
and one person can originate 0-M CDA documents
(N:M).

• One CDA can be provided by 1-N person (provider)
and one person can provide 0-M CDA documents
(N:M).

• One CDA must have and only have one person (patient)
and one person can be the patient for 0-N CDA
documents (1:N).

• One CDA may be legally authenticated by 0-1 person
(legal authenticator) and one person can legally
authenticate 0-N CDA documents (1:N).

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

• One CDA may have 0-1 transcriptionist and one person
can be the transcriptionist for 0-N CDA documents.

There is one 1:N relationship between the CDA-

document and Organization entities:

• One CDA may have 0-1 originating organization and
one organization could be the originator for 0-N

The ER diagram is shown in Figure 3. Square boxes

represent entities, while their attributes are listed inside
columns. For instance, the person entity is represented by
a column with the two boxes labeled “Person” at the
bottom and top of the column. Inside the column are
Person attributes Id, Name, Address, and Phone.
Attributes are listed using the following notation: “?”
means that the attribute could be NULL, “*” means the
attribute could have 0 to N values, “+” means the attribute
must have at least one value. The diamonds represent
relationships in the usual manner also showing the
minimum and maximum cardinalities. Finally,
relationships also have attributes; these are shown on the
right-hand-side of the diagram using untraditional
notation. Consider, for instance, the relationship
Originator – it has attributes Type_cd and
Prticipation_tmr.

Examination of the ER diagram and, in particular, the
CDA documents that are supported at the Level One,
reveals that a purely relational DB schema would be
sufficient to support the CDA documents application in
that there are no elements, such as graphs or scans, that
require complex types and processing. Thus, if
processing of CDA documents meant that only Level One
documents are to be supported then a relational DB would
be sufficient to support such as application. However, we
do know that when eventually Level Two and Three CDA
documents are defined that they will contain complex
objects that will require support of an ORDBMS.

Because the Level One CDA documents do not require
special methods for storage and retrieval, the resulting ER
diagram can be translated into ORDMBS data model in
two orthogonal ways, one using object orientation while
the other using translation of the ER diagram into a pure
relational data model. We shall explore these two

approaches in order to find their advantages and
disadvantages. For the purposes of the rest of the paper,
we shall refer to one design approach as object-relational
while we shall refer to the other as relational. It should be
kept in mind, however, that both designs would eventually
be supported by an ORDBMS.

4.2. Object-relational database design

When translating the ER model into an object-

relational model [3], a natural way to proceed is to
represent entities as objects. Thus there are three objects
(classes of objects) corresponding to entities in the ER
diagram. The object classes are shown in tables 1 to 3.

Table 1. Object oo_person and its attributes.

Person (oo_person)
Name Type [: type of type]
Id_list oo_id_list : VArray (oo_id)
name_list oo_name_list : VArray (oo_name)
address oo_address_list : VArray (oo_address)
phone oo_phone_list : VArray (oo_phone)

Table 1 represents the oo_person object, which has

four attributes, id_list's type is oo_id_list which is an array
of object oo_id, similarly for name_list, address and
phone. Note that the object has three attributes/data-
members that are arrays of objects. They are used to
represent the multi-valued attributes of the entity Person
of the ER model. A simple attribute (non-multi-valued) of
an entity would be represented by a data member that is
not an array.

Table 2 represents the object oo_organization. The
structure of the object is similar to that of the Person
object in that each of the object’s array is used to
represent one of the mutli-valued attributes of the entity
Organization.

Table 2. Object oo_organization and its attributes
Organization (oo_organization)

Name Type [: type of type]
id_list oo_id_list : Array (oo_id)
name_list oo_name_list : Array (oo_name)
addr oo_address_list : Array (varchar2(50))

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

Figure 3. ER diagram for storage of CDA documents

In Table 3, which represents the object oo_cda, the

first column is the name of data members/attributes while
the second column is their type. Note that the first rows of
the table up to and including the section_list are used to
represent the attributes of the entity CDA-document. The
remaining rows are used to represent the relationships,
occurring in the ER model, between the CDA-document
entity and the Person or Organization entities.

Table 3. Object oo_cda and its attributes.

