
Extending Scientific Visualization into the World Wide Web

by

Zhihong Gao

A Thesis Submitted to the
Faculty of Computer Science

in Partial Fulfilment of the Requirements
for the Degree of

MASTER OF COMPUTER SCIENCE

Major Subject: Computer Science

APPROVED:

Dr. Philip Cox, Supervisor

Dr. Trevor Smedley

Prof. Thomas Emodi

DALHOUSIE UNIVERSITY – DALTECH

Halifax, Nova Scotia 1998

ii

DALTECH LIBRARY

“AUTHORITY TO DISTRIBUTE MANUSCRIPT THESIS”

TITLE:

Extending Scientific Visualization into the World Wide Web

The above library may make available or authorize another library to make available
individual photo/microfilm copies of this thesis without restrictions.

Full Name of Author: Zhihong Gao

Signature of Author:

Date: November 12, 1998

iii

To my parents……

iv

TABLE OF CONTENTS

Page

LIST OF TABLES …………………………………………………………………..…viii

LIST OF FIGURES ………………………………………………………………..……ix

LIST OF ABBREVIATIONS …………………………………….…………..…….….. x

ACKNOWLEDGEMENTS ……………………………………………..……………... xi

ABSTRACT ………………………………….…………………………………...….…xii

Chapter 1 Introduction…………………………………………………………………….1

1.1 Scientific Visualization……………………………………………………………1

1.2 From Scientific Visualization to Information Visualization………………..….…2

1.3 The Progress of Scientific Visualization………………………………………….3

1.4 A New Paradigm for Scientific Visualization…………………………………….4

1.5 Contribution and Organization……………………………………………………5

Chapter 2 The Scientific Visualization Sequence………………………………………...7

2.1 Overview………………………………………………………………………….7

2.2 Dibiase’s Model…………………………………………………………………..7

2.2.1 Four Stages in the Progress of Research……………………………………7

2.2.2 Visualization Functionality and Realms……………………………………9

2.3 Taxonomy of Scientific Visualization and Software Evolution………………….9

2.3.1 “I See” Visualizations……………………………………………………..10

2.3.2 “We See” Visualizations…………………………………………………..10

2.3.3 “They See” Visualizations………………………………………………...11

2.4 Evolution of Computing Architecture…………………………………………..11

2.4.1 Monolithic Systems and Mainframes…………………………….……….11

2.4.2 Client/Server Architecture……………………………………….………..12

v

2.4.3 Web-Deployed Architecture…………………………..…………………..12

2.4.4 Web Plus Java Applets…………………………………………….. ……..13

2.5 An Extension of DiBiase’s Model……………………………………...……….13

2.6 Multidimensional Scientific Visualization Space…………………...…………..15

Chapter 3 Scientific Visualization Software……………………………..……………..18

3.1 Overview……………………………………………………………..…………18

3.2 Visualization Pipeline Architecture………………………………….…………18

3.3 Turnkey Visualization Applications……………………………………………20

3.4 Visualization Applications from Application Builders………………....……....21

3.5 Custom Visualization Applications from Graphics Packages………………….23

3.6 Collaborative Visualization Applications……………………………….……...24

Chapter 4 Scientific Visualization on the World Wide Web…………………………..26

4.1 Overview……………………………………………………………………….26

4.2. Suitability of the Web for Interactive Visualization…………………………..26

4.3 Concerns With the Web………………………………………………………..27

4.4 Scenarios for Scientific Visualization on the Web…………………………….29

4.4.1 Static Visualization………………………………………………………29

4.4.2 Dynamic Visualization………………………………………………….. 30

4.5 User Interface…………………………………………………………………..33

4.6 Information Drill-Down………………………………………………………..35

Chapter 5 Re-engineering In-house Scientific Visualization Software into a Public Service

…………………………………………………………………………………38

5.1 Introduction……………………………………………………………………38

5.2 Requirements for Re-engineering……………………………………………..38

5.2.1 Average End User……………………………………………………….38

vi

5.2.2 Visualization Service Provider………………………………………….39

5.3 The Re-engineering Approach………………………………………………..39

5.3.1 Client/Server Architecture………………………………………………40

5.3.2 Extended Visualization Pipeline Architecture………………………….43

5.3.3 Description of the General Approach…………………………………..48

5.3.4 User Visualization Environment……………………………………….50

5.4 The Advantages and Disadvantages of the Re-engineering Approach………53

5.5 Summary……………………………………………………………………..54

Chapter 6 Implementation of Web-Based GSC(A) Display…………………………55

6.1 Introduction of GSC(A) Display……………………………………………..55

6.2 Features and Functions of Web-Based GSC(A) Display…………………….57

6.2.1 The Initial Viewer Window……………………………………………59

6.2.2 Selecting a Data Set and Invoking an Appropriate Input Manager……59

6.2.3 The Input Windows……………………………………………………59

6.2.4 Requesting the visualization…………………………………………..65

6.2.5 Viewing………………………………………………………………..65

6.2.6 Legend………………………………………………………………...65

6.2.7 Quick Tips…………………………………………………………….69

6.3 Web-Based GSC(A) Display Software……………………………………..69

6.3.1 Architecture…………………………………………………………...69

6.3.2 Connection from Client Harness to Server Host……………………...71

6.3.3 CGI Script Driver……………………………………………………..73

6.3.4 Controller……………………………………………………………..74

6.3.5 PS2GIF Converter…………………………………………………….74

6.4 Summary……………………………………………………………………75

vii

Chapter 7 Conclusions and Future Work…………………………………………...77

7.1 Future Work………………………………………………………………...79

References…………………………………………………………………………..81

Appendices………………………………………………………………………….85

Appendix A Harness Class Diagram………………………...…………………86

Appendix B Class HarnessConnection API……………………………...…….89

Appendix C Source code of CGI Script Driver for World Relief…………..….90

Appendix D Source Code of the Controller for World Relief…………………91

Appendix E PS2GIF Converter for World Relief………...……………………93

viii

LIST OF TABLES

Table 5.1 General visualization file formats ……………………………………… 47

Table 6.1 Typical GSC(A) Display User Inputs for a Relief Map …………...….. 58

ix

LIST OF FIGURES

Figure 2.1 DiaBiase’s scientific visualization sequence model 8
Figure 2.2 Extension of DiaBiase’s Model ..14
Figure 2.3 Multidimensional scientific visualization space17
Figure 3.1 The visualization pipeline architecture ... 18
Figure 5.1 Three client/server configurations ... 42
Figure 5.2 The modified three-tier configuration for re-engineering legacy

Systems...44
Figure 5.3 Extended visualization pipeline architecture ..45
Figure 5.4 The re-engineering architecture .. 49
Figure 6.1 The initial viewer window ... 60
Figure 6.2 The input window for relief map .. 61
Figure 6.3 Rectangular selection on the index map.. 63
Figure 6.4 The input manager for the NW Atlantic ship tracks with a rectangular

selection on the index map and red selected as ship track line color
.. 64

Figure 6.5 Waiting during a request to the server ... 66
Figure 6.6 Viewing a NW Atlantic relief map .. 67
Figure 6.7 Depth is shown by pressing and holding the mouse button at

location of interest ... 68
Figure 6.8 The Architecture of Web-Based GSC(A) Display70
Figure A.1 The Harness Class Diagram .. 86

x

LIST OF ABBREVIATIONS

API Application Programming Interface

CGI Common Gateway Interface

FTP File Transfer Protocol

GIS Geographical Information System

GUI Graphical User Interface

GSC(A) Geological Survey Canada (Atlantic)

HCI Human-Computer Interaction

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

MIME Multipurpose Internet Mail Extension

SciVis Scientific Visualization

SQL Structured Query Language

URL Universal Resource Locator

VSP Visualization Service Provider

VRML Virtual Reality Modeling Language

VUI Visual User Interface

VSP Visualization Service Provider

WWW World Wide Web

xi

ACKNOWLEDGEMENTS

I would like to express gratitude to my supervisor, Dr. Philip Cox, for assisting

me in my thesis work. By sharing his knowledge and software industry experience,

providing encouragement, and arranging for financial support, this project was

successfully completed. Dr. Cox’s dedication to excellence has served as an inspiration to

me.

Appreciation is due to Dr. Trevor Smedley and Prof. Thomas Emodi for serving

as members of my guiding committee, offering suggestions, and reviewing the thesis.

In particular, I wish to extend my sincere thanks to Mr. Ron Macnab in GSC(A)

(Geological Survey of Canada, Atlantic) for his management of this project. I am also

indebted to Dr. Karl Usow in GSC(A) for his technical assistance. Many other people at

Daltech and GSC(A) have provided helpful advice and moral support.

A grant from the Nova Scotia Innovation Corporation is gratefully appreciated.

Last but not least, I wish to thank my parents for their understanding,

encouragement and love.

xii

ABSTRACT

Scientific visualization (SciVis) software generates graphical representations of

data as a means of gaining understanding and insight into the data. Most in-house SciVis

applications exist in scientific organizations, but these useful legacy applications are not

widely distributed, making it difficult for multiple users in different locations to access

them. The dramatic increase in the use of the Internet gives these SciVis software owners

an opportunity to give a wider range of users remote access to their SciVis tools.

We propose a simple and quick standard re-engineering method to provide remote

access to such legacy applications, following a systematic study of the issues involved in

extending scientific visualization applications in this way.

In approaching this re-engineering problem, we have built upon two existing

models: DiBiase’s sequence model for scientific visualization [5] and the visualization

pipeline architecture [39, 11].

DiBiase’s SciVis sequence model, which has a great influence on the design and

development of SciVis systems, has been extended to account for the issues relating to

remote access. A model is proposed to extend SciVis into the global realm and to provide

a basis for SciVis tools to be used for Web publication and public service.

