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Abstract 
Texture mapping is an indispensable tool for achieving realism in computer graphics. Significant progress has 
been made in recent years with regards to the synthesis and editing of 2D texture images.  However, the 
exploration of user control for semi-automatic texture editing remains an open area of research.  We present 
methods that partially address the semantic and technical limitations of Self-Similarity Based Editing. This is 
achieved by providing the user with more control over the similarity metric during editing and over spatial re-
arrangement during cloning. 

 
 

1. Introduction 
Image editing software is often characterized by a 
seemingly endless array of toolbars, filters, transformations 
and layers. This is the most common approach to modeling 
the complexity of real world scenes. It provides the graphics 
designer with sophisticated tools that permit a high degree 
of control over geometric surfaces and their corresponding 
textures.   

In general, this approach has been used extensively and 
has met with considerable success; however, the complexity 
of these editing tools requires that the user possess a 
correspondingly high level of expertise.  In order to use 
these systems effectively, the user must typically be a 
capable artist as well as having substantial technical 
preparation. And so, it is understandable that these 
requirements are frequently beyond the casual user.  

Recently, a counter trend has emerged in the field of 
image editing which aims to automate the process of 
constructing graphical objects of sufficient realism.  Far 
from offering a massive array of image manipulation 
controls, these semi-automated prototype systems offer 
interaction at a higher semantic level, consequently 
minimizing the amount of user interaction. This alternate 
style of interaction has been made possible, in part, through 
advances in directed texture synthesis and computer vision.  

It is in this context that we present enhancements to the 
self-similarity texture editing framework first presented in 
Brooks and Dodgson’s short paper7. Self-similarity based 
editing allows complex operations to be performed on 
images with minimal user interaction. This is achieved by 

utilizing the inherent self-similarity of image textures to 
replicate intended manipulations globally.  

The user is able to minimally specify alterations to a 
digital image, whilst relying on the system to perform 
repetitive, time-consuming tasks.  As can be seen in Figure 
1, self-similarity based editing is a visual analogue to ‘text 
string search and replace’ in that a single editing operation 
at a given location causes global changes: the same 
operation is performed on all similar areas of the image. 
Consequently, the style of interaction lies between 
automation and complete user manipulation.   

The main contribution of this paper is the introduction 
of a method to control the spatial arrangement of textures 
for self-similarity based cloning.  We also present the 
concept of Boolean similarity expressions and we show how 
improved self-similarity painting results can be produced 
using a mixture of neighborhood and wavelet similarity 
metrics.  

 
2. Previous Work 
Self-similarity based editing7 shares many algorithmic 
features with multi-resolution approaches to texture 
synthesis, making it a good first point of discussion.  
Texture synthesis takes as input a texture of a fixed sized 
and produces an output texture of arbitrary dimensions 
which has the appearance of being made from the same 
source.  Much of the current successful work in texture 
synthesis can be traced back to the pioneering work of 
Heeger and Bergen15.  In their system they create a new 
instance of a texture through hierarchical histogram 
matching. De Bonet8 later introduced a higher quality 
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variant of this general approach, though perhaps not as 
compelling as the results of the simple neighborhood 
matching of Wei and Levoy28.   

More recently, an entirely new class of image editing 
tool has emerged which employs texture synthesis to 
perform sophisticated image editing operations that require 
only a relatively small degree of user direction. One tool 
uses texture synthesis to remove entire objects from 
scenes17. Here the user selects a cropping area and a 
synthesis source area. The cropped patch is then replaced 
with a synthesized texture derived from the synthesis area. 
After the operation is complete no traces remain of the 
content that previously occupied the cropping area.   

The distinction between texture synthesis and texture 
editing has become even more blurred with the development 
of user-directed texture transfer and synthesis methods1, 12, 

16, 20. These user-directed synthesis methods permit the user 
to rearrange an entire image to conform to a paint-by-
numbers sketch of the final image. Directed synthesis 
thereby becomes a rearrangement form of texture editing.  
And as we are introducing a modified texture cloning tool 
there are other forms of texture mixing2 and image 
compositing6 that deserve mention.  

