
LogView: Visualizing Event Log Clusters
Adetokunbo Makanju, Stephen Brooks, A. Nur Zincir-Heywood, Evangelos E. Milios

Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia

B3H 1W5
Canada

{makanju, sbrooks, zincir, eem}@cs.dal.ca

Abstract—Event logs or log files form an essential part of
any network management and administration setup. While log
files are invaluable to a network administrator, the vast amount
of data they sometimes contain can be overwhelming and can
sometimes hinder rather than facilitate the tasks of a network
administrator. For this reason several event clustering algorithms
for log files have been proposed, one of which is the event
clustering algorithm proposed by Risto Vaarandi, on which his
Simple Log file Clustering Tool (SLCT) is based. The aim of this
work is to develop a visualization tool that can be used to view
log files based on the clusters produced by SLCT. The proposed
visualization tool, which is called LogView, utilizes treemaps to
visualize the hierarchical structure of the clusters produced by
SLCT. Our results based on different application log files show
that LogView can ease the summarization of vast amount of data
contained in the log files. This in turn can help to speed up the
analysis of event data in order to detect any security issues on a
given application.

I. INTRODUCTION
An event log or log file consists of several independent lines

of text data, which contain information that pertains to events
that occur within a system. A log file might contain events
from one service or different services which may come from
one node or several nodes on the network. The actual setup is
usually at the discretion of the administrator.
For this reason the contents of event logs are an important

indication of the current status of the system(s) that they mon-
itor. This makes them indispensable in systems administration
and network management, are used by administrators in their
general monitoring tasks, security analysis and also for trouble
shooting when downtimes occur.
While log files are invaluable to a network administrator,

the vast amount of data they sometimes contain can easily
overwhelm a human and can actually hinder rather than
facilitate the tasks of an administrator. A possible solution
to this problem is to cluster the events based on their type.
Data mining techniques are required to produce such clusters.
One such technique is the frequent event mining algorithm
[1], on which the Simple Log file clustering tool (SLCT) [2]
is based. SLCT is a text based tool. The clusters produced by
such methods can be used in tasks such as event correlation or
in system profiling both of which can be used in fault detection
and anomaly detection in a security context.
Despite the promise provided by data clustering tools such

as SLCT in providing useful insight into the character of a log

file and invariably the specification of the “normal” behavior of
a system, they have not received much attention in network and
system management tools in practice. Moreover, visualization
techniques can help interpret large amounts of data, and log
file analysis could definitely benefit from visualization as well.

The aim of this work is to build a visualization tool that
can be used to view event log clusters such as the ones
produced by SLCT. A major cornerstone of our work is to
not just build a visualization tool but to build one which
is interactive, dynamic and based on arbitrary clusters of
application event/log files. Several tools have been proposed
in recent times for the visualization of network data e.g.
Afterglow [3], SnortView [4], VISUAL (Visual Information
Security Utility for Administration Live) [5], Session Viewer
[6] and HNMaps [7]. So far none of these tools provides all
the cornerstones of our project in one package.

Our tool will provide visual summaries of the contents of
an event log file to an administrator, to speed up the data
analysis needed during downtimes and security breaches. The
tool, which is christened LogView, utilizes treemaps [8] to
visualize the hierarchical structure of the clusters produced
by SLCT. Treemaps are used as the visualization technique
in this project as they provide an appropriate alternative to
traditional node-link diagrams used for viewing hierarchical
structures. Node-link diagrams do not use space efficiently.
This fact also makes visualization tools like daVinci [9](now
called uDraw) inappropriate for our work. daVinci is an ex-
tensible, multipurpose visualization tool for hierarchical node
link diagrams. Treemaps are also useful when the intent of
visualization goes beyond the need to visualize the structure
of the hierarchy but also requires the encoding of other pieces
of information.

The rest of this paper is organized as follows: section 2
provides an overview of SLCT and treemaps and describes
previous work. Section 3 discusses the steps taken to achieve
our goal i.e. going from data collection to data preparation
and finally the visualization of the data. Section 4 describes
the results whereas section 5 presents the conclusion and future
work.