CDA (oo_cda)
Name Type [: type of type]

cda_id oo_id
set_id oo_id
document_type_cd oo_type_cd
service_tmr Char(10)
origination_dttm Char(10)
copy_dttm Char(10)
confidentiality_cd_lis

t
oo_confidentiality_cd_list : VArray

(oo_confidentiality_cd)
document_relationshi oo_relationship_listtable : Nested table

CDA (oo_cda)
p_list (oo_relationship)

fulfill_orders oo_fulfill_order
patient_encounter oo_patient_encounter
... ...
section_list oo_section_listtable : Nested table

(oo_section)
authenticator_list oo_authenticator_listtable : Nested table

(oo_authenticator)
intended_recipient_lis

t
oo_recipient_listtable: Nested table

(oo_recipient)
originator_list oo_originator_listtable: Nested table

(oo_originator)
originating_organizati

on
oo_originating_organization

Transcriptionist oo_transcriptionist
provider_list oo_provider_listtable : Nested table

(oo_provider)
service_actor_list oo_service_actor_listtable : Nested table

(oo_service_actor)
Patient oo_patient_listtable : Nested table

(oo_patient)

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

Attributes with multi-values (in the ER model) could
be represented as either VARRAYS or nested tables. In
general, if a collection needs to be queried then nested
tables are used. If a whole collection needs to be retrieved
with one operation, then VARRAY should be used.

In the object-relational model, an N:M relationship
can be implemented by nested tables plus REF (a concept
similar to a reference pointer). Using the relationship
between provider and CDA as an example. Each oo_cda
includes a nested table of objects oo_provider. One of the
oo_provider's attributes is a reference to a person.
Therefore, in the object-relational model, only two tables,
cda and person, are enough for an N:M relationship. In
the relational model, this case will result in cda,
cda_person and person, totalling three tables. In fact, the
nested table in oo_cda (oo_provider_list) for object-
relational model is equivalent to cda_person table in the
relational model.

In the object-relational model, the 1:N relationship
implementation is similar to implementation in the
relational model, but the object-relational model uses REF
type, while the relational model uses foreign keys. For a
better understanding, objects oo_provider and oo_patient
are also list below (Tables 4 and 5). In Table 4,
person_ref is a reference pointing to an oo_person
instance. And in object oo_cda, provider_list is a nested
table of oo_provider (Table 1). oo_person, oo_provider
and oo_cda build a N:M relationship. In Table 5, person
is a reference pointing to an oo_person instance.
oo_patient is one of the attributes of oo_cda (Table 1), so
it implements a 1:N relationship.

Table 4. Object oo_provider and its attributes

Provider (oo_provider)
Name Type [: type of type]
type_cd oo_type_cd
function_cd oo_type_cd
Participation_tmr Char(10)
person_ref REF oo_person

Table 5. Object oo_patient and its attributes
Patient (oo_patient)

Name Type [: type of type]
type_cd oo_type_cd
Participation_tmr Char(10)
Person REF oo_person
birth_dttm Char(10)
admin_gender_cd oo_type_cd

We shall elaborate further on design alternatives later

when comparing the object-relational and relational
options.

4.3. Relational database design

We have used a standard algorithm to translate the ER

model into the relational data model. The result of this
translation is a set of 28 relations. Basically, the
algorithm creates a relation/table for each entity. It also
creates a table to represent each multi-valued attribute in
the ER model – and there is a large number of them. A
1:N relationship is represented by attaching a key for the
table from the one side of the relationship to the table
from the many side of the relationship. Finally, each N:M
relationship in the ER model is represented by using a
separate table. Because the ER model has a large number
multi-valued attributes and N:M relationships, the
resulting number of tables in the relational model is also
large when compared to the object-oriented design.

Because the relational DB design is pervasive in the in
building information systems it shall not be elaborated on
any further.

5. Comparison of the Object-relational and

Relational Approaches

The previous section provided reasons for expecting

that the DB of choice to support processing of CDA
documents would very likely be of the ORDBMS type. It
also showed that there are two approaches to the design of
the object-relational DB. One approach uses the natural
object relational design in which tables store objects that
have data members and methods. In the second approach,
tables are used to store objects only when it is necessary
in that the processing requirements cannot be met by the
pure relational facilities of the DB system but must resort
to inclusion of object-specific methods to manipulate the
objects.

We compare these two approaches from the
perspectives of design and implementation issues and
execution “performance”.