Other semi-automated texture creation systems include 
Live Paint23, which uses the concept of a multi-resolution 
painting system5 to combine procedural textures11.  Dischler 
et al. 9 describe a unique hybrid approach that combines 
texture analysis and geometric modeling.  Lewis’ 19 early 
paper presents an interactive procedure for generating 
textures in the frequency domain.  Alternatively, the genetic 
algorithm methodology presents candidate textures to users 
who implicitly provide fitness functions based on subjective 
aesthetic judgments26.   

Another system which manipulates vector based images 
is the search and replace method of Kurlander and Bier 18. 
Conceptually, this system is most similar to self-similarity 
based editing. However, their system differs algorithmically 
as it operates strictly on vector images that are composed of 
distinct geometrically defined objects unlike raster based 
self-similarity editing tools. 

Yet another fruitful source of user assistance in image 
editing has come from advances in the computer vision 
community.  Examples of which are intelligent image 
selection21 and snapping13 tools. But, the most characteristic 
example of an image editing method which employs both 
texture synthesis and computer vision techniques is Barrett 

and Cheney’s object-based image editing system3.  In their 
interactive system, image objects are user-selected by 
manually collecting sub-object regions detected by a 
watershed algorithm. Once selected, image objects can be 
scaled, stretched, bent, warped or even deleted with 
automatic hole filling. 

Perhaps the most extreme form of automation that still 
permits some degree of user input is the image stylization 
system of DeCarlo et. al. wherein the user’s task is simply to 
view the image in a natural way10. The focus of the user’s 
eyes is tracked during the viewing. The duration that the 
user lingers over each portion of the image is used to assign 
priority to details for a non-photorealistic rendering of the 
same image.  

The present paper extends the previous work of Brooks 
and Dodgson7 in which a self-similarity based editing 
system was first introduced.  In their short paper, a simple, 
yet novel, method of interactive texture editing was 
presented that utilizes self-similarity to replicate intended 
operations globally over an image.  As the self-similarity 
editing framework is central to our discussion we will begin 
with an overview of their original system.   

 
3. The  Self-Similarity Texture  Editing Approach 
Like a number of current texture synthesis methods, the 
self-similarity editing framework also uses multi-scale 
neighborhoods to assess the similarity of pixels within a 
texture. However, neighborhood matching is not employed 
to generate new instances of a texture. Similar 
neighborhoods are instead located for the purpose of 
replicating editing operations on the original texture itself, 
thereby creating a fundamentally new texture. This general 
approach is applied to texture painting, cloning and 
warping. These global operations are performed 
interactively, most often directed with just a single mouse 
movement.  

 
3.1. System Overview 
In the self-similarity editing system, changes made to a 
particular pixel by the user are made to affect all pixels that 
exhibit similar local neighborhoods.  This allows for the 
following concise texture editing operations:   

1. Replicated Painting: altering the color or brightness 
of similar pixels.    

 
Figure 1: Similarity Painting:  (leftmost) original texture, (center four) single point painting, and (rightmost) multiple paintings applied.  
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2. Replicated Cloning: cloning of another texture onto 
the texture being altered. 

3. Replicated Warping: locally contracting or 
expanding certain regions of the textures, based on 
similarity to the current selected pixel.   

Painting and cloning are similar operations which 
overlay colors onto the image being edited.  In Figure 1 we 
have a simple case of painting a solid red color onto each 
pixel whose neighborhood is sufficiently similar to the pixel 
selected by the user.  The reader will note the directional 
control of the tool.  By this we refer to the ability to affect a 
particular side of all of the texture elements at once.   Figure 
2 shows an example of the replicated painting of a solid 
green color over specific areas of a bark texture. This is 
followed by the replicated cloning of a moss texture over 
the same areas.  