II. BACKGROUND AND PREVIOUS WORK

A. Previous Work
Visualization literature is abounding with examples of tools

intended for use in the network management and security
domain. These tools are usually designed with the goal of
summarizing system related data for ease of analysis and
differ mainly based on the type/source of data they visualize,
the visualization technique utilized and task for which they
are intended. Examples of recent network information visual-
ization tools include Afterglow [3], SnortView [4], VISUAL
(Visual Information Security Utility for Administration Live)
[5], Session Viewer [6] and HNMaps [7].
Afterglow is an example of an open source

toolkit/application which was designed for network
information visualization. Afterglow consists of two modules
1.x and 2.0. Afterglow 1.x is a toolkit; it consists of a
collection of scripts written in Perl which can be used to
transform the contents of log files into a form which is
suitable for generating visualizations. Afterglow 2.0 on the
other hand is a treemap visualization application and takes
files produced by Afterglow 1.x as input. Afterglow 2.0 is
written in Java, and unlike our proposal, is designed with
only the capability to view log files based on groupings of
source IP addresses and intrusion detection log files, but not
application log files.
SnortView was designed specifically for the visualization

of Snort [10] alert logs. VISUAL visualizes communication
patterns between hosts on an internal network and external
hosts, while Session Viewer provides a visual alternative to
the statistical approaches for the analysis of web session logs.
HNMaps are another treemap based information visualiza-

tion tool proposed for visualizing internet level network traffic
based on IP address hierarchies. HNMaps were applied to
depict a network which spanned 7 continents, 190 countries,
23054 autonomous systems and 197427 IP prefixes [7].
Unlike the visualization tools discussed above, the proposed

system is the only one which is designed with the visualization
of event logs in mind. The proposed system also goes one step
further by providing not just a visualization of raw data but
data which has been preprocessed through an initial clustering
phase. Moreover another contribution, of our work is to build
a tool that is both dynamic and interactive. It should be noted
here that to the best of our knowledge none of the above work
has addressed these three issues together. Table I provides a
comparative summary of the tools previously highlighted and
our proposed tool.

B. Simple Log File Clustering Tool
Several data mining algorithms for finding clusters in large

databases with high dimensionality have been developed over
the last decade. Examples of these clustering algorithms in-
clude CLIQUE [11], CURE [12] and MAFIA [13]. Unfortu-
nately, though event logs (which are the primary source of data
in network and system management) fit these criteria, these
algorithms are in some respects not well suited for event logs.

An algorithm suitable for clustering event logs needs to not
just be able to deal with high dimensional data, it also needs to
be able to deal with data with different attribute types, ignore
the order of the input records and discover clusters that exist
in subspaces of the high dimensional data [1], [14]. For this
reason clustering algorithms which are designed specifically
with event logs in mind are required, examples of such
algorithms include simple event log clustering algorithm [1]
and CUFRES [14]. The former algorithm deals with mining
frequent patterns from event logs while the latter deals with
clustering of events for correlation. The event log clustering
tool, SLCT [2] (which stands for Simple Log File Clustering
Tool), utilized in our work is based on the simple event log
clustering algorithm. The algorithm and the tool were both
proposed by Risto Vaarandi.
SLCT is an appropriate clustering tool for our work due

its simplicity and its production of results which are com-
prehendible by humans. Aside from this, SLCT has been
used successfully in intrusion detection[15] for the automatic
creation of new attack detection signatures from log files.
Also the application event logs utilized in our work follow

the typical pattern of word frequency occurrence in log files
i.e. the majority of words occur infrequently, sometimes no
more than once and a strong correlation exists between words
that do occur frequently, due to the fact that every line in an
event log is formatted according to some format string. The
constant words in the format string therefore occur frequently
in log files. These peculiar properties of event logs were
utilized in the design of SLCT [1], which also another reason
why SLCT is well suited to our work. The technique used
in SLCT works by using a 3-step algorithm, with the first
step proceeding in a fashion that is very similar to the Apriori
algorithm for association rule mining. During the first step
frequent 1-item attributes are identified, these frequent 1-items
are then used to build cluster candidates in the second step.
In the third and final step clusters are selected from these
candidates if the number of lines they match is greater than a
threshold provided by the user.
Fig. 1 shows four examples of the type of clusters that SLCT

is able to find, the asterisks (or wildcards) in each line indicate
place holders that can match any word.
Any line that matches any of these patterns is a member of

that cluster.

