

Enhanced Texture Editing using Self-Similarity

S. Brooks, M. Cardle and N.A. Dodgson

Computer Laboratory, University of Cambridge, Cambridge, England

Abstract
Texture mapping is an indispensable tool for achieving realism in computer graphics. Significant progress has
been made in recent years with regards to the synthesis and editing of 2D texture images. However, the
exploration of user control for semi-automatic texture editing remains an open area of research. We present
methods that partially address the semantic and technical limitations of Self-Similarity Based Editing. This is
achieved by providing the user with more control over the similarity metric during editing and over spatial re-
arrangement during cloning.

1. Introduction
Image editing software is often characterized by a
seemingly endless array of toolbars, filters, transformations
and layers. This is the most common approach to modeling
the complexity of real world scenes. It provides the graphics
designer with sophisticated tools that permit a high degree
of control over geometric surfaces and their corresponding
textures.

In general, this approach has been used extensively and
has met with considerable success; however, the complexity
of these editing tools requires that the user possess a
correspondingly high level of expertise. In order to use
these systems effectively, the user must typically be a
capable artist as well as having substantial technical
preparation. And so, it is understandable that these
requirements are frequently beyond the casual user.

Recently, a counter trend has emerged in the field of
image editing which aims to automate the process of
constructing graphical objects of sufficient realism. Far
from offering a massive array of image manipulation
controls, these semi-automated prototype systems offer
interaction at a higher semantic level, consequently
minimizing the amount of user interaction. This alternate
style of interaction has been made possible, in part, through
advances in directed texture synthesis and computer vision.

It is in this context that we present enhancements to the
self-similarity texture editing framework first presented in
Brooks and Dodgson’s short paper7. Self-similarity based
editing allows complex operations to be performed on
images with minimal user interaction. This is achieved by

utilizing the inherent self-similarity of image textures to
replicate intended manipulations globally.

The user is able to minimally specify alterations to a
digital image, whilst relying on the system to perform
repetitive, time-consuming tasks. As can be seen in Figure
1, self-similarity based editing is a visual analogue to ‘text
string search and replace’ in that a single editing operation
at a given location causes global changes: the same
operation is performed on all similar areas of the image.
Consequently, the style of interaction lies between
automation and complete user manipulation.

The main contribution of this paper is the introduction
of a method to control the spatial arrangement of textures
for self-similarity based cloning. We also present the
concept of Boolean similarity expressions and we show how
improved self-similarity painting results can be produced
using a mixture of neighborhood and wavelet similarity
metrics.

2. Previous Work
Self-similarity based editing7 shares many algorithmic
features with multi-resolution approaches to texture
synthesis, making it a good first point of discussion.
Texture synthesis takes as input a texture of a fixed sized
and produces an output texture of arbitrary dimensions
which has the appearance of being made from the same
source. Much of the current successful work in texture
synthesis can be traced back to the pioneering work of
Heeger and Bergen15. In their system they create a new
instance of a texture through hierarchical histogram
matching. De Bonet8 later introduced a higher quality

Brooks et al / Enhanced Texture Editing

variant of this general approach, though perhaps not as
compelling as the results of the simple neighborhood
matching of Wei and Levoy28.

More recently, an entirely new class of image editing
tool has emerged which employs texture synthesis to
perform sophisticated image editing operations that require
only a relatively small degree of user direction. One tool
uses texture synthesis to remove entire objects from
scenes17. Here the user selects a cropping area and a
synthesis source area. The cropped patch is then replaced
with a synthesized texture derived from the synthesis area.
After the operation is complete no traces remain of the
content that previously occupied the cropping area.

The distinction between texture synthesis and texture
editing has become even more blurred with the development
of user-directed texture transfer and synthesis methods1, 12,

16, 20. These user-directed synthesis methods permit the user
to rearrange an entire image to conform to a paint-by-
numbers sketch of the final image. Directed synthesis
thereby becomes a rearrangement form of texture editing.
And as we are introducing a modified texture cloning tool
there are other forms of texture mixing2 and image
compositing6 that deserve mention.