The visualization pipeline, a high-level design architecture for SciVis, is also

extended in our work, forming the re-engineering foundation. According to our extended

visualization pipeline architecture, a general client/server approach for re-engineering an

xiii

in-house SciVis application into one suitable for public use is illustrated with the Web as

a low-cost deployment medium.

Our approach is demonstrated by re-engineering existing display software for

geographic data developed at the Geological Survey of Canada (Atlantic), to provide a

visualization client for the Web.

Chapter 1 Introduction

1.1 Scientific Visualization

Scientific Visualization, sometimes referred to in shorthand as SciVis [9], has been

defined as by MacEachren and Kraak as “the use of sophisticated computing technology

to create visual displays, in which numeric values in data sets are represented visually as

colors, shapes, or symbols, and the goal of which is to facilitate thinking, problem solving

and decision making” [22]. Since people seek to understand data in SciVis, it is sometimes

referred to as visual data analysis.

The origin of the term “scientific visualization” is often traced to the publication

of the much-cited National Science Foundation Report on Visualization in Scientific

Computing [27]. However, as pointed out in [29], the role of SciVis in the history of

scientific discovery can be traced to Plato, Kekule and Kelvin. SciVis is a fundamental

investigation tool in many sciences as an “expression of “ or “tool for” thinking. For

instance, plotting thousands of data points on the 2D plane might easily demonstrate data

relationships, minima, maxima, discontinuities, etc. For complex data, images might

provide assistance to human information processing, enhancing mental visualization and

the comprehension of 2D and 3D spatial relationships.

Today’s SciVis emphasizes the role of computer display technology in prompting

mental visualization and subsequent insight. A lot of effort has been put into SciVis

research involving computer graphics, image processing, high-performance computing,

simulation and other areas. Also today’s SciVis emphasizes interaction between the user

15

15

and the data rather than just static pictorial displays [33]. In this way, SciVis has helped

scientific researchers to gain insight into the systems they study in ways previously

impossible, by revealing structure, extracting meaning, and navigating large and complex

information worlds. Many increasingly powerful in-house SciVis systems, such as GIS-

SciVis Integration [34], have been developed to support scientific investigation.

The focus of the SciVis discipline has been on designing and validating, by

experiments with users, effective ways of presenting and interacting with data, and

creating internal representations of information in the minds of the users. Nevertheless,

the increasing power and accessibility of computing and the Internet have created new

challenges for SciVis, including giving Web users access to existing scientific visualization

systems, which is the target of this research work.

1.2 From Scientific Visualization to Information Visualization

Through the availability of increasingly powerful computers with increasing

amounts of internal and external memory, people are obtaining and storing vast amounts

of data either from measurement (as in remote sensing, for example) or simulation (as in

computational fluid dynamics, for example). Also, as the use of the Internet rapidly

increases, it is becoming easier to access varied and large data sources. One opposite result

of the information explosion is termed “information saturation”, which refers to

situations in which users simply cannot cope with the volume of information [18]. This is

hampering new discoveries in many sciences because users must invest considerable time

and energy in locating and studying necessary information. One of the solutions to this

problem is to borrow the SciVis idea, that is, transforming gigabytes of data into

meaningful patterns. When SciVis is used in the context of solving the “information

saturation” problem, it is often called information visualization.

16

16

Information visualization puts into practice the adage “ A picture is worth

thousand words”. Once a lot of data has been compressed into one picture the user can

“browse” it, detecting correlations between different quantities both in space and time.

During this process, information visualization might furnish new visual representations in

addition to those which have already been produced. This opens up the possibility of

viewing the data selectively and interactively in `real time' [9].

Information visualization can be further evolved on the Web by information drill-

down to retrieve more related information within a region of interest in the visualized data

[17].

1.3 The Progress of Scientific Visualization

Before the advent of computers, SciVis was performed with primitive technical

methods such as blueprints or line plots drawn on graph paper.

Computer-performed SciVis started from the old model of batch processing

simulation on a centralized mainframe, producing images from predefined viewpoints

which are saved to disk or video for later viewing [43]. During the late 1970s and 1980s

advances in computing power and network bandwidth brought high performance to

desktop computing, which allowed a more interactive approach to image displaying

handled at the desktop, permitting the scientist to interact with the simulation in near to

“real time”.

The scientific visualization sequence model proposed by DiBiase [5] has a great

influence on today’s SciVis community, affecting the way in which visualization systems

17

17

are built [13, 25]. This model is explained in more detail in section 2.2. In this model, it is

assumed that SciVis is used by researchers to reveal unknowns. To date the vast majority

of both commercial and in-house visualization systems have concentrated on providing

non-distributed solutions. Non-distributed solutions involve building software to run on a

workstation or mainframe at the same location as the user. These solutions make public

access from different locations difficult. Here and in the following, by public we mean the

professional or scientific community with an interest in the data being presented.

The development of a SciVis system usually is a long and expensive process.

Nevertheless, the usage of many non-distributed visualization systems is quite low after

completion of the projects for which they were developed, since SciVis systems are

frequently associated with complex, expensive and sometimes unique hardware and

software to which the wider public is unlikely to have access. Furthermore, collaborative

visualization is often necessary for solving larger and more complex research problems.

Collaborative visualization occurs when a multi-disciplinary group of experts, likely to be

geographically dispersed, use SciVis to collaborate on problems.

Many legacy non-distributed SciVis systems can still be very useful and valuable

for continuing research and education. From a commercial view point, the owners of

databases and associated SciVis systems might become visualization service providers

(VSP), providing public information visualization services at their sites and enhancing the

usage of their legacy SciVis systems. In this case, such existing SciVis systems need re-

engineering for public access or collaborative visualization.

18

18

1.4 A New Paradigm for Scientific Visualization

 Lemay characterizes the World Wide Web (WWW) as “a global, interactive,

dynamic, cross-platform, distributed, graphical hypertext information system that runs

over the Internet” [20]. It has been a primary means of acquiring and disseminating

information and has been hailed as a significant enabling technology. With new Web

technologies, such as common gateway interface (CGI), interactivity has been brought to

the Web. The most significant technological impact on the Web is likely to be the rapidly

increasing use of Java, which further increases the potential for interactive interfaces. User

interface and graphic handling can be fully specified within the language giving far greater

control over graphic objects. Java threading and two-way data communication allow

interactive controls. With Java-enabled browsers becoming the standard, many

organizations are now experimenting with the Web as a possible vehicle for delivering

applications both to their customers as well as internally. These advances also provide an

opportunity for enhancing the capabilities and increasing the usage of SciVis both by

developing new Web-based SciVis software [43] and by re-engineering legacy SciVis

systems to make them more widely available through the Web (the major focus of our

work). SciVis in conjunction with the Web can make visualization capabilities available to

end users without requiring them to have high-performance rendering systems. Indeed,

because of the platform-independent nature of Web-client technology, this combination

makes visualization facilities available on a wide variety of personal computers and

workstations.

1.5 Contribution and Organization

This research deals with re-engineering of legacy custom SciVis systems for wider

remote access and its related issues. The correctness and/or suitability of the existing

graphic representation in these systems are not examined or addressed here.

19

19

In chapter 2 we first investigate DiBiase’s sequence model for using scientific

visualizations in today’s scientific research. We then propose an extension of the SciVis

sequence model to account for the wider, public use of such visualizations.

In chapter 3 the current state of the art in SciVis software is surveyed. It is found

that the structure of such software usually conforms to an architecture called the

“visualization pipeline” and that the majority of such applications are non-distributed. It

is expected that commercial visualization applications will be or are being evolved by

manufacturers into collaborative or Web-based versions. However, many scientific

organizations like the Geological Survey of Canada, have valuable in-house SciVis

systems which they would like to make more widely accessible and therefore need to be

modified into multi-user applications.

In chapter 4 several possible scenarios for SciVis on the Web are discussed. We

demonstrate that with new Web technologies SciVis applications not only can be used for

Web publication, but also can be implemented on the Web as an interactive SciVis public

service. Following our earlier definition of “public”, by public service we mean a widely

accessible and interactive information service for specialists with an interest in studying

and analyzing the data that the service presents.

Given the need for deploying existing visualization applications in this way, in

chapter 5 we turn our attention to considering how to provide a cost-effective, efficient

and general approach to re-engineering in-house SciVis software into multi-user

applications for public service without necessarily changing the existing system.

20

20

In chapter 6 this re-engineering approach is demonstrated by the implementation

of the Web-based GSC(A) Display. Over many years (dating back to the 1950s), the

Geological Survey of Canada, Atlantic (GSC(A)) has collected large amounts of

geographic data and developed in-house display software (called GSC(A) DISPLAY) on

a Unix platform to create color images of selected sets of data, such as the regional

topography and bathymetry for eastern Canada, the NW Atlantic, and the Arctic.

GSC(A) staff are presently using these data and GSC(A) DISPLAY internally and wish

to give external users remote access to this in-house SciVis system to create and view

these color images. They also wish to access to this system on various different platforms

within GSC(A) such as Windows machines or Macintoshes.

In chapter 7 we summarize our results and discuss potential enhancements and

future work.

21

21

Chapter 2 The Scientific Visualization Sequence

2.1 Overview

First we review DiBiase’s SciVis sequence model for how SciVis tools are used in

the research sequence. This SciVis sequence has a great influence on the design and

development of SciVis software. We then look at the evolution of computing architecture,

which has an impact on the SciVis sequence model. DiBiase’s model was suggested prior

to the advent of the Web and needs to be modified and extended to account for the much

wider publication potential of this new medium. Finally we characterize SciVis as a

multidimensional space. These dimensions are important considerations in designing new

SciVis systems and re-engineering legacy ones.

