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Abstract   
Image editing software is often characterized by a seemingly 
endless array of toolbars, filters, transformations and layers.  But 
recently, a counter trend has emerged in the field of image editing 
which aims to reduce the user’s workload through semi-
automation. This alternate style of interaction has been made 
possible through advances in directed texture synthesis and 
computer vision.  It is in this context that we have developed our 
texture editing system that allows complex operations to be 
performed on images with minimal user interaction. This is 
achieved by utilizing the inherent self-similarity of image textures 
to replicate intended manipulations globally.  In this report, we 
summarize the capabilities of our image editing approach 
including operations for replicated painting, cloning and warping. 
In particular, we detail recent enhancements including user-
controlled sharpness, Boolean similarity expressions and the 
adaptive synthesis of cloning textures.     
 
Keywords:  interactive image editing, texture synthesis, input 
amplification. 

1 Introduction 
The most broadly applied approach to modelling the complexity 
of the natural world is to provide the scene designer with 
sophisticated tools that permit a high degree of control over 
geometric surfaces and their corresponding textures.  This 
approach has enjoyed considerable success, yet the sophistication 
of the editing tools requires a comparable level of sophistication 
from the user.  Often, the user must be a highly skilled artist as 
well as having considerable technical training and experience with 
computers.  These prerequisites are beyond many users.  

Recent research in computer graphics has attempted to semi-
automate the process of constructing and editing digital images.  
Far from offering a massive array of image manipulation controls, 
these semi-automatic systems offer interaction at a higher 
semantic level, consequently minimizing the amount of user 
interaction.   

Our image editing framework is a realization of this approach 
wherein the user is able to minimally specify alterations to a 
digital texture image, whilst relying on the system to perform 
repetitive, time-consuming tasks.  Our system is a visual analogue 
to text string search and replace in that a single editing operation 
at a given location causes global changes: the same operation is 
performed on all similar areas of the texture image. Consequently, 
the style of interaction lies between automation and complete user 
manipulation. 

The report’s structure begins with a synopsis of related work 
and is followed by an introduction to the basics of replicated 
painting and cloning. The discussion then proceeds to a number of 
improvements to our image editing framework including user-
controlled sharpness, Boolean similarity expressions and the 
adaptive synthesis of cloning textures.  Replicated texture warping 

is then discussed along with super-resolution synthesis.  We 
conclude with a commentary on limitations and future directions. 

2 Related Work  
We begin our overview of related work with constraint-based 
graphics [Sutherland 1963], in which the user places constraints 
on graphical arrangements. Another system which manipulates 
vector based images is the search and replace method of 
Kurlander and Bier [1998]. Conceptually, this system is most 
similar to our own. However, both of these systems differ 
significantly from ours as they operate on vector images unlike 
our raster image editing tools. 

The interactive evolution of textures using genetic algorithms 
also lies between manual and automatic design methodologies 
[Sims 1993]. Based on a Darwinian metaphor, the computer’s 
primary role is to present candidate graphics to the user from the 
design space.  Alternatively, the goal of example-based texture 
synthesis is to generate new texture images that appear to be from 
the same source as a given input texture [Ashikhmin 2001; Heeger 
and Bergen 1995; Kwatra et al. 2003; Kwatra et al 2005; Lefebvre 
and Hoppe 2005; Wei and Levoy 2000].   

And recently, a new class of image editing tools has emerged 
which employs this form of texture synthesis to perform 
sophisticated image editing operations including Texture-By-
Numbers [Barrett and Cheney 2002; Harrison 2001; Hertzmann et 
al. 2001].  Other tools use texture synthesis to remove entire 
objects from scenes [Igehy and Pereira 1997] or replace textures 
[Fang and Hart 2004; Liu et al. 2004; Zelinka et al. 2005].   And 
as we are introducing a modified texture cloning tool there are 
other forms of texture mixing [Bar-Joseph 2001; Matusik et al. 
2005] and image compositing [Burt and Adelson 1983; Porter and 
Duff 1984] that deserve mention. 

Other semi-automated texture creation systems include Live 
Paint [Perlin and Velho 1995], which uses the concept of a multi-
resolution painting system [Berman et al. 1994] to combine 
procedural textures [Ebert et al. 1994].  Dischler et al. [1999] 
describe a unique hybrid approach that combines texture analysis 
and geometric modeling.  Lewis’ [1984] early paper presents an 
interactive procedure for generating textures in the frequency 
domain. 

Yet another fruitful source of user assistance in image editing 
has come from advances in the computer vision community. 
Examples of which are intelligent image selection [Mortensen and 
Barrett 1995] and snapping [Gleicher 1995] tools.  Elder and 
Goldberg [1998] also offer a novel editing system that operates in 
an invertible contour domain. 