Other semi-automated texture creation systems include
Live Paint23, which uses the concept of a multi-resolution
painting system5 to combine procedural textures11. Dischler
et al. 9 describe a unique hybrid approach that combines
texture analysis and geometric modeling. Lewis’ 19 early
paper presents an interactive procedure for generating
textures in the frequency domain. Alternatively, the genetic
algorithm methodology presents candidate textures to users
who implicitly provide fitness functions based on subjective
aesthetic judgments26.

Another system which manipulates vector based images
is the search and replace method of Kurlander and Bier 18.
Conceptually, this system is most similar to self-similarity
based editing. However, their system differs algorithmically
as it operates strictly on vector images that are composed of
distinct geometrically defined objects unlike raster based
self-similarity editing tools.

Yet another fruitful source of user assistance in image
editing has come from advances in the computer vision
community. Examples of which are intelligent image
selection21 and snapping13 tools. But, the most characteristic
example of an image editing method which employs both
texture synthesis and computer vision techniques is Barrett

and Cheney’s object-based image editing system3. In their
interactive system, image objects are user-selected by
manually collecting sub-object regions detected by a
watershed algorithm. Once selected, image objects can be
scaled, stretched, bent, warped or even deleted with
automatic hole filling.

Perhaps the most extreme form of automation that still
permits some degree of user input is the image stylization
system of DeCarlo et. al. wherein the user’s task is simply to
view the image in a natural way10. The focus of the user’s
eyes is tracked during the viewing. The duration that the
user lingers over each portion of the image is used to assign
priority to details for a non-photorealistic rendering of the
same image.

The present paper extends the previous work of Brooks
and Dodgson7 in which a self-similarity based editing
system was first introduced. In their short paper, a simple,
yet novel, method of interactive texture editing was
presented that utilizes self-similarity to replicate intended
operations globally over an image. As the self-similarity
editing framework is central to our discussion we will begin
with an overview of their original system.

3. The Self-Similarity Texture Editing Approach
Like a number of current texture synthesis methods, the
self-similarity editing framework also uses multi-scale
neighborhoods to assess the similarity of pixels within a
texture. However, neighborhood matching is not employed
to generate new instances of a texture. Similar
neighborhoods are instead located for the purpose of
replicating editing operations on the original texture itself,
thereby creating a fundamentally new texture. This general
approach is applied to texture painting, cloning and
warping. These global operations are performed
interactively, most often directed with just a single mouse
movement.

3.1. System Overview
In the self-similarity editing system, changes made to a
particular pixel by the user are made to affect all pixels that
exhibit similar local neighborhoods. This allows for the
following concise texture editing operations:

1. Replicated Painting: altering the color or brightness
of similar pixels.

Figure 1: Similarity Painting: (leftmost) original texture, (center four) single point painting, and (rightmost) multiple paintings applied.

Brooks et al / Enhanced Texture Editing

2. Replicated Cloning: cloning of another texture onto
the texture being altered.

3. Replicated Warping: locally contracting or
expanding certain regions of the textures, based on
similarity to the current selected pixel.

Painting and cloning are similar operations which
overlay colors onto the image being edited. In Figure 1 we
have a simple case of painting a solid red color onto each
pixel whose neighborhood is sufficiently similar to the pixel
selected by the user. The reader will note the directional
control of the tool. By this we refer to the ability to affect a
particular side of all of the texture elements at once. Figure
2 shows an example of the replicated painting of a solid
green color over specific areas of a bark texture. This is
followed by the replicated cloning of a moss texture over
the same areas.

Replicated warping is distinct from the other tools in
that it does not affect pixel color; it instead modifies the
shape of image regions under the user’s guidance. Those
pixels whose local neighborhoods are within a certain
threshold of similarity to the user selected point are
expanded locally. Since the overall area remains the same,
some regions are compressed while others are expanded.
Figure 3 shows the application of replicated warping to an
image of chrysanthemums. The original image (shown on
the left) has been altered so the flower heads are enlarged
(shown on the right).