Replicated warping is distinct from the other tools in 
that it does not affect pixel color; it instead modifies the 
shape of image regions under the user’s guidance.  Those 
pixels whose local neighborhoods are within a certain 
threshold of similarity to the user selected point are 
expanded locally. Since the overall area remains the same, 
some regions are compressed while others are expanded.  
Figure 3 shows the application of replicated warping to an 
image of chrysanthemums. The original image (shown on 
the left) has been altered so the flower heads are enlarged 
(shown on the right).  

 
3.2. The Original Algorithm 
In order to determine which pixels in the image are 
sufficiently similar to the pixel selected by the user, the 
local circular neighbourhood of the chosen selection point is 
compared against that of every other pixel's neighbourhood 
in the same image.  The editing operation is applied to the 
selected pixel but also to a subset of all pixels in the image: 
those that have local neighbourhoods whose difference from 
the selected pixel are within a certain threshold.  

For small textures, where efficiency is not a serious 
constraint, the neighborhood is simply defined as those 
pixels bounded by an immediate circle of pixel diameter d.  
The distance metric is then the L2 norm, i.e. the sum of 
square differences between each corresponding 
neighborhood pixel. For example, in Figure 1 the diameter d 
= 9, yielding a circular neighborhood of 69 pixels. This then 
requires summing 69 squared R, G and B differences, 
producing a number in the range of 0 to 2562*3*69 ≈ 
13.5M.  

The distance threshold is set by the user and defines the 
maximum distance value beyond which the opacity of the 
applied paint is zero. Between zero distance and the distance 
threshold the opacity is scaled linearly.  The user is also 
provided with a global opacity multiplier, which reduces or 
increases the opacity for all affected pixels. 

The left-hand graph in Figure 5 depicts the altering of 
the global opacity multiplier (Strength) while maintaining a 

 
Figure 4:  Multiscale neighborhood. 

 
Figure 5: Altering global strength or distance threshold. 

 
Figure 2:  Clock-wise from top left: original image, replicated 

painting, replicated cloning, cloning image. 

 
Figure 3:  Flowers expanded using self-similarity based warping. 
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constant threshold (Distance) of 1.5 million. Conversely, the 
right-hand graph holds the Strength at 75% with the 
Distance ranging from 0.5 to 2.0 million. This indicates that 
the final opacity levels are a function of both the global 
opacity multiplier and the current threshold. Together the 
two controls can be used to control the number of pixels that 
are affected as well as applied opacity. 

For improved efficiency, the neighbourhood of the 
selected pixel is augmented to include the corresponding 
neighbourhoods in higher levels of a constructed Gaussian 
image pyramid.  In Figure 4, two levels of an image 
pyramid are shown.  Each level has a circular 
neighbourhood of the same diameter, d, for a given pixel. 
But although it is the same diameter, the reader will note 
that the same sized circular area in the higher level in the 
pyramid includes a larger portion of the original image. By 
using the higher levels in an image pyramid, it permits the 
inclusion of a wider neighbourhood area at a lower 
computational cost, while the lower level neighborhoods 
retain priority for nearer pixels. The system performs 
painting and cloning operations on 512×512 textures at 7.5 
fps running on an off-the-shelf Athlon 2200+ PC.   

Moving from replicated painting to replicated cloning is 
plainly a matter of positioning the cloning texture and using 
the corresponding colour values from the cloned texture 
instead of a solid colour value over the whole image. But, as 
we will see later this is often not sufficient for convincing 
results.  

Similarity-based texture warping uses neighborhood 
similarity as a measure of local area deformation (Figure 3). 
The scalar similarity values derived from neighborhood 
distances are converted into 2D area expansions. But, 
depending on the texture and on the amount of expansion 
the warped texture can suffer a loss of high frequency detail.  
Brooks and Dodgson overcome this by re-synthesizing 
detail into expanded areas, using the newly warped texture 
as a constraining image for super-resolution synthesis as 
described in Hertzmann et al. 16.  A final result of which can 
be seen in Figure 3 (right).   