Perhaps the most extreme form of automation that still 
permits some degree of user input is the image stylization system 
of DeCarlo and Santella [2002], which uses eye-tracking to assign 
priority to details for a non-photorealistic rendering of the same 
image. Another type of application that requires minimal 
interaction are design gallery interfaces. In this approach, the user 
makes aesthetic judgments over design alternatives that are pre-
computed prior to interaction [Marks et al. 1997]. 



 

3 Replicated Image Editing  
Our system replicates editing operations globally over a texture 
image [Brooks and Dodgson 2002; Brooks et al. 2003; Brooks 
and Dodgson 2005].  Changes made to a particular pixel by the 
user are made to affect all pixels that exhibit similar local 
neighbourhoods to that selected pixel, thereby relieving the user 
of the manual effort of repetition.  This allows the following 
concise texture editing operations:  

1. Replicated Painting: altering the colour of similar pixels 
(Figure 1).    

2. Replicated Cloning: cloning of a second texture onto the 
texture being altered (Figure 2). 

3. Replicated Warping: locally contracting or expanding 
certain regions of the texture, based on the similarity to 
the current selected pixel (Figure 3).   

3.1 Replicated Painting and Cloning 
Painting and cloning are similar operations which paint colours 
onto the image being edited.  In Figure 1 we have a simple case of 
painting a solid red colour onto each pixel whose neighbourhood 
is sufficiently similar to the pixel selected by the user.  The reader 
will note the directional control of the tool.  By this we refer to the 

ability to affect a particular side of all of the texture elements at 
once.  Figure 2 shows an example of the replicated cloning of a 
moss texture (left) onto pixels in the bark texture (right).  Moss is 
cloned onto all pixels in the bark texture that are similar to the 
user selected pixel. Moving from replicated painting to replicated 
cloning requires positioning the cloning texture and using the 
corresponding colour values from the cloned texture instead of a 
solid colour value over the whole image.  

In order to determine which pixels in the image are 
sufficiently similar to the pixel selected by the user, the local 
circular neighbourhood of the chosen selection point is compared 
against that of every other pixel's neighbourhood in the same 
image.  For replicated painting, the current painting colour is then 
applied to the selected pixel but also to a subset of all pixels in the 
image: those that have local neighbourhoods whose difference 
from the selected pixel are within a certain threshold, T.   

The selection point receives full paint opacity, as do all pixels 
with neighbourhoods identical to it. The distance threshold, T, is 
set by the user and defines the maximum distance value beyond 
which the opacity of the applied paint is zero. Between zero 
distance and the distance threshold the opacity is scaled linearly, 
meaning that the more similar a pixel is deemed to be to the 
selected pixel, the greater is the applied paint opacity.     

Our distance measure is computed as the weighted sum of 
squared differences (L2 norm) between each corresponding pixel 
in circular multi-resolution neighbourhoods surrounding to points 
p1  = (x1, y1) and p2 = (x2, y2) : 
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Gl  is level l of the Gaussian pyramid, 
L  is the number of Gaussian levels used,  
M  is a 2D Gaussian weighting function and  
r  is the neighbourhood radius.    

 
The use of multi-resolution neighbourhoods in the distance 
calculation allows us to incorporate a wider area surrounding each 
pixel at a lower computational cost.  This is under the assumption 
that distant pixels are less important to the similarity calculation 
and can therefore be approximated more and more coarsely.  We 
then define the similarity level s at pixel p  = (x, y) to be: 

( ) ( )( )( )0,/,max, TppdTpps ′−=′  

where p' is the user selected point and T is the user-selected 
threshold.  This similarity level is used directly as the opacity of 
the applied paint or cloned texture.   

We note that all of the above calculations are performed in the 
CIE LAB colour space since Euclidean distances in RGB space do 
not correspond to colour differences as perceived by human 
beings [Jackson et al. 1994]. When computing the distance 
measure between two pixels, each pixel is characterized as a 
vector composed of a concatenation of all LAB values in each of 
the levels. To increase interactivity, we employ principal 
components analysis (PCA) to reduce the dimensionality of the 
concatenated    neighbourhood     vectors    [Jollife 1986].    Using 

 

 

Figure 1:  A simple case of replicated painting. 

 

Figure 2:  Left: cloning image. Right: moss cloned onto bark.   

 

Figure 3: Replicated warping with leaves narrowed and expanded. 

  



 

       

Figure 4:  Painting of solid green colour onto textures.  Left: original. Centre:  Painted using only Gaussian pyramid neighbourhood values.  
Right: Both neighbourhood and wavelet responses used. 