5.1. Implementation Issues

The object-relational design results in a much smaller

number of tables. Also, queries tend to be simpler as they
use object methods that simplify expression of queries.
On the other hand, object methods must be carefully
prepared to support queries. Ad-hoc queries may not be
possible for an object-relational design if appropriate
methods have not been prepared at the time of
implementation.

When designing and implementing an object-relational
DB, for each object we must determine the types for the
object’s data members/attributes, the user-defined (UDT)
types, and also methods that can be invoked on the
objects, i.e., we must determine user-defined functions

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

(UDF) for objects. Thus, for each object, we must
examine possible queries/operations on the object and
create appropriate methods to support them. For instance,
if we wanted to find the list of phones for the patient
called Bob Smith, then we would issue the following
objected-relational SQL statement:
SELECT o.phone FROM oo_person_tab o
WHERE o.hasName (‘Bob’, ‘Smith’);

Note that the operation/method hasName must be
provided as one of the methods on the object oo_person
class. The UDFs are necessary to support search in nested
tables. Thus, to support add-hoc queries, numerous
methods/functions must be prepared a-priori. The
programming is not difficult but it must be performed
when the DB is implemented. If the method, such as
hasName, that determines whether a Person class instance
has a given name does not exist, we could not issue such a
query. But once the method on the object is provided, the
query itself is a simple one – retrieval is from one table
only.

In pure relational SQL the query would be:
SELECT o.person_phone
FROM person p, person_person_name n

person_person_phone o
WHERE n.person_name = ‘Bob Smith’

AND n.person_id = p.person_id
AND o.person_id = p.person_id;
In this case, because of the flattened structure of the

tables, no methods need to be implemented by the
programmer, but the query is a join query spanning three
tables.

The object-relational design may be viewed as simpler
and as more intuitive than a pure relational approach – the
result is simpler in terms of the number of tables. There
are significant drawbacks, however. There is a smaller
number of tables because mutli-valued attributes are
represented as arrays or nested tables. However, methods
to perform retrieval on these arrays and tables must be
supplied through programming. More fundamentally, the
smaller number of tables is also due to the fact that N:M
relationships are also represented using nested tables
possibly with additional objects. The designer, must make
a choice in which object should the nested table be
located. Consider a N:M relationship between entities A
and B. This relationship can be represented by using a
nested table in the object representing the entity A
(referred to as object A) or by using a nested table in the
object representing the entity B (referred to as object B).
Appropriate methods to search the table must also be
programmed. These two choices are not
equivalent/symmetric because there are implications on
delays of executing queries. If the table is included in the
object A, then queries of the form, “find objects of class B
that are related to a given instance of object A”, are easily

answered. By easily, we mean that they are not only easy
to program but also efficient to execute. On the other
hand, a query of the form, “given an instance of object B,
find all instances of object A it (instance of B) is related
to”, is not easy to answer in terms of complexity and also
efficiency. In the relational model, a relationship is
represented by a separate table and hence both queries are
equivalent/symmetric in terms of complexity and
efficiency.

5.2. Execution Delays

We have implemented a relatively small DB, using

both the pure relational and object-relational approaches,
and used selected operations to obtain preliminary results
in terms of execution delays. Both the relational and
object-relational DB contained the same set of 1,000 CDA
documents. For details on queries and creation of the
CDA databases please see [11].

We shall just mention that storage requirements (in
terms of the disk blocks) and also memory requirements
when executing queries were much higher for the
relational approach when compared to the object-
relational approach. But, considering the continuous
improvements in capacities and declining costs for both
types of storage, they are not considered to be important.

To compare execution delays for the two approaches
we have selected a set of queries that we considered to be
representative. We chose the queries by examining the
HL7 Version 2.4 CD-ROM published by Health Level
Seven (received in Feb 2002), which is one of several
ANSI-accredited standards developing organizations
operating in the healthcare arena. The CD-ROM has nine
chapters, most of the chapters provided typical queries for
that particular area. We selected queries in the following
categories:
• Queries that retrieve data on a single patient while using

simple search criteria such as the name of a patient.
• Queries that retrieve data on multiple patients.
• Queries that retrieve information/data on CDA

documents (not patients).
• Update operations to insert, delete, and update data

stored in the DB.
We have implemented the queries for both the

relational and object-relational DBs using Oracle 9i.
Each query, such as find all patients with a given name
“Bob Smith”, has two equivalent version, one for the
object-relational DB version and one for the relational
version. They were equivalent in that they both retrieved
the same result. Every query was run 5 times to get the
average values. The differences between different runs
were within 20% for all queries except those that had a
very small CPU time. Care was taken to ensure that
observed execution delays were not affected by

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

environment in which the experiments were conducted.
For instance, it was ensured that no other applications
were executing so that they would not affect the total
execution delays of queries.