3.2. The Original Algorithm
In order to determine which pixels in the image are
sufficiently similar to the pixel selected by the user, the
local circular neighbourhood of the chosen selection point is
compared against that of every other pixel's neighbourhood
in the same image. The editing operation is applied to the
selected pixel but also to a subset of all pixels in the image:
those that have local neighbourhoods whose difference from
the selected pixel are within a certain threshold.

For small textures, where efficiency is not a serious
constraint, the neighborhood is simply defined as those
pixels bounded by an immediate circle of pixel diameter d.
The distance metric is then the L2 norm, i.e. the sum of
square differences between each corresponding
neighborhood pixel. For example, in Figure 1 the diameter d
= 9, yielding a circular neighborhood of 69 pixels. This then
requires summing 69 squared R, G and B differences,
producing a number in the range of 0 to 2562*3*69 ≈
13.5M.

The distance threshold is set by the user and defines the
maximum distance value beyond which the opacity of the
applied paint is zero. Between zero distance and the distance
threshold the opacity is scaled linearly. The user is also
provided with a global opacity multiplier, which reduces or
increases the opacity for all affected pixels.

The left-hand graph in Figure 5 depicts the altering of
the global opacity multiplier (Strength) while maintaining a

Figure 4: Multiscale neighborhood.

Figure 5: Altering global strength or distance threshold.

Figure 2: Clock-wise from top left: original image, replicated

painting, replicated cloning, cloning image.

Figure 3: Flowers expanded using self-similarity based warping.

Brooks et al / Enhanced Texture Editing

constant threshold (Distance) of 1.5 million. Conversely, the
right-hand graph holds the Strength at 75% with the
Distance ranging from 0.5 to 2.0 million. This indicates that
the final opacity levels are a function of both the global
opacity multiplier and the current threshold. Together the
two controls can be used to control the number of pixels that
are affected as well as applied opacity.

For improved efficiency, the neighbourhood of the
selected pixel is augmented to include the corresponding
neighbourhoods in higher levels of a constructed Gaussian
image pyramid. In Figure 4, two levels of an image
pyramid are shown. Each level has a circular
neighbourhood of the same diameter, d, for a given pixel.
But although it is the same diameter, the reader will note
that the same sized circular area in the higher level in the
pyramid includes a larger portion of the original image. By
using the higher levels in an image pyramid, it permits the
inclusion of a wider neighbourhood area at a lower
computational cost, while the lower level neighborhoods
retain priority for nearer pixels. The system performs
painting and cloning operations on 512×512 textures at 7.5
fps running on an off-the-shelf Athlon 2200+ PC.

Moving from replicated painting to replicated cloning is
plainly a matter of positioning the cloning texture and using
the corresponding colour values from the cloned texture
instead of a solid colour value over the whole image. But, as
we will see later this is often not sufficient for convincing
results.

Similarity-based texture warping uses neighborhood
similarity as a measure of local area deformation (Figure 3).
The scalar similarity values derived from neighborhood
distances are converted into 2D area expansions. But,
depending on the texture and on the amount of expansion
the warped texture can suffer a loss of high frequency detail.
Brooks and Dodgson overcome this by re-synthesizing
detail into expanded areas, using the newly warped texture
as a constraining image for super-resolution synthesis as
described in Hertzmann et al. 16. A final result of which can
be seen in Figure 3 (right).

4. Improved Texture Editing
In the original paper, Self-Similarity Based Texture
Editing7, a novel system of concise texture editing was
presented which allows the user to make global changes to
texture images with minimal user intervention by exploiting
the inherent self-similarity of textures. However, as first

proposed, the original method has limitations which fall into
two categories:

Semantic: For cloning, the tool requires that the cloning
image spatially ‘matches’ the image being cloned into.
For example, when Figure 6A is cloned into 6B, the
arrangement of the flowers is arbitrary with respect to
the ring (Figure 6C).

Technical: For both cloning and painting, the tool does
not work as well for textures that contain a high degree
of randomness or sharp features. This is due to the
smoothing tendency of Gaussian-pyramid neighborhood
metrics.

Figure 6: Semantically meaningful texture cloning: A) Texture source for cloning. B) Image target for cloning.