 

 

Figure 5:  Example use of a multi-point Boolean similarity expression. The green rings denote positively weighted similarity points, and the 
red is negative.  Left: original repeating blue-dot texture. Middle: two positively weighted similarity points used to paint white onto similar 
pixels.  Right: The expression is asking the system to “paint white those pixels that are similar to the green points but dissimilar to the red”. 

 

     

Figure 6: Painting of snow (white paint) applied to a doorway using three similarity points. Middle:  Painted using only Gaussian pyramid 
neighbourhood responses.  Right: Both Gaussian and wavelet responses used. 



 

principal component analysis increases the efficiency of 
computing the distance metric without a significant loss of 
fidelity.  Due to the considerable coherence within the 
neighbourhood vectors we generally gain an order of magnitude 
reduction in the size of the vectors without an appreciable 
reduction of quality.  This allows us to achieve interactive rates.  

3.2 Painting Sharpness 
A limitation of the distance measure, d(p1, p2), is that it does not 
work as well for textures that contain a high degree of randomness 
or sharp features. This is due to the smoothing tendency of 
Gaussian-pyramid neighbourhood metrics. To address the 
limitations of the original distance measure, we have integrated 
wavelet responses into our distance metric.  Moreover, we give 
the user even finer control by providing a ‘sharpness’ slider that 
specifies what proportion of Gaussian neighbourhood versus 
wavelet responses are to be used in the distance calculation.  

To improve the distance metric we include multi-scale 
responses from a steerable pyramid transform of the image being 
edited [Simoncelli et al. 1992].  Like the Gaussian pyramid, this 
transform decomposes the image into several spatial frequency 
bands. It also further divides each frequency band into a set of 
orientation bands which respond to rotationally varying edges. 
With the wavelet responses added, the distance metric becomes: 
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where: 
 

( )lppdG ,, 21
     is the Gaussian pyramid component, 

( )lppdW ,, 21
   is the steerable wavelet component, 

[ ]1..0∈β   is controlled by the user’s sharpness slider,  
Wl,θ     is orientation θ, level l of the wavelet pyramid, 
L     is the number of pyramid levels used.   
 

Since the wavelet transform responds strongly to edges at varying 
orientations, by placing more emphasis on wavelet responses the 
user can thereby cause the self-similarity tool to react more 
strongly to sharp features in the texture during editing and avoid 
the problem of excessive smoothing that can result from relying 
solely upon Gaussian pyramid neighbourhoods.  

Figure 4 shows the painting of a solid green colour onto a 
wood shingle texture.  The original image is shown to the left. The 
centre image shows a result using only Gaussian pyramid 
neighbourhood values and the image to the right shows a result 
using both neighbourhood and wavelet responses.  As can be seen 
from the zoomed inset images, by incorporating the wavelet 
responses into the similarity distance metric, the self-similarity 
tool is able to respond to the finer edge details in the original 
images.  The user can therefore dictate the extent to which these 

edge details influence the final outcome. An additional example is 
shown in Figure 6.   

3.3 Boolean Similarity Expressions 
We now describe an extension to our editing framework that 
allows the user to select multiple similarity points within the 
texture which together comprise a Boolean similarity expression.  
In Figure 5, we see an example of using multiple similarity points. 
To the left is shown a repeating blue-dot texture which has been 
constructed for the purpose of illustration.  In the centre the same 
blue texture is shown painted white using two positive (green) 
similarity points.  On the right the Boolean similarity expression 
now includes two positive similarity points and one negative 
(red).  Note how the negative similarity point restricts the 
application of the white paint.  In this way, the user can specify 
that pixels must be like pixel A or pixel B but not pixel C.   

To compute the opacity level when using a Boolean similarity 
expression, we simply sum the combined opacity level from the 
positive similarity points and subtract the opacity of the negative 
ones.   The final value is then clamped to be within the range of 
0.0 and 1.0.  The formula for the opacity of any pixel, p, given 
two user-selected sets of positive, A, and negative, B, similarity 
points is then:   
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where: 
 

n  is the number of positive similarity points and 
m is the number of negative similarity points. 
   

An example of painting snow (white paint) onto areas of a 
doorway using multiple similarity points is shown in Figure 6.  

3.4  Adaptive Generation of Cloning Textures  
There exist in nature multi-layered textures in which the structure 
and position of the secondary texture(s) is dependant on the 
primary texture.  An example of this is shown in Figure 8 in 
which the spatial structure of the secondary fire texture is 
dependant on the underlying wood texture. However, as presented 
thus far, replicated cloning does not have the ability to adapt the 
cloning texture to spatially match the target texture. In Brooks et 
al. [2003], we addressed this issue by developing a semi-
automatic process for re-arranging a cloning texture (fire) to better 
match a target texture (wood) prior to cloning.   