 
4. Improved Texture Editing  
In the original paper, Self-Similarity Based Texture 
Editing7, a novel system of concise texture editing was 
presented which allows the user to make global changes to 
texture images with minimal user intervention by exploiting 
the inherent self-similarity of textures. However, as first 

proposed, the original method has limitations which fall into 
two categories: 
 

Semantic: For cloning, the tool requires that the cloning 
image spatially ‘matches’ the image being cloned into.  
For example, when Figure 6A is cloned into 6B, the 
arrangement of the flowers is arbitrary with respect to 
the ring (Figure 6C).  
 
Technical: For both cloning and painting, the tool does 
not work as well for textures that contain a high degree 
of randomness or sharp features. This is due to the 
smoothing tendency of Gaussian-pyramid neighborhood 
metrics. 

 
Figure 6:  Semantically meaningful texture cloning:  A) Texture source for cloning.  B) Image target for cloning. 

C) Cloning with the original source texture.  D) Re-arranged version of A using self-similarity masks.  E) Final cloning. 
 

 

 

 
Figure 8: Texture re-arrangement prior to cloning. 

 

 
Figure 7:  Using a 3 point Boolean similarity expression 

 to construct a synthesis mask. 
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4.1. Enhanced Cloning Control  
Firstly, we address the semantic limitation by allowing the 
user to re-arrange the cloning texture (Figure 6A) so that it 
better matches the target image which it is being cloned 
onto (Figure 6B). This results in a more appropriate cloning 
texture (Figure 6D). We do this by semi-automatically 
constructing Texture-by-Numbers15, 17 masks of both the 
cloning texture (Figure 6A) and the image being cloned onto 
(Figure 6B). These masks are then used for a Texture-by-
Numbers15, 17 guided re-synthesis prior to cloning. For 
example, we specify that the flowers in Figure 6A, which 
are labeled with dark purple in the top-left mask of Figure 8, 
are to be synthesized into the dark purple ring, shown in the 
top-right mask of Figure 8.    

We could force the user to painstakingly construct the 
Texture-by-Numbers masks by hand. However, this would 
not be in keeping with the concise nature of Self-Similarity 
Editing. To automate time consuming Texture-by-Numbers 
mask constructions, we have developed an addition to the 
Self-Similarity toolset that separates an input texture into 
distinct regions. This tool can be seen as sophisticated 
“Magic Wand”. 

Like the original self-similarity editing tools, the 
“Wand” compares the multi-scale neighborhoods of all 
pixels to the neighborhood of the pixel that the user has 
selected.  Points that have ‘Lower’ similarity to the select 
point are given one color and those with ‘Higher’ similarity 
are assigned another. Although we provide default values 
for what is considered “Lower” versus “Higher” similarity, 
it is the user who is able to alter these designations by 
moving positions on a multi-point slider.   

At the top of Figure 8 can be seen a two-point mask 
slider which is used to separate the image pixels into to 
those whose computed distance values are within the 
“High” level of similarity (shown in darkest purple) and 
those other pixels that are within the “Low” level of 
similarity (shown in medium purple), pixels whose value 
lies beyond the “Low” level are given the default value of 
light purple.  In fact, the tool can separate the image into an 
arbitrary number of color sets with the addition of more 
similarity thresholds along the distance slider.  In addition, 
for better texture synthesis, small regions are discarded. 
Once the similarity masks are constructed, they are then 

used for a Texture-by-Numbers15, 17 guided re-synthesis 
prior to cloning.   

The multi-stage cloning workflow is shown in Figure 9.   
The user begins by opening the target image and the cloning 
texture. The user then creates the masks for both the target 
and the cloning images using the self-similarity masking 
“Wand”.  These masks are then used to rearrange the 
cloning texture (Figure 6A) using automatic Texture-by-
Numbers synthesis. The rearranged texture (Figure 6D) is 
then cloned onto the target image (Figure 6B), resulting in a 
more meaningful cloning operation (Figure 6E). Further 
example results of this enhanced cloning method are shown 
in Figures 13-16. 

 

4.2. Boolean Similarity Expressions  
This enhanced “Wand” also allows the user to select 
multiple similarity points (Figure 7) within the texture 
which together comprise a Boolean similarity expression.  
In this way, the user can specify that pixels must be like 
pixel A or pixel B but not pixel C.   