2.2 Dibiase’s Model

DiBiase [5] proposed a SciVis sequence model (Figure 2.1) for depicting the uses

of visualization in the context of scientific research. Although this model was oriented

towards visualization of information in earth sciences, it is applicable to any discipline in

which large amounts of data need to be displayed and analyzed. This model focuses on

how SciVis tools are used and who uses them. It has been widely used to guide the

development of SciVis software as tools in all aspects of scientific research, from initial

exploration and hypothesis formulation through to the “final” presentation of results. It is

generally agreed that SciVis is used in two realms, a private realm and a public realm, and

that it is used for visual thinking and visual communication throughout the research

process.

22

22

2.2.1 Four Stages in the Progress of Research

In DiBiase’s model, research progress can be idealized as a sequence of four

stages:

Figure 2.1 DiBiase’s scientific visualization sequence model [5].

• Exploration: investigation of data to reveal pertinent questions and formulation of a

formal hypothesis.

• Confirmation: confirmation of apparent relationships in the data in light of a formal

hypothesis.

23

23

• Synthesis: obtaining new facts by generalization or inference.

• Presentation: presentation of the research at professional conferences and in scholarly

publications.

2.2.2 Visualization Functionality and Realms

The intent of SciVis evolves in parallel with this progression. The intended use is

indicated along the top of the diagram, while the stage of evolution is indicated along the

bottom (refer to Figure 2.1). Visual thinking implies the generation of ideas through the

creation, inspection, and interpretation of visual representations of the previously non-

visible, while visual communication refers to the effective distribution of ideas in visual

form. Visual thinking typically begins in a private realm of one or a few specialists who

are intimately acquainted with the subject of the research. Finally, with the assistance of

visual communication, the research is disseminated into a public realm consisting of the

professional community with an interest in the data being presented.

2.3 Taxonomy of Scientific Visualization and Software Evolution

The Scientific Visualization Center, USA Department of Defense categorizes

SciVis into three types [36]. They are:

• I See

• We See

• They See

This categorization is closely related to DiBiase’s model as well as to the evolution of

visualization software as described in the following.

24

24

2.3.1 “I See” Visualizations

“I See” visualizations correspond to the exploration stage of DiBiase’s model, in

which a scientist or researcher investigates data collected from an experiment or other

process. Initially, this researcher can use various “off-the-shelf” software applications to

visualize the collected data in order to obtain a hypothesis. In advanced and complex

projects, the researcher might need the support of software developers to build

customized or integrated software. During the “I See” stage, the visualization is private

and the software requirements may be changed or modified often for the initial

exploratory purpose. Therefore the visualization representation can be simple, employing

abstract symbols understandable only to the researcher, and the software is frequently

operated by a simple command-line interface.

2.3.2 “We See” Visualizations

“We See” visualizations are responsible for the confirmation stage of DiBiase’s

model. In the progress of the research project, other researchers might join the original

solitary one, either for technical confirmation or to form a team as technical support.

These people might be from different disciplines, have their own expertise, and do not

have the knowledge the original researcher has. Therefore, the original researcher and the

software developer must refine the visualization software to ensure that the

representation is more concrete. Even through a command-line interface may still be used,

the commands themselves must be more meaningful. In this way, the members of the

research group can use the software by themselves for confirmation and further

investigation after a short training. Using the visualization software, the research group

can review and confirm the hypothesis of the original researcher as well as apply their

own expertise to find new hypotheses about the visualized data.

25

25

2.3.3 “They See” Visualizations

“They See” visualizations are related to the synthesis and presentation stages of

DiBiase’s model. When a project reaches a final point, the research findings have to be

synthesized (generated) and presented to the audiences with some interest in the results.

These audiences also include funding officials or upper level management, who are likely

to have less technical background. Visualizations tend to be the most elaborate in this

phase, and often include videotape animation, slides, and other presentation quality

formats which provide an overview of the key results. Such presentations frequently

include a demonstration of the visualization software. Therefore, the research group and

the software developer may need to work together to modify the visualization software

to ensure that the images produced are suitable for the target audience. Because the

presenter is usually the original researcher or a member of the research team, he or she is

unlikely to have any difficulty in operating the software with the command line interface

developed in the “We See” visualization stage. Since untrained users do not directly use

the software, it usually remains at this level without any more attention. At most a

simple GUI may be added for the trained internal users to perform routine work.

2.4 Evolution of Computing Architecture

Computing architecture has evolved from monolithic to distributed, with a

consequent affect on the structure and usablity of software.

2.4.1 Monolithic Systems and Mainframes

The original computers were large mainframes, generally inaccessible to all except

a small number of technical professionals. The first attempt to make computing more

26

26

widely accessible consisted of time-sharing operating systems managing a number of

simultaneously connected “dumb” terminals. Software systems written for mainframes

were monolithic, that is, the user interface, logic, and data access functionality were all

contained in one large application. The terminals used to access mainframes did no

processing so the entire application ran on the mainframe itself. This is the architecture on

which most legacy visualization applications are built.

2.4.2 Client/Server Architecture

The advent of microcomputers and workstations made possible a dramatic shift

away from the monolithic architecture of mainframe-based applications. Whereas these

applications require the mainframe itself to perform most processing, applications based

on the client/server architecture allow some of the processing to be offloaded to

workstations on the users’ desktops, making more efficient use of central services.

Client/Server applications typically distribute the software components so that

the database resides on the server, the user interface resides on the client, and the logic

resides in either, or both, components. When changes are made to parts of the client

component, new copies of the client component have to be distributed to each user.

2.4.3 Web-Deployed Architecture

With the arrival of the Web the computing load moved back to the server as CGI

scripts. Simple user interfaces in the Form format could be downloaded to the client on

demand. This eliminated the requirement to deliver new copy to each user if the client

component is updated. However, HTML and its extensions are not a programming

language and can deal only with very simple tasks in the client. Moreover, this

27

27

architecture created problems such as overload on the server and slow communication of

large graphics.

With this initial Web architecture, SciVis Web publication is possible, but only in

static form. Web publication means Web delivery of interim and final results in the context

of SciVis.

2.4.4 Web Plus Java Applets

The adoption of Java has enabled web-based applications to become more

distributed and more dynamic. One of the primary uses of Java is to write Applets, small

applications that are downloaded to the client on demand through the Web. Applets,

written in Java, a modern, powerful object-oriented derivative of C, can implement more

complex user interfaces than are possible with HTML forms. They can also implement

some of the logic of the overall application, thereby moving some of the computing load

off the server. These capabilities of applets make a SciVis public service feasible.

2.5 An Extension of DiBiase’s Model

To account for the wider publication potential offered by the Web, we take

DiBiase’s model one step further to include a global realm, as shown in Figure 2.2, within

which visualizations of large bodies of data can be displayed to a wider audience, who can

also benefit from visual thinking functionality of visualization (see section 2.2.2). It is

important to note that by giving wider access to SciVis systems, one greatly increases the

potential for further scientific discovery.

28

28

Considering the Web influence, we suggest a fourth level of visualization should be

added to the three proposed by the Scientific Visualization Center outlined above, namely

World Sees visualizations.

In this additional category of “World Sees” visualizations, the research group uses

the Web medium to deliver to the world its newest research results with images without

any delay due to the other traditional publication media, such as journals and conferences.

Figure 2.2 Extension of DiBiase’s Model.

29

29

They use the developed SciVis system to generate high quality images and organize those

important images with other related documents into a Web format.

However, “world sees” visualizations can serve a more important function. They

can be further evolved to let the wider technical public obtain limited or total access to

SciVis software for interactive visualization through the Web. In this way, other research

groups or individuals can use the visualization software as a research tool to make further

discoveries and hypotheses without repeating the same investment. At this “World Sees”

stage, the visualization is public, so a high level of interactivity is required to provide a

variety of users with interfaces that are so sufficiently sophisticated and intuitive that

they can focus on the problem at hand rather than usability issues. It is our objective to

re-engineer existing SciVis systems to this level.

2.6 Multidimensional Scientific Visualization Space

In order to extend SciVis into the Web, we must consider not only DiBiase’s

visualization sequence model but also the many variables affecting SciVis. We suggest that

SciVis can be abstracted as a three-dimensional space (Figure 2.3).

DiBiase’s model and the extension proposed here directly considers only one

dimension of scientific visualization, “purpose/task” [23]. A purpose/task is an activity

which a user of SciVis needs to undertake in order to achieve an objective. A SciVis

system is developed primarily to help scientists explore masses of data, and can be

further used for hypothesis confirmation, synthesis and presentation of ideas, Web

publication and public service (Figure 2.2).

30

30

DiaBiase’s model and our extension also indirectly consider another dimension,

user. Users are not passive receivers but active individuals who filter and select

information. Users vary in many ways, such as their ability to understand the

conventions for human - computer interactions, their preference for the way they interact

with a system and the way (format, method, amount) information is displayed. The

typical values of this variable include private users (original researchers), public users and

global users. Public users is the category defined previously, that is the wider technical

audience with an interest in the data being presented. The Global users category includes

these technical persons, and some non-technical ones, who are Web users and may access

or browse SciVis occasionally.

The third dimension in the visualization space is the degree of human-computer

interaction (HCI), which is not considered in DiBiase model. By the degree of HCI, we

mean “degree of interactivity”, i.e. the extent to which the user can inspect the data by

direct interaction with the visualization. It is now generally appreciated within the

information technology community that human-computer interface issues are fundamental

to scientific visualization, where the ability to interact with the data is essential.