C) Cloning with the original source texture. D) Re-arranged version of A using self-similarity masks. E) Final cloning.

Figure 8: Texture re-arrangement prior to cloning.

Figure 7: Using a 3 point Boolean similarity expression

 to construct a synthesis mask.

Brooks et al / Enhanced Texture Editing

4.1. Enhanced Cloning Control
Firstly, we address the semantic limitation by allowing the
user to re-arrange the cloning texture (Figure 6A) so that it
better matches the target image which it is being cloned
onto (Figure 6B). This results in a more appropriate cloning
texture (Figure 6D). We do this by semi-automatically
constructing Texture-by-Numbers15, 17 masks of both the
cloning texture (Figure 6A) and the image being cloned onto
(Figure 6B). These masks are then used for a Texture-by-
Numbers15, 17 guided re-synthesis prior to cloning. For
example, we specify that the flowers in Figure 6A, which
are labeled with dark purple in the top-left mask of Figure 8,
are to be synthesized into the dark purple ring, shown in the
top-right mask of Figure 8.

We could force the user to painstakingly construct the
Texture-by-Numbers masks by hand. However, this would
not be in keeping with the concise nature of Self-Similarity
Editing. To automate time consuming Texture-by-Numbers
mask constructions, we have developed an addition to the
Self-Similarity toolset that separates an input texture into
distinct regions. This tool can be seen as sophisticated
“Magic Wand”.

Like the original self-similarity editing tools, the
“Wand” compares the multi-scale neighborhoods of all
pixels to the neighborhood of the pixel that the user has
selected. Points that have ‘Lower’ similarity to the select
point are given one color and those with ‘Higher’ similarity
are assigned another. Although we provide default values
for what is considered “Lower” versus “Higher” similarity,
it is the user who is able to alter these designations by
moving positions on a multi-point slider.

At the top of Figure 8 can be seen a two-point mask
slider which is used to separate the image pixels into to
those whose computed distance values are within the
“High” level of similarity (shown in darkest purple) and
those other pixels that are within the “Low” level of
similarity (shown in medium purple), pixels whose value
lies beyond the “Low” level are given the default value of
light purple. In fact, the tool can separate the image into an
arbitrary number of color sets with the addition of more
similarity thresholds along the distance slider. In addition,
for better texture synthesis, small regions are discarded.
Once the similarity masks are constructed, they are then

used for a Texture-by-Numbers15, 17 guided re-synthesis
prior to cloning.

The multi-stage cloning workflow is shown in Figure 9.
The user begins by opening the target image and the cloning
texture. The user then creates the masks for both the target
and the cloning images using the self-similarity masking
“Wand”. These masks are then used to rearrange the
cloning texture (Figure 6A) using automatic Texture-by-
Numbers synthesis. The rearranged texture (Figure 6D) is
then cloned onto the target image (Figure 6B), resulting in a
more meaningful cloning operation (Figure 6E). Further
example results of this enhanced cloning method are shown
in Figures 13-16.

4.2. Boolean Similarity Expressions
This enhanced “Wand” also allows the user to select
multiple similarity points (Figure 7) within the texture
which together comprise a Boolean similarity expression.
In this way, the user can specify that pixels must be like
pixel A or pixel B but not pixel C.

It is also worth noting that Boolean similarity
expressions also provide greater control for all self-
similarity tools including masking, warping, painting and
cloning (Figure 11). Using both positive and negative
similarity points allows the ‘similar’ regions to be carved
out with greater accuracy for each of these operations.

Figure 9: System workflow. 1) Open target image and cloning texture. 2) Perform self-similarity masking. 3) Rearrange cloning texture

using automatic Texture-by-Numbers synthesis. 4) Clone rearranged texture onto target image. 5) Save final image.

Figure 10: The steerable wavelet filter responses of a brick texture.

Brooks et al / Enhanced Texture Editing

4.3. Enhanced Similarity Metric
To address the limitations of the original similarity measure,
we also explore the use of a wavelet based similarity metric.
Moreover, we give the user even finer control by providing
a slider that specifies what proportion of neighborhood
versus wavelet responses are to be used in the similarity
calculation.