It is also worth noting that Boolean similarity 
expressions also provide greater control for all self-
similarity tools including masking, warping, painting and 
cloning (Figure 11).  Using both positive and negative 
similarity points allows the ‘similar’ regions to be carved 
out with greater accuracy for each of these operations.  

 
Figure 9:  System workflow. 1) Open target image and cloning texture. 2) Perform self-similarity masking. 3) Rearrange cloning texture 

using automatic Texture-by-Numbers synthesis. 4) Clone rearranged texture onto target image.  5) Save final image. 
 

 
Figure 10:  The steerable wavelet filter responses of a brick texture. 
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4.3. Enhanced Similarity Metric  
To address the limitations of the original similarity measure, 
we also explore the use of a wavelet based similarity metric.  
Moreover, we give the user even finer control by providing 
a slider that specifies what proportion of neighborhood 
versus wavelet responses are to be used in the similarity 
calculation.  

To improve the similarity metric we include multi-scale 
responses from a steerable pyramid transform of the image 
being edited25.  Like the Gaussian pyramid, this transform 
decomposes the image into several spatial frequency bands. 
It also further divides each frequency band into a set of 
orientation bands which respond to rotationally varying 
edges.  Figure 10 shows an example of the wavelet 
transform being applied to a brick texture. The top left 

shows the original image with wavelet filters to the right (3 
bands and 4 orientations). Along the bottom are the 
corresponding steerable pyramid sub-band images for the 
brick texture.  

Since the wavelet transform responds strongly to edges 
at varying orientations, by placing more emphasis on 
wavelet responses the user can thereby cause the self-
similarity tool to react more strongly to sharp features in the 
texture during editing and avoid the problem of excessive 
smoothing that can result from relying solely upon Gaussian 
pyramid neighborhoods.  

Figure 12 shows the painting of a solid green color onto 
two separate textures.  The original images are shown to the 
left. The center images show results using only Gaussian 
pyramid neighborhood responses and the images to the right 

 
Figure 11:  Example use of a multi-point Boolean similarity expression. The green rings denote positively weighted similarity points, and the 
red is negative.  Left: original repeating blue-dot texture. Middle: two positively weighted similarity points used to paint white onto similar 
pixels.  Right: The expression is asking the system to “paint white those pixels that are similar to the green points but dissimilar to the red”. 

 

     
 

     
Figure 12:  Painting of solid green color onto textures.  Left: original. Center:  Painted using only Gaussian pyramid neighborhood 

responses.  Right: Both neighborhood and wavelet responses used. 
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Figure 13:  Snowy leaf texture is re-ordered and cloned onto a rusting ring. 

 

    
Figure 14:  Fire texture is re-ordered and cloned onto wood shingles. 

 

    
Figure 15:  Hot coals are re-ordered and cloned onto a wood pile. 

 

 
Figure 16:  Red and black berries are re-ordered and cloned onto bark. 
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show results using both neighborhood and wavelet 
responses.  As can be seen from the zoomed inset images, 
by incorporating the wavelet responses into the similarity 
distance metric, the self-similarity tool is able to respond to 
the finer edge details in the original images.  And so, the 
user can dictate the extent to which these edge details 
influence the final outcome. 

5. Conclusions 
We have presented significant enhancements to the self-
similarity editing framework which extend its range of use 
and improves the quality of results. This has been achieved 
by giving the user further control over the similarity metric 
and over the spatial arrangement of the cloning image.   
However, there exist further opportunities to extend the 
capabilities of this system.  

Currently the approach works best for textures which 
are uniformly lit.  Non-uniform lighting leads to poorer 
results.  We believe that this restriction might be addressed 
by integrating similarity-based editing with a photo editing 
system such as that of Oh et al.22 which permits both 
distortion free cloning and texture illumination correction.   

Additional possibilities include the use of more 
sophisticated similarity measures. The technique might be 
extended to geometric and texture editing operations on a 
3D object based on the similarity of local surface curvature 
instead of, or in concert with, texture similarity. 
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