We used the TKPROF tool to find the execution
characteristics of the queries. The characteristics
provided by the tool include execution time, elapsed time,
the number of table-rows accessed, etc. Table 6 shows the
query execution delays. There are 13 queries, labeled as
Q1 to Q13. Execution delays for the relational DB appear
in the second column while the last two columns contain
execution delays for two versions of queries for the
object-relational case. The difference between the two
versions is that in the second version we made sure to use
UDF in queries only when it was necessary, that is only
for queries that need to access the nested tables. For
instance, a Version 1 query may have a clause
"WHERE o.hasCDAID ('a123', '2.16.840.1.113883.3.933') = 1"
that uses a UDF .hasCDAID() defined on an object.
Instead of using this UDF the clause can be replaced by an
equivalent clause that does not use the UDF:
"WHERE o.cda_id.ex='a123' AND

o.cda_id.rt='2.16.840.1.113883.3.933'"
As the table indicates, we were able to modify queries

Q6 to Q10 to avoid the use of UDFs in five of the object-
relational queries. It should be noted that queries Q1,
Q2, and Q3 do not require the use of UDFs at all and thus
they do not appear in the column for Version 1 queries.

Table 6. Execution delays

Object Relational Query

Relational
Version 1 Version 2

Q1 0.02 0.01
Q2 0.01 0.05
Q3 0.05 0.32
Q4 0.01 0.05
Q5 0.01 0.02
Q6 0.01 18.4 0.03
Q7 0.05 19.5 0.3
Q8 0.01 18.3 0.02
Q9 0.01 18.4 0.02

Q10 0.01 18.7 0.04
Q11 0.1 23.5
Q12 0.05 5.2
Q13 0.08 37.2

Q1 to Q3 belong to query category 1, which do not use

any UDFs. The execution delays were relatively small
and comparable in magnitude.

Query category 2 includes queries Q4, Q5 and Q6 and
are expressed on tables oo_person_tab,
oo_organization_tab and oo_cda_tab respectively. Using
Q4 of query version 1 as an example, this query needs to

scan the whole oo_person_tab table, to execute a UDF
hasName() for every tuple, and then collect the tuples that
satisfied the condition, hasName ('Henry', 'Levin') = 1.
The time complexity would be of O(n), where n is the
number of tuples in the table. Therefore, execution delays
of queries with UDFs such as hasName() and hasID() are
dependent on the number of tuples that must be searched.
Because the number of tuples searched by query Q6 is
much larger than the number of tuples searched by queries
Q4 and Q5, the execution delay of the query Q6 is also
much higher. In the relational version the execution delay
of the query Q6 is not sufficiently higher to be recorded
using the precision used in table 6. Since relational
databases perform sophisticated optimization and exploit
fast access paths such as indices, the time complexity is
likely to be of O(LOG(n)), where n is the number of
tuples. For object-relational database, it is a difficult
problem to attempt to optimize access to tuples through
UDFs. When the version 1 of the object-relational query
Q6 is modified to version 2 by avoiding the use of a UDF,
its execution delay is improved dramatically. The same
observation can be made about the category 3 of queries
that includes Q7, Q8 and Q9.

The final category includes queries that entail retrieval
from tables that are involved in N:M relationships. Again,
the performance for object-relational database is not as
good as relational database.

The average execution delays shown in the table lead
to an obvious conclusion. Relational queries are far more
efficient to execute. The table also shows that it is the
UDFs in the object-relational approach that contribute
most to the high execution delay of the object-relational
approach. When comparing the two versions of queries
for the object-relational DB, whenever the UDFs can be
avoided when expressing a query, its execution delay is
superior (lower).