This is achieved by semi-automatically constructing Texture-
by-Numbers [Hertzmann et al. 2001] masks of both the cloning 
texture and the image being cloned onto. The construction of 
these masks are themselves based on the self-similarity of the 
textures.  These masks are then used in a guided re-synthesis prior 
to cloning. Sample results of this two stage solution are shown in 
Figures 7 and 8 where the cloned texture is first re-arranged using 
texture-by-numbers re-synthesis. More details of this process are 
available in the original paper [Brooks et al. 2003].    

An alternate solution to the problem of matching the cloning 
texture to the target texture is presented in Brooks and Dodgson 
[2005]. Rather than cloning colour content from a second image, 
we use the level of similarity of a given pixel (to the user selected 
pixel) as an input parameter for generating procedural textures.    
  For replicated painting and cloning, the user selected pixel is 
compared with all other pixels in the same image. This produces a 
“similarity-map” which  can be  visualized with whiter colours for 



 

 
Figure 7:  Snowy leaf texture is re-ordered and cloned onto a rusting ring. 

 

    
Figure 8:  Fire texture is re-ordered and cloned onto wood shingles.  

 

     

Figure 9:  Procedurally generated moss texture is cloned into the brick image.  The similarity-image is shown to the left.  

       

Figure 10:  The left pair of images shows a procedurally generated rust texture cloned onto a metal image. The right pair of images shows a 
procedurally generated fire texture cloned onto a shingle image.    



 

highly-similar pixels and blacker colours for pixels that are not 
similar.   Such a similarity-map is shown to the left in Figure 9.  
In this example the user has selected a location on the underside 
of a brick.  Once this similarity map, s(x, y), is computed, the 
values can be directly input into a procedural texture.  

Our example procedural textures incorporate fractal noise 
which introduces a certain degree of natural randomness [Ebert et 
al. 1994].  A 2D fractal noise function, f(x, y), can be briefly 
defined as follows: 

( ) ( )( )∑
=

××=
N

i

iii yxnoiseyxf
0

2/2,2,  

where i is the current octave, N is the number of octaves, and 
noise is a function that smoothly interpolates a grid of random 
values with cosine or cubic interpolation.  

With a fractal noise function in hand, we can now define a 
number of procedural textures which take the similarity value,  
s(x, y), at pixel p along with the original x and y positional values 
as input.  The first example is a moss texture shown in Figure 9 
that uses the similarity value to control the frequency of the 
texture.  Moss is defined in the following pseudo-code: 

   function moss(x, y, s(x, y)) returns color { 
 

// low-frequency green for the basic moss appearance  
     amount = abs(sin(f ( 5 × x × s(x, y),  5 × y × s(x, y)))); 
      color    = mixColor(green, black, amount); 
    

// add small amount of mid-frequency orange 
     amount = abs(0.2 × sin(f (25 × x × s(x, y), 25 × y × s(x, y)))); 
        color = mixColor(orange, color, amount); 
    

// add high-frequency yellow speckling 
     amount = abs(0.8 × sin(f (50 × x × s(x, y), 50 × y × s(x, y)))); 
     color = mixColor(yellow, color, amount); 
   } 

where mixColor(colorA, colorB, amount) returns amount of 
colorA and (1 – amount) of colorB.  Without the use of the 
similarity levels, the moss texture would lack visual structure.  

The next procedural texture, rust, is similar in structure to 
moss and is shown in Figure 10.  Our rust texture is defined in the 
following pseudo-code:   

   function rust(x, y, s(x, y)) returns color { 
 

// low-frequency red for the basic rust appearance  
     amount = abs(sin(f ( 5 × x × s(x, y),  5 × y × s(x, y)))); 

      color    = mixColor(red, black, amount); 

// add high-frequency orange speckling 
     amount = abs(0.5 × sin(f (50 × x × s(x, y), 50 × y × s(x, y)))); 
     color = mixColor(orange, color, amount); 
   } 

The final texture, fire, also shown in  is a smoother texture and is 
compressed in the horizontal direction: 

function fire(x, y, s(x, y)) returns color { 
 

// similarity level controls amount of fire  
     amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))); 
      color    = mixColor(red, black, amount); 
      

// power of 10 used to narrow yellow areas  
     amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^10; 

      color    = mixColor(yellow, color, amount); 
      

// higher power of 20 used to narrow brightest areas 
     amount = (s(x, y) × abs(sin(f (20 × x, 6 × y)))) ^20; 
     color = mixColor(white, color, amount); 
   } 

Once the procedural textures are computed we directly apply 
them to the original image, using the similarity level as a 
weighting value between the original texture colour t(x, y)  and the 
newly generated colour m(x, y).  The final colour, c(x, y) is 
computed as: 

( ) ( )( ) ( ) ( ) ( )yxmyxsyxtyxsyxc ,,,,1, ×+×−=  

These procedural textures that have been defined by no means 
exhaust the possibilities but do illustrate the usefulness of 
integrating replicated editing with procedural textures.   