The corner of the cube in Figure 2.3 where the three dimensions have the values

original exploration, private user, low HCI represents one extreme of of SciVis software

providing “I See” visualization. The opposite corner, defined by the values public service,

global user, high HCI, represents the other extreme providing “World Sees” visualization.

How this cube can be used in practice will be explained later (see section 4.5).

31

31

Figure 2.3 Multidimensional scientific visualization space.

32

32

Chapter 3 Scientific Visualization Software

3.1 Overview

 Here we briefly describe the principles behind SciVis software. Most visualization

software is developed according to the visualization pipeline architecture.

 There are three categories of SciVis software, turnkey visualization applications,

application builders, and custom visualization applications. Systems in the first two

categories are commercial and the third category consists of in-house applications. At

present, they are all designed as non-distributed applications. It is expected that the

commercial ones will be modified into collaborative or Web based versions. The remaining

problem is how to re-engineer in-house visualization applications cost-effectively as

multiple-user applications for public service.

3.2 Visualization Pipeline Architecture

To help to understand how SciVis software works, it is useful to look at the

general SciVis software architecture.

Figure 3.1 The visualization pipeline architecture

Most SciVis software is developed on the basis of the visualization pipeline

architecture (Figure 3.1) proposed by Upson et al. [39] and Haber and McNabb [11].

The visualization pipeline is expressed as a sequence of processes, each of which does a

 Filtering Mapping Rendering Image

Enriched Data GeometryRaw Data

33

33

specific well-defined task. The raw data, which may come from a computer simulation (as

in computational fluid dynamics) or from measurement (as in remote sensing), is

transformed by the following three processes.

• Filtering (filtering data into data) – This is a data enrichment or data manipulation

process which algorithmically modifies the raw data into a more informative and

perhaps less voluminous form for subsequent processes. If the raw data are assumed

to be accurate, this is an interpolation process, fitting a mathematical function through

the data points. If the raw data are inaccurate, an approximation process is required.

For example various kinds of noise may be found in the data, and this can be reduced in

this process by some smoothing operation.

• Mapping (mapping data into geometry) – This process transforms the derived data

produced by the previous process into geometric primitives such as points, lines,

polygons, surfaces and spheres for the rendering process. Haber and McNabb refer to

this process as “mapping to abstract visualization objects (AVOs)” [11].

• Rendering (rendering the geometry into an image) – This process transforms the

geometric data into a displayable picture in some image format. This will involve the

preferred choice of colors and other issues specific to the appearance of the image.

Rendering uses techniques of computer graphics and image processing. Typical

rendering operations include transformations (rotation, translate, scale, perspective

mapping and clipping) and optical models (shading, shadowing, hidden line/surface

removal and anti-aliasing). In this process, speed and efficiency must be carefully

balanced against the accuracy of alternative rendering algorithms.

Visualization means in general “to make visual”, “to bring something as a picture

before the mind” [14]. This process is dependent on the perception and recognition of

patterns in displays [24]. Cognitive psychologists believe that perception and pattern

34

34

recognition are closely linked to memory. The representations in memory have analog

qualities - mental images. The mental images vary with different cultures and scientific

areas. Therefore SciVis systems might significantly vary with different scientific fields in

visualization algorithms and implementations although they all have the general

visualization pipeline architecture (Figure 3.1). During the design of a SciVis application,

techniques from many disciplines such as perception, computing systems, mathematics,

computer-graphic/image-processing, and the specific scientific area, are employed to

generate the target image.

Although our research effort is focussed on custom visualization applications, for

completeness we will briefly survey the other two types of SciVis software mentioned

above, turnkey applications and application builders.

3.3 Turnkey Visualization Applications

Turnkey visualization applications aim at the visualization end user, the research

scientist. Turnkey visualization applications offer fixed functionality to solve a limited

range of specific problems. Their strategy is to conceal the pipeline architecture and to

provide a predefined set of options for the user to select. These applications supply the

main program and a simple interface with which the user provides the data and

visualization options to the main program. Such applications have the following

advantages:

• Ease of use: These applications do not require programming skill. Thus, one can obtain

results quickly.

• Speed: Because they are very specific, such applications are usually faster than those

built with generic application builders.

35

35

Turnkey applications also have some disadvantages, as follows:

• Specific: Many turnkey visualization applications are extremely application-specific

and of limited use in other fields. For example, Data Visualizer (Wavefront

Technologies Inc.)[1] is appropriate to some fluid flow visualization problems.

Geographical information systems (GIS), such as ARCVIEW (Environmental Systems

Research Institute, Inc.) [8] and GRASS (US Army Corps of Engineers) [40], deal only

with geographical data. PV-WAVE (Visual Numerics Inc.) [41] is mainly used to

organize and display plots, contours, histograms and tables.

• No extensibility: This kind of software is not extensible and, therefore, may often

provide only part of the solution that the user requires.

3.4 Visualization Applications from Application Builders

Application builders, also called modular visualization environments (MVE), have

emerged as attempts to provide general purpose SciVis tools [32]. Application builders

target the visualization programmer, who can use them to build specific visualization

systems. They make the visualization pipeline architecture visible to the programmer, and

offer much richer functionality with the possibility of user extension. They are

exemplified by four main commercial systems:

• Application Visualization System (AVS) from AVS Inc. [2]

• IRIS Explorer from Silicon Graphics Inc. [38]

• IBM Data Explorer from IBM [16]

• Khoros from Khoral Research Inc. [26]

Application builders offer the visualization programmer a library of predefined

routines (modules for data input/output/control, filtering, mapping and rendering) mostly

represented by graphical objects (glyphs). The visualization programmer can select these

36

36

glyphs by dragging them into a workspace and combine them into pipelines using a

graphical network editor. Data flows through the wires between modules to produce an

image. The supplied modules can be replaced by third-party or user-written modules as

required, providing they conform to the data input/output/control interface protocols.

These systems, while powerful and extensible, require special training and are

therefore more difficult for a research scientist to use. A software developer is required to

assist the research scientist to build an application which can generate images from the

research data. However, if the programmer is familiar with the application builder

environment, he or she can rapidly construct an application without writing code by

manipulating icons on the screens and linking them with data paths.

The following are the characteristics of application builders:

• The user can connect modules by visual programming methods.

• The user can create and insert new modules.

The advantages of application builders are:

• Flexibility: These are general purpose SciVis tools [32]. Modules exist for supporting

many different types of visualizations. Visualization problems are diverse and the

modular approach provides great flexibility.

• Extensibility: The user can add modules. There are many third party vendors writing

code for such systems. Furthermore, C, Fortran or C++ can be integrated into

application builders simply by adding “wrappers” around the user’s existing

subroutines.

• Exchangeability: The modules can be exchanged between disciplines.

37

37

The remaining problem for application builders is whether they are sufficiently

general purpose to cover all SciVis solutions in all disciplines. The current application

builders are quick approaches for prototyping new applications, but many visualization

application domains have their own special requirements which present builders cannot

meet. Therefore, in recent years, numerous graphics libraries have appeared (see next

section).

3.5 Custom Visualization Applications from Graphics Packages

 Graphics packages, such as GKS, openGL and the Mesa library, are collections of

low level graphics operations. They have been developed in order to provide

multipurpose and standard tools for visualization and computer graphics in general.

These libraries represent the traditional, structured-language approach to programming.

 Such graphics packages address the programmer and are far outside reach of the

end user. Their effective use requires the visualization designer and the programmer to

understand the graphics primitives and data structures in the library, the set of attributes

that affect the appearance of the primitives, the rendering pipeline that the library

implements, the administrative or housekeeping calls that are part of the library, and the

system-level calls that are necessary to complete the non-graphics portion of an

application. The designer and the programmer have to supply nearly all the pieces of the

system, such as the user interface, data handling, geometry mapping, and the main

program. Graphic libraries fail to hide the basic complexity of the visualization and place

a huge software development burden on the programmer who must assemble a graphics

application from low-level software.

38

38

 The advantage of this type of system is its flexibility and direct control over the

visualization requirements and patterns. It is the most useful type of software for the

development of in-house SciVis systems for very specific solutions. Today, many

organizations still use the graphics-package approach to developing SciVis systems for

the solutions which current application builders cannot provide. However, this approach

suffers from the large amount of time necessary to write, maintain and support the code.

GSC(A) DISPLAY is in this category.

3.6 Collaborative Visualization Applications

The above three kinds of visualization applications all employ the visualization

pipeline architecture and are non-distributed. However, as previously mentioned, many of

today’s research problems are too complex and too large to be tackled by a single person,

and interdisciplinary teams are needed to work together to solve them. Therefore,

collaborative visualization software may sometimes be a useful and cost-effective research

tool. Collaborative visualization means visualization sharing, that is, people based at a

number of geographically separated places can remotely use a single visualization

resource.

In a demonstration of collaborative visualization in 1989, Haber and McNabb [12]

employed a visualization resource located at National Center for Supercomputing

Application (NCSA) labs in Champaign, Illinois, including supercomputing and rendering

facilities, a video tape player for the relay of previously captured visualization results,

and a camera to video the local user. The remote user (demonstrator) in Boston was

equipped with a workstation and an input device. A private 96Kbps land line was used

for the transmission of input commands from Boston to Champaign and an AT&T

Telstar302 satellite link was used for returning the images from Champaign to Boston.

39

39

Although such elaborate equipment and communication facilities are not widely available,

the problem of collaborative visualization has nevertheless received considerable

attention.

In his PhD research [44], Wood suggests how commercial SciVis software

(turnkey visualization applications and visualization builders) might be modified to

support collaboration. It is expected that collaborative or Web-based versions of such

commercial software will be available in the future. The Web provides a vehicle for this

purpose. The use of SciVis in conjunction with the Web means that end users of SciVis

do not necessarily require high-performance systems at their locations, and can use a

variety of personal computers and workstations. In the next chapter, we explore this

possibility.