To improve the similarity metric we include multi-scale
responses from a steerable pyramid transform of the image
being edited25. Like the Gaussian pyramid, this transform
decomposes the image into several spatial frequency bands.
It also further divides each frequency band into a set of
orientation bands which respond to rotationally varying
edges. Figure 10 shows an example of the wavelet
transform being applied to a brick texture. The top left

shows the original image with wavelet filters to the right (3
bands and 4 orientations). Along the bottom are the
corresponding steerable pyramid sub-band images for the
brick texture.

Since the wavelet transform responds strongly to edges
at varying orientations, by placing more emphasis on
wavelet responses the user can thereby cause the self-
similarity tool to react more strongly to sharp features in the
texture during editing and avoid the problem of excessive
smoothing that can result from relying solely upon Gaussian
pyramid neighborhoods.

Figure 12 shows the painting of a solid green color onto
two separate textures. The original images are shown to the
left. The center images show results using only Gaussian
pyramid neighborhood responses and the images to the right

Figure 11: Example use of a multi-point Boolean similarity expression. The green rings denote positively weighted similarity points, and the
red is negative. Left: original repeating blue-dot texture. Middle: two positively weighted similarity points used to paint white onto similar
pixels. Right: The expression is asking the system to “paint white those pixels that are similar to the green points but dissimilar to the red”.

Figure 12: Painting of solid green color onto textures. Left: original. Center: Painted using only Gaussian pyramid neighborhood

responses. Right: Both neighborhood and wavelet responses used.

Brooks et al / Enhanced Texture Editing

Figure 13: Snowy leaf texture is re-ordered and cloned onto a rusting ring.

Figure 14: Fire texture is re-ordered and cloned onto wood shingles.

Figure 15: Hot coals are re-ordered and cloned onto a wood pile.

Figure 16: Red and black berries are re-ordered and cloned onto bark.

Brooks et al / Enhanced Texture Editing

show results using both neighborhood and wavelet
responses. As can be seen from the zoomed inset images,
by incorporating the wavelet responses into the similarity
distance metric, the self-similarity tool is able to respond to
the finer edge details in the original images. And so, the
user can dictate the extent to which these edge details
influence the final outcome.

5. Conclusions
We have presented significant enhancements to the self-
similarity editing framework which extend its range of use
and improves the quality of results. This has been achieved
by giving the user further control over the similarity metric
and over the spatial arrangement of the cloning image.
However, there exist further opportunities to extend the
capabilities of this system.

Currently the approach works best for textures which
are uniformly lit. Non-uniform lighting leads to poorer
results. We believe that this restriction might be addressed
by integrating similarity-based editing with a photo editing
system such as that of Oh et al.22 which permits both
distortion free cloning and texture illumination correction.

Additional possibilities include the use of more
sophisticated similarity measures. The technique might be
extended to geometric and texture editing operations on a
3D object based on the similarity of local surface curvature
instead of, or in concert with, texture similarity.

Acknowledgements
This work was supported by the Cambridge Commonwealth
Trust and an Overseas Research Scholarship.

References
1. M. Ashikhmin. “Synthesizing natural textures”. ACM

Symposium on Interactive 3D Graphics, pp. 217–226, March
2001.

2. Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman.
“Texture Mixing and Texture Movie Synthesis Using Statistical
Learning”, IEEE Transactions on Visualization and Computer
Graphics, 7, 2, 120-135, 2001.

3. W. Barrett and A. Cheney. “Object-Based Image Editing”.
ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2002), 21(3), pp. 777-784, August 2002.

4. T. Beier, and S. Neely. “Feature-Based Image Metamorphosis”.
Computer Graphics (Proceedings of ACM SIGGRAPH 92),
26(2), ACM, pp. 35-42, 1992.

5. D. Berman, J. Bartell, and D. Salesin. “Multiresolution Painting
and Compositing”. ACM SIGGRAPH 94, 85-90, 1994.

6. P. Burt, and E. Adelson. “A Multiresolution Spline with
Application to Image Mosaics”. ACM Transactions on
Graphics, 2, 4, 217-236, 1983.