The advantages of using procedurally-based texture cloning 
are efficiency, flexibility and ease of use. However, it does require 
that procedural functions can be constructed that realistically 
simulate the cloning textures.  This is not always the case.   

3.5 Replicated Warping 
Replicated warping is distinct from painting and cloning in that it 
does not affect pixel colour; it instead modifies the shape of image 
regions under the user’s guidance.  Those pixels whose local 
neighbourhoods are within a certain threshold of similarity to the 
user selected point are expanded locally.  The question becomes 
how to convert scalar similarity values, s(x, y), derived from 
neighbourhood distances into 2D area expansions (Figure 11).   

To accomplish this we borrow the interactive image-warping 
scheme of Keahey et al. [1997].  In their notation, the grid of 
similarity values defines a magnification function, M, from which 
a 2D grid displacement function, F, must be derived.  The 
magnification function, M, is essentially the derivative of the 
desired F, and a numerical algorithm is used to approximate the 
integration of M, yielding an estimate, FC, at each iteration. The 
corresponding approximate magnification function, MC, can be 
directly computed from FC, allowing the resultant error, ME = M - 
MC, to be calculated. FC is then further modified on a vertex-by-
vertex basis. Effectively, the neighbouring vertices are moved 
outwards in FC where ME > 0, and drawn inwards where ME < 0, 
yielding a better approximation.  From this, a 2D transformation is 
produced that is both symmetric and centred around magnification 
maxima. The algorithm benefits from optimizations detailed by 
Keahey and our implementation converges in less than 0.05s. 

Self-similarity scalar values are directly used to interactively 
drive area magnification.  If in painting mode the pixel would 
have received 75% opacity, the local area instead increases by 
75%.  Since the overall area remains the same, some regions are 
compressed while others are expanded.  Figure 3 shows the 
application of replicated warping to an image of leaves. The left 
image has been altered so that the spaces between the leaves have 
been expanded, shrivelling the leaves themselves. The right image 
shows the opposite effect with the leaves expanded almost to the 
exclusion of the spaces in between. Further examples of replicated 
warping are shown in Figure 12.   

Depending on the texture and on the amount of expansion, the 
warped texture can suffer a loss of high frequency detail.  We 
overcome this by re-synthesizing detail into expanded areas, using 
the newly warped texture as a constraining image for super-
resolution synthesis as described in Hertzmann et al. [2001].  
Close-up images of enhanced details are shown in Figure 13.  



 

 
Figure 11: From scalar similarity values (left) to 2D texture warp (right). 

         

       

       

Figure 12:  Similarity Based Warping: 1st column shows contracted regions, 2nd column contains original textures and 3rd column contains 
expanded regions.  Final results in 4th column have been enhanced with super-resolution synthesis using details from the original textures.  

           
Figure 13:  Loss of high frequency details and re-synthesis.  Left images are taken from the original textures with the warped versions 
shown in the middle. Results of super-resolution synthesis are shown to the right.  



 

4 Conclusion and Future Directions 
Our unique image editing framework amplifies the user’s input by 
replicating painting, cloning and warping operations over a 
texture.  This framework has benefited from a number of recent 
improvements including user-controlled sharpness, Boolean 
similarity expressions and the adaptive synthesis of cloning 
textures.   

Although these replicated editing techniques are not generally 
suitable for non-texture images, we believe that this might be 
overcome by combining our system with systems that perform 
image segmentation and shape-from-shading.   

Currently our approach works best for textures which are 
uniformly lit.  Non-uniform lighting leads to poorer results.  We 
believe that this restriction might be addressed by integrating 
similarity based editing with a photo editing system such as that 
of Oh et al. [2001] which permits texture illumination correction. 

Replicated editing might also be extended to geometric and 
texture editing operations on a 3D object based on the similarity 
of local surface curvature instead of, or in concert with, texture 
similarity.  It would need to be determined if the user interface 
techniques which work for 2D will work equally well for the 3D 
analogue.      
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