40

40

Chapter 4 Scientific Visualization on the World Wide Web

4.1 Overview

The World Wide Web is not customarily viewed as a platform for developing and

deploying applications. This chapter introduces the notion and demonstrates that SciVis

applications can not only be used for Web publication but also be used to provide

interactive SciVis public services. We also discuss two important aspects, the user

interface and information drill-down. The user interface is an important consideration in

creating SciVis public services because Web users are accustomed to and require easy

access to services. Information drill-down is important to SciVis since in order to provide

useful, high-level views of data, most visualization systems are likely to omit much detail.

It is therefore necessary to provide the facilities for accessing embedded information.

4.2. Suitability of the Web for Interactive Visualization

 The Web provides a paradigm for SciVis to be further evolved. Here we consider

the reasons why the Web provides a suitable medium for publishing visualizations.

 • Connectedness: The World Wide Web began as a hypertext information retrieval

environment. It uses Internet services and merges the techniques of information

retrieval and hypertext to provide simple access to dispersed information. The idea

behind hypertext is that instead of reading text in a rigid, linear structure such as a

book, one can easily skip from one point to another, obtain more information, go

back, jump to other topics, and navigate through the text based on one’s interests.

With the development of Web technologies, the Web has incorporated much more

than text. Technically, today’s Web is not only a hypertext system but also a

41

41

hypermedia system, which provides capabilities for graphics, sound, and video to be

incorporated with the text. The reason that the Web has become so popular over other

Internet services, such as Gopher, is its capability to display graphics in full color.

This, together with the universal access it provides, appears to make it ideally suited

to deploying SciVis applications in the global realm.

 • Platform Independence: Access to the World Wide Web is obtained through Web

browsers available on most popular personal computers and workstations.

Consequently, for SciVis on the Web, no additional hardware is required, and any

special capabilities can be dealt with by applets dispatched to the client by the server.

 • Universal access to specialized facilities: Web information is distributed globally

across thousands of different sites, each of which contributes hardware resources,

software and databases for the information it publishes. SciVis usually requires

special hardware, software, database, technical support and special setting-up. The

publishing capabilities of the Web can eliminate these requirements for the

visualization user by making specialized facilities widely available.

4.3 Concerns with the Web

 There are three general concerns with the Web, interactivity, speed, and the

variety of different end-users [4]. The introduction of SciVis into the Web means that

these issues should be reconsidered in greater detail from somewhat different points of

view. Where possible, we discuss techniques and technologies to address these issues.

 • Interactivity: At the current state of Web technology, most user interactions with Web

pages involve navigating hypertext links between passive documents. The addition of

42

42

common gateway interface (CGI) scripts and forms (simple menus, buttons, text

fields etc.) allows some interactions with computational facilities and data on the

server. Although forms and CGIs have been the most widely used mechanisms for

Web interactions, form interactions provide a very limited visual user interface,

inadequate for complex systems such as SciVis applications. Java is beginning to

provide the means to overcome this problem. Java's abilities have “activated the Web”

via Java applets which can have highly interactive user interfaces with visual user-

computer communication objects [15]. With further development of the Java Abstract

Window Toolkit (AWT), event handling and networking, Java is making a significant

technological impact on Web interactivity.

 • Speed: The Web is a global infrastructure and does not deliver acceptable response

speed on standalone machines or smaller networks. Highly graphic Web designs

require high communication bandwidth in order to deliver information without

unacceptable delays. Human-factors research has shown that for most computing

tasks, the threshold of frustration is around 10 seconds [21]. Legacy SciVis software

presents a speed problem here because it does not necessarily produce graphics in a

compact format, so we need to consider the possibilities of adding some mechanisms

at the server end to translate images produced by legacy systems into better formats.

 • Variety of end-users: The Web is a public medium via which many kinds of end users

can access information. A well designed system should be able to accommodate a

range of potential users. Non-technical users depend on clear layout and easy access.

They tend to be intimidated by many text inputs and complex menus and may be

tentative about delving deeply into the information content if the user interface is not

clearly arranged and graphically attractive. A glossary of technical terms, acronyms,

abbreviations, and a list of frequently asked questions can be helpful to them.

43

43

Technical users, however, depend on the Web page to obtain information quickly and

accurately, and tend to be very impatient with many text inputs and low-density

menus that offer only a few choices at time. They generally have very specific goals in

mind, and will appreciate fast information retrieval means and tools. It is a challenge

for a Web user interface to meet the needs of both technical and non-technical users.

By “technical user” here we mean technical in the sense of having an extensive

computing background. Many end users of SciVis may not be technical in this sense

even though they have a science background.

 Today many people, including the users of SciVis systems, are used to the Web

environment, therefore, Web conventions cannot be ignored. These conventions should be

considered a high priority during user interface design. “Look and feel” conventions

provide a general strategy for interface design to meet the needs of various users.

Hypertext links, buttons, choice boxes and other familiar visual components are

commonly understood and accepted.

4.4 Scenarios for Scientific Visualization on the Web

 Using the Web to deliver visualization is a recent trend. At present there are

several scenarios for SciVis on the Web [44]. In these scenarios, there are at least two

participants: the VSP and the user. The VSP usually has a database and a visualization

engine (i.e. SciVis application). The user at a different Internet location wishes to obtain

the SciVis service from the VSP. Different scenarios then arise depending on who has

access to and control over the visualization engine and the database. These scenarios can

be divided into two categories: static visualization and dynamic visualization.

44

44

4.4.1 Static Visualization

 In static visualization, fixed visualizations are created in advance by the VSP with

its database and SciVis system and are posted on the Web server. In fact, this is simply

Web publication (see Figure 2.2) where the user has no freedom to control the database

and visualization engine. There are two scenarios in this category.

 Provider creates the visualization

 Currently most Web SciVis services provide simple browsing access to collections

of static image files. These providers do not place their databases and visualization

engines on line. They create visual representations and post them as images or as video

sequences. The users can study these visualizations, either directly from the browser, or

by downloading them and viewing via a helper application such as xv, a program on Unix

for viewing images with various formats. The main limitation of this scenario is that these

visualizations are static and the users have no opportunity to customize them.

 Provider creates a 3D visualization

 The second scenario of SciVis is that the provider supplies scripts in Virtual

Reality Modeling Language (VRML) on the server, and the user looks at them using

VRML-enabled browsers or plug-ins on the client. In this scenario, the rendering step of

the visualization pipeline (Figure 3.1) has been migrated to the client.

 VRML has become the standard for producing 3D graphics in Web environments.

VRML is defined as a standard Multipurpose Internet Mail Extensions (MIME) data

type and its scripts can be downloaded to a client through standard HTTP Web server

mechanisms. This gives the user the option of rendering the 3D model locally from any

viewpoint so giving more freedom to explore the result. However, the visualization result

45

45

is still fixed by the VSP. Most parts of the visualization pipeline and the entire database

are still off line, so this scenario is still in the Web- publication category (see Figure 2.2).

4.4.2 Dynamic Visualization

 In dynamic visualization, the provider puts the database and the visualization

engine on line, so the user can control the system to dynamically generate visualizations.

This kind of visualization is in the public service category (Figure 2.2).

 The development of the Web has created a new medium by which SciVis can be

extended to this stage. One example of such a public service system is a dynamic map

visualization service that appeared in 1994 [30]. This service produces displays

dynamically on demand rather than just providing access to static files. With advances in

SciVis systems and Web technologies, SciVis on the Web has the potential to become

more dynamic and therefore an appropriate tool for exploration and analysis of data. Such

SciVis tools should allow the user to specify parameters that determine exactly how the

visualization should be produced: for example, which part of the data to use or how to

display certain features. Technically, the advantages are unlimited parameter

combinations and reduced requirements for disk space for image storage. The disadvantage

is that a visualization engine can take a significant time to produce an image file,

depending on the complexity of the processing and rendering algorithms it uses.

 There are only a few such services on the Web at present. There are two scenarios

for dynamic visualization.

 User creates the visualization

 In this scenario, the database and the visualization engine are on line. The VSP

posts data on the server, and a visualization engine is installed on the client as a

46

46

“Visualization Plug-in” to the Web browser [17]. In this scenario, the whole visualization

pipeline moves to the client. The data will be transferred on demand from the server to

the client browser which launches the Visualization Plug-in once the data transfer finishes

to perform the data manipulation and visualization locally at the client. This scenario has

only been proposed and has rarely been seen on the Web for scientific visualization.

 The advantages of this approach are as follows:

 • The user can have real-time and interactive visualization. After the data is transferred

to the client, the user operates the visualization tool and obtains the response time of

a standalone local application.

 • The user can have direct and interactive control of the actual underlying data (e.g. for

statistical analysis). The issue of whether or not the direct interactive control

provided is suitable for the wider audience is, as we have said previously, beyond the

scope of our current work.

 However, there are trade-offs involved. The disadvantages are as follows:

 • If datasets are large, the time to download them may be unacceptably long.

 • The user must have suitable visualization software, the plug-in that is, as well as the

knowledge of how to install it and register it with the Web browser.

 • If the visualization software is changed, a new version of the plug-in has to be re-

distributed to clients for installation.

 • The user must have the processing power available to run the plug-in.

• The user is given full access to data. The VSP may want to retain more control.

47

47

 Provider creates visualization framework and user chooses the options

 In this scenario, the VSP and the user share the responsibilities for creating the

visualization. This scenario does not require the computing power and expertise at the

client, required in the previous scenario.