TABLE I
COMPARING LOGVIEW TO OTHER NETWORK INFORMATION

VISUALIZATION TOOLS
Name Technique Data Source Purpose
Afterglow Treemaps Traffic Logs Security
SnortView 2-D plots Intrusion detection Security

logs
VISUAL Fan-in/Fan-out Packet Trace Data Security

layout
Session Viewer Various Web Session Logs General
HNMaps Treemaps AS Level internet Security

traffic logs
LogView Treemaps Application Logs General

Fig. 1. Sample clusters generated by SLCT

SLCT is written in C and can be easily compiled using gcc.
It can be downloaded from [2]. Some of the more important
parameters required to run SLCT include:

• Support Threshold (-s): This can be given as a per-
centage or integer. Since SLCT determines clusters by
identifying line patterns that occur frequently, the support
threshold value is used to determine frequency. A line
pattern in any log file needs to have members that
are greater than or equal to the support threshold to
be considered frequent. The support threshold can also
be used to increase or decrease the number of clusters
formed.

• Byte Offset (-b): This can be used to filter out irrelevant
information that usually occurs at the beginning of log file
entries e.g. timestamps. The value is in bytes and when
specified SLCT ignores this number of bytes at the start
of each line.

• Outliers (-o): Specifies a file where outliers are stored
i.e. lines that do not fit into any clusters.

• Ignore (-f <regexp>): This option takes a regular ex-
pression as input and tells SLCT to ignore any log entry
that matches the expression when processing the log file.

C. Treemaps
Treemaps were first proposed by Professor Ben Shneider-

man of the University of Maryland in 1992 [8]. His aim was
to produce a visualization of the directory structure of the file
system of his 80MB hard disk with a technique that utilizes
a space-constrained layout. Treemaps provide an alternative
to the node-link structure diagrams traditionally used for
visualizing hierarchical data. Treemaps are particularly useful
when visualizing large amounts of hierarchical data, as they
allow data to be viewed in a confined space. They also
provide an interface which can be useful for encoding other
pieces of information, a convenience which is not readily
available or convenient with node-link representations. This
makes treemaps an excellent choice for visualizing log file
event clusters.
An example of how a treemap can be used to represent the

hierarchical structure of a node-link diagram is provided in
Fig. 2. Leaf nodes are represented by numbers in Fig. 2 (b)
while internal nodes are represented with letters. The number
representation of each leaf node is also an indication of the
size of the node; we can immediately notice that these numbers
could have been omitted in the treemap representation as the
size of each node is encoded by the size of its corresponding
block in the treemap.
A treemap is usually produced using the classic slice-and-

dice treemap layout algorithm. However, other treemap layout

algorithms have been proposed [16] to solve the problems
of low-aspect ratio, layout instability, order preservation in
the face of dynamically changing data and the need to create
layouts that are easy to search visually. Some of these layouts
include; Squarified, Strip, Cluster, Pivot-by-spilt, Pivot-by-size
and Pivot-by-Middle. Our tool utilizes the squarified treemap
layout algorithm.

III. METHODOLOGY
In this work the major steps taken can be summarized as

follows:
• Data Collection
• Data Processing, Preparation and Clustering
• Cluster Visualization
The following sections explain these steps in more detail.

A. Data Collection
To build and test a visualization tool like LogView, appropri-

ate data is required. The data used in this project was collected
on a test server from our Netpal project [17].
The log files were collected on a per service basis and log

files from four services were used for this project. The services
chosen include IMAP, POP3, SSH and HTTP. These services
are explained in more detail in the following. The contents of
the event logs employed in this work are summarized in Table
II .

• IMAP: The IMAP service is an application layer protocol
which allows a client to access his/her e-mails stored on
a remote server over a TCP/IP connection. IMAP stands
for Internet Message Access Protocol.

• POP3: Like IMAP, POP3 is also an application layer
protocol which allows a client to access his/her e-mails
on a remote server over a TCP/IP connection. It however
differs from IMAP in that it does not allow persistent
connections. This means that connections last for only as
long as it takes to download messages, while POP3 allows
clients to stay connected for as long as they require. POP3
stands for Post Office Protocol v3.