For detailed discussion of execution delays please see
[11]. We shall conclude that database vendors, and
Oracle is no exception, have spent great resources
ensuring that the execution of queries is as efficient as
possible. Because the relational DB has been around for a
long time, execution of SQL queries on relational tables of
simple values (that is tables that do not store objects and
that do not use nested tables) is very efficient. Experience
with optimizing queries on tables that store objects is not
extensive because it is a difficult to perform optimization
when user-defined methods are involved. Furthermore,
when searching through tables of objects, object functions
are invoked and the overhead associated with their
invocation is relatively high. Finally, object methods are
programmed at design-time and they cannot be optimized
automatically by the DB system itself. Thus, if they are
not programmed with efficiency in mind, their execution
delay will affect the overall delay of executing the query.

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

6. Comparison: Summary and Conclusions

To summarize, from the design point of view, the

object-relational approach results in a simpler DB in terms
of the number of tables. However, the design process is
not as straight-forward as pure relational, because the
designers have to be careful of how to represent the
relationships among objects. When implementing the
DBs, in the object-relational approach, methods to support
search of multi-valued attributes and relationships, which
are represented using arrays or nested tables, need to be
provided. In the relational approach to the design, these
are represented through separate tables accessible by SQL
and hence programmed methods are not required.

In terms of queries and their execution, because of the
smaller number of tables and object methods, queries are
simpler to express in the object-relational approach.
However, ad-hoc queries are not facilitated by the object-
relational approach in situations where object-methods,
which are required by the query, are missing. Execution
of queries is more efficient in the relational-design DB.
The reason is there is excellent query optimization for
standard (non-object) SQL and also the fact that there is
no invocation of methods on objects and thus the
overhead of such invocation is avoided.

We conclude with an opinion that if a prototype were
being developed, an object-relational approach would be
appropriate as not all object methods would have to be
developed and the over-all DB design would be simpler
and thus easier to develop. Ad-hoc queries are not of
concern under such a scenario either. For an operational
DB that is stable in terms of the DB schema, however, a
careful relational design would be preferred. Although
the DB design is more complex, the schema is stable and
supports flexible querying in that any relational SQL
query can be issued on the DB and there are no
restrictions on the queries depending on whether objects
methods to support the search exist or not. Furthermore,
execution of equivalent queries is more efficient in the
relational as opposed to object-relational DB.

References

[1] L. Alshuler and R. Dolin. (Ed.) Version 3 Standard: Clinical

Document Architecture Release 1.0. Canada HL7. November
6, 2000.

[2] Paul Brown. Object-Relational Database Development: A
Plumber's Guide. First Edition. , Prentice Hall PTR. 2000.

[3] Paul Brown. Developing Object Relational Database
Applications. 2000. [Available May 28, 2002:
http://www.iiug.org/ver1/resources/articles.html]

[4] Robin Cover. “Health Level Seven XML Patient Record
Architecture”. The XML Cover Pages. [Available May 28,
2002: http://xml.coverpages.org/hl7PRA.html]

[5] R. Dolin. “Clinical Document Architecture”, e-Health 2001:
The Future of Health Care Proceedings. 26-29 May 2001,
Toronto, Ontario. Canada HL7 Meeting.

[6] Robert H. Dolin, Liora Alschuler, Sandy Boyer, Calvin
Beebe. “An Update on HL7’s XML-based Document
Representation Standards”, Proc. of the AMIA 2000 Annual
Symposium, November 4-8, 2000, Los Angelos, California.
[Available May 28, 2002::
http://www.amia.org/pubs/symposia/D200113.pdf]

[7] HL7 Mission Statement. [Available May 28, 2002:
http://www.hl7.org/about/hl7mission.htm]

[8] Kona Proposal Committee. “The Kona Proposal for
Electronic Health Care Records”, July 7, 1997. [Available
May 28, 2002:
http://www.hytime.org/ihc97/papers/harding/kona/kona.html]

[9] Oracle8 application Developer's Guide - Chapter 7. User-
defined datatypes - an extended example. [Available May 28,
2002: http://www.oracle.com]

[10] Paterson, G., Shepherd, M., Wang., X., Watters, C. and D.
Zitner. “Using the XML-based Clinical Document Architecture
for Exchange of Structured Discharge Summaries”. 35th
Hawaii International Conference on System Sciences, Hawaii,
7-10 January 2002. CD-ROM publication.

[11] Zheng Liang, “Storage Models for CDA Documents,
M.Comp.Sc. thesis, Dalhousie University, Halifax, Nova Scotia,
Canada, 2002.

Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03)
0-7695-1874-5/03 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