 Here the database and the visualization engine are on the server. The provider

supplies the processing power and the basic visualization framework appropriate for the

data concerned. The framework is sent to the client on demand where the user can control

options within the framework. Control is then passed to the server for the visualization

engine to generate an image or VRML script passed back to the client for display.

 This is a compromise scenario. The complexity of the SciVis system remains with

the VSP who has total control over the visualization, but the user is given the freedom to

create visualizations within the framework.

 Additional advantages of this approach are:

 • No special installation is required on the client.

 • The VSP does not need to worry about disclosure of its visualization engine and

database.

 • The VSP can give the user limited access to its visualization engine and database.

 • The data sets do not need to be downloaded, so that the speed for processing very

large data sets with small resulting visualization files can be improved.

48

48

 The disadvantages are as follows:

 • Long downloading time can result if the generated image file or the VRML file is large

and the Internet bandwidth is low.

 • The server may become overloaded.

 Comparing the last advantage and first disadvantage, a flexible architecture with

some intelligence is perhaps required where under some circumstances data is downloaded

to the client which does the rendering, and in other situations just an image is sent.

4.5 User Interface

The user interface is extremely important in a Web-based SciVis public service. It

has to be both simple and intuitive. The goal of user interfaces is to provide a

communication pathway between users and computer software. The three-dimensional

SciVis space (Figure 2.3) plays a reference role in the design of interfaces for SciVi

applications. Usually an interface designer could identify the user and the purpose/task of

the application under development, then picks the level of interactivity prescribed by the

corresponding point on the diagonal of the cube indicated in Figure 2.3 as “Thinking …

Communication … Thinking”, and designs an interface with this level of interactivity.

Character-based interfaces provide adequate but inefficient interactions. During

the initial development of in-house SciVis software for single user and original

exploartion, however, they are frequently used, since the primary focus is on

visualization rather the interaction. The GSC(A) DISPLAY software has such a character-

based interface.

49

49

GUI provide a richer and more efficient means of HCI. For interactive and

complex SciVis systems, it is important to design an appropriate GUI at some stage,

providing user-friendly operations, in order to guide untutored users to explore and obtain

desired visualizations. The term GUI strictly refers to interfaces relying on menus and

forms although many people use it to mean anything other than a command-line interface.

We will use the term GUI in the strict sense.

A user interface is not only a screen design but also a method of interacting with

the software and its data. When people mention the “look and feel” of computers, they

are referring to the traditional GUI. “Look” refers to the physical appearance of a screen

to a user, whereas “feel” refers to the way the user interacts with the screen and hence the

underlying software. A traditional GUI uses menus and forms. This makes the software

more attractive and easier to use, but does not change the basic way users work with the

computer, including typing, memorizing and referring to user’s guides or help. The users

still need a lot of knowledge of and experience with the software, its data and its

background to interact with the screen. GSC(A) has built a form-based GUI on the top of

GSC(A) DISPLAY to replace the original command-line interface. This GUI requires a

certain level of knowledge about geography and the software and expects the user to type

in many parameter values in the correct format.

Jern recently proposed the term Visual User Interfaces (VUI) [17] for the

category of interfaces that enable the user to interact more directly with the software by

manipulating concrete graphical representations of objects. This concreteness includes not

only spatial location and identity, but also appropriate image and behavior. In VUI, there

is less need for the traditional pull-down menus and forms. This sense of immediate

contact with screen objects is referred to as direct engagement. The VUI model eliminates

50

50

the sense of an intermediary. There are many modern commercial software packages that

employ the VUI approach, for example Prograph, Visual Basic, Visual C++, Visual Café,

and VisualAge, all have user interface editors that allow programmers to drag and drop the

GUI components as well as manipulate them with a mouse. Photoshop and PowerPoint

make their tools visible as concrete graphical objects. Users can activate required tools,

drag and draw the graphics components, as well as manipulate them directly by mouse.

The whole aim of the VUI is to create user interface components that can be easily

manipulated by the user. By improving the visual communication that takes place in all of

the elements of the user interface, VUI makes complex systems easier to learn, decreases

learning time, and makes the user more productive. The greatest difference between a

traditional GUI and VUI technology is that users interact directly with graphic objects on

the screen in order to edit the data behind the graphic objects.

The importance of VUI in SciVis is that the purpose of visualization is to give a

concrete representation of data. It is therefore critical to give the user the means to more

meaningfully interact with this data.

4.6 Information Drill-Down

In a SciVis system, the data being visualized are frequently arranged hierarchically,

since there are limits to the amount and scope of information that can be usefully depicted

at a high level. Visualization shows us a high-level picture of some of the features of the

data and lower-level detail is necessarily hidden for visual clarity. Moving down the

hierarchy reveals more information in greater detail, which may be essential for validating

conjectures made at the higher level, for example. Therefore, the success of SciVis services

not only depends on the graphics which they produce, but also on the ability to drill

51

51

down to retrieve more information related to a specific region of a graphic. Information

drill-down and interactive data querying, together sometimes also referred to as “Visual

Data Mining”, are considered to be an important part of a Web-based SciVis service.

As an example, consider a graph of the history of the Dow-Jones industrial

average. Such a graph might help the user to see market trends in very large data sets,

however, for market analysis and reasoning, the serious user is unlikely to be satisfied

with such an overview of the data. He or she needs the facility to retrieve a full and rich

description of underlying database attributes and any related event information in any

region of the graph. Related event information which affected market level might be stored

somewhere other than in the database server, but may be important for the user to make

investment decisions. Showing details only when they are requested is vital for decision-

making and analysis. The user should be able to request details on demand by, say,

clicking on a point in a visualization.

The image map is a technique implemented in web browsers to support

information drill-down on the Web. An image map is a mapping from a set of regions on a

screen to a set of links. Clicking on a region of the image will take the user to the location

specified by the associated link. In cartography, the image map is also called a hypermap.

The links are predetermined in the image map, therefore the image map is mainly limited

to static information visualization.

Advanced Visualization Systems has implemented a dynamic image map creation

in one of their products called Gsharp [35]. The graphics that are generated and displayed

are just ordinary GIF or JPEG graphics; however, an additional file is generated and kept

with the image called a map definition file. This is a textual file that contains the definition

52

52

of where the active "clickable" areas on the image are located. This information is stored

as regions with corresponding links. These regions can be defined as rectangles, circles and

even arbitrary polygons. In addition to the image and map definition file, a CGI script is

required to provide the connection between the browser and the map definition file. An

image map definition file includes, among other things, lines starting with words like rect,

line and polygon which represent the type of areas being defined. The CGI defines a

function to compute a Universal Resource Locator (URL) from the map definition file and

a mouse click location.

53

53

Chapter 5 Re-engineering In-house Scientific Visualization Software
into a Public Service

5.1 Introduction

This chapter discusses a general approach to cost-effectively and efficiently re-

engineering non-distributed in-house SciVis software into a public service available to

many geographically dispersed users. We start from the requirement analysis.

5.2 Requirements for Re-engineering

The requirements for re-engineering an in-house SciVis application have to

consider two distinct classes of people, the average end user and the VSP. The following

requirements were obtained from the SciVis end users, system administrators and a SciVis

software developer at the GSC(A).

5.2.1 Average End User

The average end user has a science background and requires data visualization

services to assist with research and analysis of data associated with his or her primary

field of expertise. The expertise of such users in using discipline-specific SciVis software

may be quite limited, but it is assumed that they have the knowledge of how to use

general-purpose software, such as Microsoft Office and a Web browser. Their criteria for

such a system are:

• Easy to use: Average end users prefer that no special software installation is required

since computer technical support is not usually available. They also need an

appropriate visualization environment to promote rapid learning. End users should see

the environment as an extension to the tools with which they are already familiar,

54

54

allowing them to focus on the SciVis task rather than on learning how to use the

system.

• Interactive: End users should be able to control important visualization parameters as

well as directly manipulate the result. Also unfamiliar and unimportant parameters

should be set to defaults and hidden from average end users. This requires a user

interface that is tailored to the particular SciVis service.

• Multiple platform: The expertise of an end user may be limited to a particular platform.

To provide a public service, it is necessary to re-engineer an existing system to run on

most popular platforms, such as PC, Mac and Unix workstation.

5.2.2 Visualization Service Provider

This is the organization which owns an in-house SciVis application and also

usually controls the related database. It is required that the VSP will be able to set up an

appropriate network and have the capability to program HTML, CGI scripts (C/C++,

Perl, shell scripts) and Java. From the point of view of the potential VSP, the re-

engineering process should satisfy the following criteria.

• Minimum investment: The re-engineering process should be simple and flexible,

allowing the legacy software and hardware infrastructures to be largely retained. This is

an important consideration since such systems have usually evolved over a period of

time, so there is likely to be a considerable investment in their development and

maintenance. Furthermore, in many cases, some of the original developers may have

left the organization, taking some of the intellectual history with them. Consequently,

significant changes to or rewriting of such legacy systems is impractical and costly.

• Keep resources private: From the commercial point of view, the VSP needs to protect

the SciVis software and data to maintain control of its intellectual property.

55

55

5.3 The Re-engineering Approach

In order for a non-distributed SciVis application to be re-engineered as a public

service with dynamic visualization capability, we chose the scenario “provider creates

visualization framework and user chooses the options” as the most appropriate for our

purposes. This is a compromise scenario which balances the above requirements from the

average end user and from the VSP. We also chose the Web as the deployment medium

for publishing visualization because of the characteristics listed in section 4.2. These two

decisions together suggested that an appropriate client/server strategy be used in our re-

engineering approach.