• SSH: SSH is an application layer protocol which allows
two computers to exchange information over a secure
encrypted channel. The information exchanged or trans-
ferred can be shell commands or files. SSH stands for
Secure Shell.

• HTTP: One of the most popular application layer pro-
tocols in use today, HTTP is the protocol used for
communication over the World Wide Web (WWW) and
internal Intranets. HTTP stands for Hyper Text Transfer
Protocol.

TABLE II
DATASET SUMMARY

S/No Service No. of Events Period Covered
1 httpd 574,664 > 6 months
2 imapd 85,721 > 6 months
3 pop3d 86,190 > 6 months
4 sshd 146,092 > 6 months

(a) Tree Structure

2

40

2

2

3

1

12 8

5

6 8 11 D

C B

 A

(b) Treemap representation

Fig. 2. Treemap visualization of hierarchical data using the slice and dice algorithm.

These event log files only form a fraction of the possible
services that could be visualized by LogView or clustered
using SLCT. It is possible to cluster and visualize the log files
of virtually all services. These four services were selected only
as samples for the demonstration of the tool.

B. Data Processing, Preparation and Clustering
Our visualization tool is not intended for the visualization of

raw event log data but event log clusters. For this reason, the
data collected had to be processed into a suitable form before
it could be used as input to our visualization tool. The three
steps required to process the data included running the data
through SLCT to get the cluster representations, sorting of the
events in the data set according to their clusters (as produced
by SLCT)and producing TreeML files with the resulting data.
In the first phase of data processing and preparation, SLCT

was run using the log files as input. After running SLCT, the
raw clusters produced were inspected with the aim of selecting
relevant and meaningful clusters, a task which is made easy
by the human readable cluster representations produced by
SLCT. A description of the clusters which were selected for
visualization from each service are outlined in Table III. The
name of each cluster was intuitively assigned.
In the second phase, regular expressions, which matched the

selected cluster representations were produced. These regular
expressions were then used to produce scripts, which are
able to sort the events in each of the log files based on the
selected clusters they belonged to; an event which did not
belong to any cluster was classified as an “outlier”. This was
necessary given the fact that SLCT’s output are not the clusters
themselves but only textual representation of the form the
events in each cluster should take, see Fig. 1. Since we have
textual representations of each cluster, the regular expressions
serve as input to the system for the automatic classification of
log file events.
In the final phase, further scripts were written to take these

event clusters and produce files suitable for input into our
proposed tool. The TreeML format was chosen as the input

file format. The TreeML format is an XML based file format
designed for the purpose of specifying the data in a tree
hierarchy. The general outline of a TreeML file is given in
Fig. 3

Fig. 3. General outline of a TreeML file

The TreeML format requires that we declare a number of
data attributes which can be assigned to the entities in the tree.
Table IV gives an outline of the data attributes used in the final
TreeML files produced.

C. Cluster Visualization
The visualization component was built using a combination

of the Java Swing GUI toolkit and the prefuse visualization
toolkit [18]. The prefuse toolkit was a natural choice for this

implementation as it is implemented in Java and provides ex-
cellent classes for building visualization tools, which allow the
user to interact with the visualization. Building an interactive
visualization is one of the aims of this project.
The color coding scheme used in our tool is very simple.

The outlines of the squares were drawn using a grayscale color
coding scheme going from black through shades of gray to
white, the color used for an outline gets progressively brighter,
the deeper in the hierarchy that the user goes. When a leaf node
is selected or a mouse pointer hovers over it, the outline of
the node changes color to blue. Only the leaf nodes in the tree
are colored. All leaf nodes are colored with different shades
of green. The shade of green indicates the severity of the log
event type with outliers having the darkest shade of green. The
shade of green gets darker based on this severity order; OK,
WARN, FAIL, OUTLIER. The color of the nodes however
changes to red when the “msg” field of the node contains a
search term entered by the user, more on this below.
LogView also offers a dynamic query, a search facility

which allows text based searches of the log messages of the
leaf nodes in the visualization. There is also a detail pane,
which will show the “msg” field of a leaf node when it is
selected and a drop down combo box, which switches the
view between services. The dynamic query filters on the day
of the month on which a log event occurred. The assumption
here is that each input file will contain entries for one month
only.