7. Stephen Brooks and Neil A. Dodgson. “Self-Similarity Based
Texture Editing”. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2002), 21(3), pp. 653-656, July 2002.

8. J. S. De Bonet. “Multiresolution Sampling Procedure for
Analysis and Synthesis of Texture Images”. ACM SIGGRAPH
97, 361-368, 1997.

9. J. Dischler, and D. Ghazanfarpour. “Interactive Image-Based
Modeling of Macrostructured Textures”. IEEE Computer
Graphics and Applications, 19, 1, 66-74, 1999.

10. Doug DeCarlo and Anthony Santella. “Stylization and
Abstraction of Photographs”. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH 2002), 21(3), pp. 769-776,
August 2002.

11. D. Ebert, F. Musgrave, D. Peachey, K. Perlin and S. Worley.
Texturing and Modeling: A Procedural Approach. AP
Professional, Cambridge, MA, 1994.

12. A. Efros and W. Freeman. “Image quilting for texture
synthesis and transfer”. Computer Graphics (SIGGRAPH '01
Proceedings), pp. 341–346, August 2001.

13. M. Gleicher. “Image snapping”. Computer Graphics
(SIGGRAPH '95 Proceedings), pp. 183-190, August 1995.

14. P. Harrison. “A Non-Hierarchical Procedure for Re-Synthesis
of Complex Textures”. WSCG'2001. February 2001.

15. D. J. Heeger and J. R. Bergen. “Pyramid-Based Texture
Analysis/Synthesis”. Computer Graphics (SIGGRAPH '95
Proceedings), pp. 229-238. August 1995.

16. A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless and D. H.
Salesin. “Image analogies”. Computer Graphics (SIGGRAPH
’01 Proceedings), pp. 327-340, August 2001.

17. H. Igehy and L. Pereira. “Image Replacement Through
Texture Synthesis”. International Conference on Image
Processing, volume 3, pp. 186189, October 1997.

18. D. Kurlander and E. Bier. “Graphical search and replace”.
Computer Graphics (SIGGRAPH '88 Proceedings), pp. 113-
120, August 1988.

19. J. P. Lewis. “Texture Synthesis for Digital Painting”. Computer
Graphics, 18, 3, 245-252, 1984.

20. L. Liang, C. Liu, Y. Xu, B. Guo, and H. Shum. “Real-Time
Texture Synthesis by Patch-Based Sampling”. ACM
Transactions on Graphics. 20, 3, 127–150, 2001.

21. E. Mortensen and W. Barrett. “Intelligent scissors for image
composition”. Computer Graphics (SIGGRAPH '95
Proceedings), pp. 191-198, August 1995.

22. B. Oh, M. Chen, J. Dorsey, and F. Durand. “Image-Based
Modeling and Photo Editing”. ACM SIGGRAPH 2001, 433-
442, 2001.

23. K. Perlin and L. Velho. “Live Paint: Painting With Procedural
Multiscale Textures”. ACM SIGGRAPH 95, 153-160, 1995.

24. Arno Schodl, Richard Szeliski, David H. Salesin and Irfan
Essa. “Video Textures”. Computer Graphics (SIGGRAPH '00
Proceedings), pp. 489-498. August 2000.

25. E. P. Simoncelli, W. T. Freeman, E. H. Adelson and D. J.
Heeger. Shiftable Multi-Scale Transforms. IEEE Transactions
on Information Theory, Issue on Wavelets 38 (1992), 587–607.

26. K. Sims. “Interactive evolution of equations for procedural
models”. The Visual Computer, 9(8), pp. 466-476, 1993.

27. I. Sutherland. Sketchpad--a man-machine graphical
communication system. Technical Report 296, Lincoln
Laboratory, Massachusetts Institute of Technology, 1963.

28. Li-Yi Wei and Marc Levoy. “Fast Texture Synthesis using
Tree-Structured Vector Quantization”. Computer Graphics
(SIGGRAPH '00 Proceedings), pp. 479-488. August 2000.