5.3.1 Client/Server Architecture

In a client/server system, the client is a local processor, providing the user

interface and communicating with the server which provides computation and data

services. Thus client/server is fundamentally a distributed architecture, which means that

resources are not typically concentrated in one place but spread over multiple computing

platforms and locations. Communication between client and server can be provided by a

variety of different mechanisms, for example, the Internet.

The inherent modularity of client/server systems leads to greater overall

robustness, since computing responsibility is no longer concentrated in the server. This

modularity also makes it easier to incorporate new technology. Therefore, the

client/server model has provided an opportunity for many organizations to re-engineer

their computing environments, and similarly provides an appropriate basis for re-

engineering a non-distributed in-house SciVis system into a public service. The non-

distributed application can still reside on the host computer, but with minimum

modification, the host computer can become a server providing remote client computers

56

56

with access to the SciVis service via the Internet. The Web infrastructure is ideal for

deploying SciVis client/server services because of its existing and developing support for

multimedia capabilities.

Conventionally, client/server deployment can have several configurations [28],

which offer a very flexible architecture for designing and re-engineering different systems.

The configurations outlined below (Figure 5.1) show three typical deployments of

client/server architecture. These are often described as two-tier or three-tier client/server

configurations. The terms two-tier and three-tier refer to the way in which a system may

be partitioned. The three tiers are:

• Presentation services that manage the display and manipulation of data

• Application services that manage system rules and logic

• Database services that manage and supply the raw data

Two-tier client/server systems can be partitioned in one of two ways: with a thin

or thick client running on a desktop computer connecting to a more powerful server

computer. In thin client deployment, user-presentation services are localized on the client

while database and application services are provided by the server. Conversely, in thick

client systems, application services are provided by the client instead of the server. This

two-tier configuration requires a more powerful desktop client with a fast processor,

plenty of local memory, and disk resources to cope with the extra processing load being

handled at the desktop machine.

Three-tier client/server systems separate application services from database

services by interposing an application server between the client and database server.

Three-tier client/server provides both more flexibility in system deployment

57

57

options and more scaleability to cope with growth in system complexity because the

configuration has been designed and partitioned with more granularity.

Figure 5.1 Three client/server configurations

Two-Tier
Thick Client

Two-Tier
Thin Client

Presentation Services

Application Services

Database Services

Presentation Services

Application Services

Database Services

Client

Server

Three-Tier
Distributed Services

Presentation Service

Application Services

Database Services

Client

Application Server

Database Server

58

58

It seems that this conventional three-tier configuration is the most appropriate one

for client/server deployment. However, in reality, we used an alternative one (Figure 5.2)

in our re-engineering in order to implement a Web-based solution for the chosen scenario

which requires a user interface supporting domain-specific interactions.

The significant difference between this configuration and conventional three-tier is

that the application services have been distributed over the three tiers, rather than located

in only one. The client becomes thicker and contains not only the dumb Web browser for

providing presentation services but also Java applet for providing some application

services, according to a visualization framework defined by the VSP. The middle tier is

the Web server, containing all communication rules (application services) between the

client and the legacy system, which is the third tier in our modified configuration and

consists of the legacy application (application services) and its database.

5.3.2 Extended Visualization Pipeline Architecture

In order to determine how the various software components get distributed over

the tiers in the modified three-tier client/server model described above, we reconsider and

extend the visualization pipeline architecture. With this extended architecture (Figure 5.3),

a rapid re-engineering can be achieved that does not necessarily require changes to the

existing in-house SciVis software, maintains the privacy of the VSP’s database and

visualization engine, and reaches the goal of zero installation on the client.

Generally, existing SciVis software can be front-ended by a suitable Harness

(discussed below). The Harness is software developed by the VSP on top of the existing

visualization system. It is stored on the server with the SciVis software, and can be

59

59

Figure 5.2 The modified three-tier configuration for re-engineering legacy systems

Presentation Services
(Web Browser)
Some Application Services
(Java Applet)

Client

Generic Application Services
Web Server

Internet

Application Services
(Legacy Application)

Database
Legacy System

CGI

60

60

Figure 5.3 Extended visualization pipeline architecture.

dynamically downloaded to the client’s Web browser on demand. It contains the

visualization framework created by the VSP, and allows the user to specify parameter

values (called “client control” in the architecture) for the control of visualization process.

As discussed earlier, the VSP may set some parameters to defaults on the server (called

“server control” in the architecture) if it is unnecessary to expose them to the average end

user. The Harness collects the user’s options and sends them to the server, which invokes

the visualization pipeline with the selected options and the fixed defaults.

The visualization result, generated on the server using the legacy SciVis software,

may be in various different formats (see Table 5.1). Although in theory one can arrange

Mapping Rendering SPR CPR

Server

Client
Control

Server Client

End
User

Filtering

61

61

for images in any format to be displayed in a browser by writing an appropriate rendering

applet, one may prefer to avoid this effort and simply rely on the display capabilities

built into browsers. Current Web browsers, however, can directly render only the popular

GIF and JPEG formats. In our case, the GSC(A) Display engine generates Postscript

files. We do not want to transmit these via the Internet because of their large size. Nor do

we want to have to write an applet to render Postscript files at the browser end. Hence,

the visualization pipeline is extended with an optional server post-rendering (SPR) phase,

which can convert the visualization result from one format to another format or do other

image processing tasks with the utilities available on the server. The extended architecture

also has an optional client post-rendering (CPR) phase on the client. CPR may perform

various image processing operations, including cropping (extracting a rectangular piece of

an existing image), RGB filtering (modifying individual pixels based on their current color

and transparency), rotating, adding legends, and so on. The CPR phase resides in the

Harness.

It is important to note that we are led to this structure by the fact that we are re-

engineering legacy software. If we were implementing a SciVis system from scratch, then

in cases where the data is small but the rendered image is large, it would make sense to

send the data together with an applet to perform the rendering on the client.

 Format Name Comments

 GIF Graphics Interchange Format
8 bits per pixel

Most commonly used image format.

 JPEG Joint Photographic Experts
Group, 24 bits pre pixel

Used mostly for photographs, complex
“photographic” illustrations, medical
images, and other types of images where
the JPEG compression processing does
not severely degrade image quality.

 PPM Portable Pixel Map Distributed with the X-window system.

62

62

 Format Name Comments

24 bits per pixel
 PGM Portable Greyscale Map

8 bits per pixel
Distributed with the X-window system.

 PBM Portable Bit Map
1 bit per pixel

Distributed with the X-window system.

PostScript Encapsulated PostScript
Format (EPSF)

A page description language with
sophisticated text facilities. For graphics,
it tends to be expensive in terms of
storage.

 TIFF Tagged Image File Format Encompasses a range of different formats ,
originally designed for interchange between
electronic publishing packages.

 CGM Computer Graphics Metafile An ISO standard since 1987. Has the
capability to encompass both graphical
and image data.

 XBM X-window Bit Map Standardized by the MIT X-consortium.
 VRML Virtual Reality Modeling

Language
A standard language for 3D data
interchange on the Web

Table 5.1 Some general visualization file formats. More formats, various format

specifications and format conversion utilities are available on the Web

(http://www.dcs.ed.ac.uk/~mxr/gfx/).

5.3.3 Description of the General Approach

The general re-engineering approach has been abstracted into a re-engineering

architecture (Figure 5.4). This is a unifying solution that enables the re-engineered system

to be constructed relatively quickly. Two important additions have been made to

configure an existing in-house SciVis system into a client/server application. They are the

Back End Manager, and the Harness mentioned briefly in the previously section. Both

names were suggested by Edmonds et al. [7].

63

63

The Back End Manager provides the interface with the visualization engine and

the database in a way that provides a clean and clear separation between the Harness and

the existing application. This manager has three responsibilities:

• Communication with Clients: It waits for clients’ connections, synchronizes multiple

connections, and receives messages from clients.

• Communication with Visualization Application: It has all the information necessary to

access and run the visualization application. Details of the location of the application,

its server control (see Figure 5.3), input/output policies, etc. must all be made available

to it. The Back End Manager must, therefore, be configured and maintained precisely

in conformity with the actual application software available.

• SPR: It processes the visualization results on the server for delivery to the clients (see

the discussion in section 5.3.2).

The central part of the re-engineered software is the Harness, which is the front

end on the client. The Harness is often used in the re-use and integration of existing

software. It has a range of responsibilities including control of the visualization process

by end users, providing a visualization environment, dealing with presentation issues, and

communicating with the server. The end users can access the Harness only through the

visualization environment. The complexities of the Harness are hidden from the users and

located in the presentation service and communication service of the Harness. The

Harness consists of the following services:

• The communication service connects the Harness to the server and sends control

messages to the Back End Manager.

64

64

Figure 5.4 The re-engineering architecture

• The presentation service is responsible for the maintenance of the state of the user

interface and its visual interaction objects, interpreting and processing all interface

events. This service composes client control (see Figure 5.3) messages and passes them

to the communication service for transmission to the server. It may also perform client

post-rendering, as discussed in section 5.3.2, to improve the visualization. The

presentation service plays a similar role to controller components in the Model-View-

Controller (MVC) architecture for interactive applications used in Smalltalk. In MVC,

a controller receives all relevant input events from the user and decides how they

should affect the views and model associated with the controller [19].

 Database

 Visualization
E i

 Back End Manager

 HARNESS

• Visualization

Enviro.

• Presentation

Server

Client

65

65

• The visualization environment service provides the communication between the end

user and the whole client/server system. It ensures that an end user is presented with a

system that has a familiar, consistent and concrete style and organization, requiring

little training overhead. In this way, complex in-house SciVis systems can be presented

to a wider range of users, and learning times and training costs can be significantly

reduced. This service provides functionality similar to that of the view component of

MVC, which implements visual display [19].