D. Prefuse Visualization Toolkit
Visualization toolkits are becoming an increasingly popular

means of creating information visualization tools as they help
to reduce the time and effort required to build them. Some
examples of such toolkits include Piccolo [19], InfoVis [20]
and prefuse [18]. For the development of LogView, the prefuse
toolkit is employed.
The prefuse visualization toolkit is a software framework

written using the Java2D graphics library for the creation
of visualization tools that are dynamic and interactive [21].
The design of the prefuse toolkit is based on the information
visualization reference model outlined in the work of Chi [22].
By providing reusable building blocks based on this model for
the easy building of custom visualization tools, prefuse goes
beyond what is offered in other visualization toolkits.
Prefuse serves only as an application building toolkit in our

work. It is transparent to the potential users of LogView.

IV. RESULTS
This section highlights the results of using the proposed

system, LogView, to visualize the data collected. An overview
of the LogView interface is shown in Figure 4, the example
shows the visualization of the contents of the SSH service
event log.
The components of the LogView window as can be seen

in Fig. 4 include a service selection combo-box is at the top
of the screen, a dynamic query slider to the middle-right and
the visualization itself to the middle-left. There are also search

and detail panes which occupy the bottom-right and bottom-
left of the screen respectively. The labels for each cluster are
the “names” given to each of the cluster types.

A. Service Overview and Profiling
An overview of the visualizations created for each service

type is shown in Fig. 5. Using such views, we can proceed
to profile a particular service on a network. In this case, we
can see that the IMAP and POP3 event logs are relatively less
complex when compared to HTTP and SSH, since all their
entries were able to fall into defined clusters without outliers.
Specifically IMAP clusters are the least complex with only
two clusters.
Looking also at the SSH visualization, we can see that

the majority of the entries fall into one cluster, this cluster
represents invalid login attempts. Further investigation showed
that this was due to a prevalence of brute force login attempts
on this server. In this case, LogView provided a very nice
visualization of such an attack attempt on the SSH server. For
the HTTP visualization, we notice that most of the clusters
are PHP related. This is an immediate indication that this
web server runs mostly pages developed using PHP. Such a
scenario would not occur on a web server that does not host
such pages.

B. Data Analysis and Interaction
In demonstrating the data analysis and interaction capabil-

ities of LogView, we split the possible tasks into three i.e.
searching, filtering and selection.
A screenshot of a search over the SSH service showing

log entries which contain the term “root” is shown in Fig. 6,
(a) this is a task that an administrator might want to perform
over this service to find the frequency of attempts to gain
root access over SSH for instance. In figure 6 (b), we see the
filtering of the same visualization using the dynamic query.
The filter is set to show only those entries that occur on the
27th day of the month, all other nodes are invisible. The view
can be dynamically changed by simply dragging the slider.
The slider has values in the range 0 - 31. The range 1 - 31
for each of the possible days of a month and 0 (the default
value) means “show all nodes”.
There might be times when the administrator has focused

on a node of interest and wants more information on the node.
LogView allows for such situations; by hovering a mouse
pointer over the node the actual log entry gets displayed in the
detail pane below. An example of such a selection operation
is shown in Fig. 6 (c). As an illustration of a situation where a
selection operation would be useful, imagine finding out that
your server has been flooded with brute force login attempts, a
selection operation on a log entry would reveal the IP address
of the source of the flood.

C. Zooming and Panning
For user convenience LogView provides the capability to

zoom and pan the visualization. A screenshot of LogView
zoomed out on the visualization of the SSH service is shown

TABLE III
CLUSTER SUMMARY

Service Cluster Names Description
SSH Invalid User Shell login request from a non registered user.

Failed Reverse Mapping Failed attempt to use getaddrinfo() to resolve a hostname.
Spoof IP A request from an IP address that may be spoofed.
PAM Authentication Failure: Legal User Pluggable Authentication Module (PAM) login failure from a registered user.
PAM Authentication Failure: Illegal User Pluggable Authentication Module (PAM) failure from an unregistered user.
Failed keyboard-interactive/pam Failed keyboard interactive or PAM authentication.
No identification String Shell login request without login information.

IMAP Connection A client connection to the IMAP server.
Disconnection A client disconnection from the IMAP server.

POP3 Logout A client disconnection from the POP3 server.
Connection A client connection to the POP3 server.
Login Failed A failed login attempt.
checkmailpasswd: Login Failed A failed login attempt associated with checkmailpasswd.
checkmailpasswd: Connection A client connection to the POP3 server associated with checkmailpasswd.
checkmailpasswd: Logout A client disconnection from the POP3 server associated with checkmailpasswd.

HTTP PHP Undefined Index: Fail PHP error associated with an undefined array index that generates a failure message.
PHP Undefined Index: Warn PHP error associated with an undefined array index that generates a warning message.
PHP Undefined Index: Ok PHP error associated with an undefined array index that generates an information only message.
PHP Undefined Offset: 0 PHP error associated with an undefined numeric array index of 0.
PHP Undefined Offset: 1 PHP error associated with an undefined numeric array index of 1.
GET Request 500 HTTP get request with a status code of 500.
GET Request 400 HTTP get request with a status code of 400.
PHP Division by Zero PHP error caused by division by zero.

TABLE IV
DATA ATTRIBUTES USED IN TREEML FILES

Attribute Name Description
Name A string describing the node.
Entries An integer which indicates the number of events which are part of the entire tree rooted at that node.
Cluster A string which represents the cluster description produced by SLCT.
Severity A string describing the severity category of the even type. The categories are OK, WARN and FAIL.
Service A string which indicates the service which produced the log entry.
Msg The actual log event entry string.
Server The name or IP address of the server on which the data was collected.

in Fig. 7 (a), while Fig. 7 (b) shows the tool zoomed in and
panned to the left over the same visualization. We believe that
such utilities could prove valuable during the analysis of a log
file.

V. CONCLUSION AND FUTURE WORK

In this work, we developed a visualization tool, which
displays event log clusters based on clusters produced by
SLCT. Our proposed event log visualization tool, LogView,
is developed using the prefuse visualization toolkit and the
Java Swing toolkit. Moreover, a squarified treemap layout is
employed as its visualization technique.
We demonstrated the usefulness of the prototype in carrying

out various log analysis tasks including profiling, selection, fil-
tering and searching on event log data sets from the following
services i.e. IMAP, POP3, SSH and HTTP.
Future work will include refining the tool to allow users

to choose the color coding scheme, and to automate the file
preparation process. We also intend to apply machine learning
techniques for event correlation and diagnostics using the
output of LogView.

ACKNOWLEDGEMENTS
The author would also like to thank staff of Palomino

System Innovations Inc., based in Toronto for their support

in completing this work. Moreover, the authors gratefully
acknowledge the support of NSERC, MITACS and CFI.
This work is conducted as part of the Dalhousie NIMS Lab

at http://www.cs.dal.ca/projectx/.

REFERENCES

[1] R. Vaarandi, “A Data Clustering Algorithm for Mining Patterns from
Event Logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations
and Management. Kansas City, MO, USA.: IEEE Press, October 2003,
pp. 119 – 126.

[2] ——, “Simple Logfile Clustering Tool : http://kodu.neti.ee/ risto/slct/,”
Accessed from the web., 2003.

[3] R. Marty, “Afterglow Project Home: http://afterglow.sourceforge.net,”
Accessed from the web., 2008.

[4] H. Kioke and K. Ohno, “SnortView: Visualization System of Snort
Logs,” in CCS Workshop on Visualization and Data Mining for Com-
puter Security. Washington, DC, USA.: ACM Press, October 2004, pp.
143 – 147.

[5] R. Ball, G. Fink, and C. North, “Home-centric visualization of network
security traffic for security administration,” in CCS Workshop on Visu-
alization and Data Mining for Computer Security. Washington, DC,
USA: ACM Press, October 2004, pp. 55 – 64.

[6] H. Lam, D. Russell, D. Tang, and T. Munzner, “Session viewer: Visual
exploratory analysis of web session logs,” in IEEE Symposium on Visual
Analytics Science and Technology. IEEE Press, November 2007, pp.
147 – 154.

Fig. 4. An Overview of the LogView Interface.

[7] F. Mansmann, D. Keim, S. North, B. Rexroad, and D. Sheleheda,
“Visual Analysis of Network Traffic for Resource Planning, Interactive
Monitoring and Interpretation of Security Threats.” IEEE Transactions
on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1105 –
1112, December 2007.

[8] B. Schneiderman, “Tree Visualisation With Tree-maps: a 2-D space
filling approach.” ACM Transactions on Graphics, vol. II, no. 1, pp.
92–99, January 1992.

[9] M. Frohlich and M. Werner, “The graph visualization system da vinci
- a user interface for applications,” Department of Computer Sceince,
University of Bremen, Germany., Tech. Rep., 1994.

[10] Sourcefire-Inc, “Snort - the de facto standard for intrusion de-
tection/prevention, http://www.snort.org,” Retrieved from the Web.,
September 2007.

[11] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
Subspace Clustering of High Dimensional Data for Data Mining Appli-
cations,” in ACM SIGMOID International Conference on Management
of Data, 1998, pp. 94 – 105.

[12] S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clustering algo-
rithm for large databases.” in ACM SIGMOD International Conference
on Management of Data, June 1998, pp. 73–84.

[13] S. Goil, H. Nagesh, and A. Choudhary, “MAFIA: Efficient and Scalable
Subspace Clustering for Very Large Data Sets,” Northwestern Univer-
sity,” Technical Report No. CPDC-TR-9906-010, 1999.

[14] J. Bellec and T. Kechadi, “CUFRES: Clustering Using Fuzzy Rep-
resentative Events Selection for the Fault Recognition Problem in
Telecommunication Networks,” in ACM International Conference on
Information and Knowledge Management (Phd Workshop). ACM Press,
November 2007, pp. 55 – 62.

[15] G. Hendry and S. Yang, “Intrusion signature creation via clustering
anomalies,” in Data Mining, Intrusion Detection, Information Assurance,
and Data Networks Security 2008. Edited by Dasarathy, Belur V.
Proceedings of the SPIE, Volume 6973, pp. 69730C-69730C-12 (2008).,
March 2008.

[16] B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered and
Quantum Treemaps: Making Effective Use of 2D Space to Display
Hierarchies,” ACM Transactions on Graphics, vol. 21, no. 4, pp. 833
– 854, October 2002.

[17] Precarn, “Netpal: Dynamic Network Admininstration,
http://www.precarn.ca/products/projects/phase4/prjdusdcqkoyy.html,”
Accessed from the Web., May 2008.

[18] J. Heer, “prefuse — interactive information visualisation toolkit,
http://www.prefuse.org,” February 2008.

[19] U. o. M. HCI Lab, “Piccolo Toolkit: A Structured 2D Graphics
Framework, http://www.cs.umd.edu/hcil/piccolo/,” Accessed from the
web, March 2008.

[20] J. Fekete, “The Infovis Toolkit,” in InfoVis 2004, 2004, pp. 167 – 174.
[21] J. Heer, S. Card, and J. Landay, “prefuse: a toolkit for interactive

information visualisation,” in Proceedings of the Sigchi Conference on
Human Factors in Computing, New York, 2005, pp. 421 – 430.

[22] E. H. Chi, “A Taxonomy of Visualization Techniques Using the Data
State Reference Model,” in InfoVis 2000, 2000, pp. 69 – 75.

(a) SSH (b) IMAP

(c) POP3 (d) HTTP

Fig. 5. Figure showing the Treemaps produced by LogView. (a)SSH (b) IMAP (c) POP3 (d)HTTP.

(a) Search showing all log events containing the term ”root” (b) Filtering the view to show only log events that occurred on the
27th day of the month

(c) Selecting a node causes the message of the log entry to be displayed
in the textbox below the treemap.

Fig. 6. Analysis Using LogView with the SSH service(a) Search (b) Filtering (c)Selection.

(a) ZoomOut (b) ZoomIn and Pan-Left

Fig. 7. Zooming and Panning with the SSH service.(a) Zoomout (b) Zoomin and Pan-Left.