5.3.4 User Visualization Environment

When a legacy SciVis system is deployed as a public service, the user

visualization environment has to satisfy new requirements as follows.

• The end users have much more varied expertise, so although they may be familiar with

the particular technical area the SciVis system deals with, they are not familiar with the

system itself.

• The end users are interested in rapidly obtaining data visualizations to assist in

analysis for scientific and technical purposes. They do not want to spend time on

installing or learning special software.

Consequently, a visualization environment should rely as much as possible on standard

interface conventions, and where appropriate, allow the user to interact directly with

images that provide concrete representations of real-world objects rather than text or

forms. Such concreteness, termed “closeness of mapping” by Green and Petre [10], is

likely to significantly enhance the user’s ability to interact with the system.

66

66

Some of following characteristics which may be embodied in the visualization

environment of an existing non-distributed SciVis system should be preserved in the re-

engineering.

• interactive display: Some SciVis software packages provide a responsive visual

environment in which displayed images can be dynamically generated.

• appropriate tools: Some SciVis software packages provide tools for input and display,

such as a slider for inputting speed.

• context presentation: In order to prevent the user from losing track of how the

information presented in a window relates to the underlying data when there are many

windows on the screen, some software packages attempt to make the user aware of the

context of the window by using informative window titles, and by displaying a brief

description at the top or bottom of the window.

• message boxes: Some SciVis software uses message boxes for communication with the

user, thereby increasing visual clarity.

Such preserved characteristics together with new direct-manipulation interface

features are important not only to the end user but also to the VSP. A potential VSP

possessing a rich database and proprietary display software is likely to be interested in

generating revenue to maintain and further develop these systems by making them widely

available.

In a dynamic SciVis public service on the Web, users need to select parameters to

control the generation and rendering of images. This raises some issues for the user

visualization environment.

67

67

Several visualization environments already exist on the Web, for example an

interactive scientific display service due to Putz [30]. This service was created before the

forms extension to HTML was available, so hypertext links were used to select map

rendering parameters. Although hypertext links are one of the main Web characteristics, it

is not appropriate to use them for selecting options. This user environment lacks the

integration and active interactivity. One may have to go to a different Web page to find

appropriate selections. In March 1996, the web version 1.0 of Generic Mapping Tools

(GMT) was released for on-line map creation, which has since evolved to version 4.0

[43]. GMT is an interactive SciVis public service which displays maps on demand, and

uses the forms approach in its interface. Although forms are a well accepted convention

for entering parameter values, they are inferior to direct manipulation. For example,

dragging and drawing a rectangle on a map is a much more effective and intuitive way for

picking latitudes and longitudes in a GIS system than tediously typing four values into a

form. In the forms environment, Web end users cannot take a more active part in the

overall visualization process.

The advent of Java has greatly increased the degree of interactivity available in

Web clients via applets downloaded transparently from the server. In fact, in contrast to

HTML which is simply a page-layout and hypertext-link management language, Java is a

true programming language, which, aside from any limitations imposed by security

considerations, can accomplish any processing on the client. In particular, a Java applet

can implement any style of user interface, providing appropriate tools for the direct-

manipulation interfaces required by SciVis applications. Therefore, with Java applets, the

user environment for Web-based SciVis can be implemented as a VUI (see section 4.5.2),

providing natural, easy-to-use tools throughout the whole visualization process.

68

68

5.4 The Advantages and Disadvantages of the Re-engineering Approach

In our re-engineering approach, a modified three-tier client/server architecture is

developed with the Web as a low cost medium to deploy this architecture. With this Web

solution, we can effectively re-engineer a legacy non-distributed SciVis application into a

public service and satisfy all re-engineering criteria from the end user and the VSP,

enunciated in section 5.2.

The advantages of this solution are as follows.

• Inexpensive to Deploy: The Web browser software required to supply the interface and

run applets is either inexpensive or free and is expected to become part of standard

desktop operating systems in the future. The Web medium itself provides a low-cost

and low-maintenance wide-area network (WAN) that can be used by any organization

or individual. The legacy system is retained privately by the VSP without any change.

• Inexpensive to Acquire: No extra software is required for the client since applets

 implementing domain-specific functions are downloaded from the server and can run

 on multiple platforms. Applets can provide end users easy and interactive tailored

 manipulation of SciVis.

• Easy to Maintain: The necessary Java applets are stored on a central server and

downloaded to the client. Therefore there is only one place to apply updates. This

makes application maintenance easier and cheaper.

• Extends Reach: The Web can be accessed by anyone at any time from anywhere there

is an Internet connection.

The disadvantages of this solution are as follows.

• Slow Response Times: The rapid growth of the Web and peaking of loads at various

times of the day means that response times may vary widely.

69

69

• Increased Complexity on the Server: The use of applets requires a Web server plus the

software that manages the communications among applets, Web server and

visualization engine. This adds more complexity to the system and requires additional

technical support.

5.5 Summary

In this chapter, we have presented an analysis of the re-engineering requirements

for creating a Web-based public service from legacy SciVis Software. This analysis has

led to two decisions related to the re-engineering. One is on choosing a compromise

scenario for dynamic visualization and another is on using the Web as the deployment

medium. These decisions have led us to suggest a modified three-tier client/server

configuration which is suited to both the needs of visualization and the partitioning of

functionality that is necessary for Web deployment. We have also proposed extension of

the visualization pipeline architecture to tailor it to this configuration.

In our general re-engineering approach, there are two important components in

addition to the existing in-house SciVis system. They are the Harness and the Back End

Manager. Harness is a Java applet transferred from the server to the client, taking a range

of responsibilities for an interactive and responsive visualization environment. The Back

End Manager provides an interface between the Harness and the existing SciVis

application.

70

70

Chapter 6 Implementation of Web-Based GSC(A) Display

6.1 Introduction of GSC(A) Display

The Geological Survey of Canada (Atlantic) (GSC(A)) is a division of the Federal

Government of Canada. It engages in mapping and research in the marine areas adjacent to

Atlantic and Arctic Canada in order to meet three primary objectives: (1) to determine the

overall geological framework of the continental margin; (2) to evaluate the region’s

hydrocarbon potential; and (3) to understand the processes that affect the nature and the

distribution of sediments on the sea floor. Since the 1960s, GSC(A) has been collecting

large amounts of geographic data. In the middle of the 1980s, GSC(A) started to study the

development and maintenance of computer procedures for the reduction, display,

manipulation and interpretation of these large geographic data sets. The result is its in-

house SciVis system called Geographically Oriented Display of Information on a Unix

platform for Visualization and Analysis (GSC(A) Display). The system has helped the

GSC(A) scientists to carry out various kinds of research, for example, into regional

topography and bathymetry for eastern Canada, the NW Atlantic and the Arctic. The

characteristics of this system are as follows.

Graphics Package Application

The GSC(A) Display software is a visualization application built with the aid of

graphics packages (see section 3.5). There are many modules dealing with different data

sets. The software runs on HP-UNIX and is written in FORTRAN using the Graphic

Kernel System (GKS) library. Because of the problems of FORTRAN compiler

compatibility, the FORTRAN-Graphics library binding, and the software organization

structure, moving the software to another platform is too difficult to be practical. For

example, at the beginning of this project, a GSC(A) software developer involved in the

original design and development attempted to move part of the software to a Sun Solaris

platform for the reengineering project, but failed after one month of effort.

71

71

Flat File Systems

The databases of the GSC(A) Display are flat files. By comparison with today’s

database technology, these file systems are relatively unsophisticated. Flat file systems

require low maintenance, except when they go wrong, which means a database

administrator is not required. However, the benefits of flat file databases do not outweigh

the drawbacks unless the database is very simple and small.

For application software to manage such files, it needs to be aware of all low level

details of the file structure such as what the type of a field is, where it begins in the file,

and how long it is. The positional structure means that there are two key problems with

flat file systems, namely, they are inflexible and difficult to access. They are inflexible

because adding new field types or changing the length of existing field types immediately

invalidates software used to manage, query, or report on data in the file. Flat file systems

are difficult to access because each file is essentially unique; there is no standard means

for accessing file data. In addition, flat file systems are expected to operate statically on a

host computer not dynamically across a network. This design means a simple information

request from a network workstation may require whole files to be transported from a

server to the client. This is an inefficient way to manage data in a network environment.

Hence, flat file databases do not support information drill-down over the Internet because

of long transfer times for big files. For these reasons, flat file databases are rarely used

these days. Instead relational databases are the most commonly used.

Nevertheless, GSC(A) is a legacy system, in which the visualization software is

hard-wired to flat files. Although at this moment, GSC(A) has no plans to change their

flat file databases into relational databases, in the future, these flat files could be changed

into a relational database for effectiveness and flexibility, with the necessary

corresponding modifications to the visualization software.

72

72

User Interface

During the development of GSA(A) Display, a “command line” user interface was

designed by GSC(A) research scientists and software developers. In this interface, the

user types inputs in response to prompts. Many inputs are required (Table 6.1), and if

some input is wrong, the program will irrecoverably freeze, requiring the user to start over

again. Although this user interface gives GSC(A) scientists many options, it is not user

friendly at all, and quite unsuitable for the average end user.

6.2 Features and Functions of Web-Based GSC(A) Display

Great care has been taken to make the system user friendly. The user controls the

visualization process via an interface supplied by the harness on which most options can

be selected by direct manipulation of images and meaningful controls. As an Internet GIS

service, this system has the following features:

• Simplicity: Without special installation, the users can run this system from a Web

browser. The complexity of the server is hidden from end users.

• Client server structure: The client provides direct manipulation tools for end users to

input parameter values and view the visualization results. The server processes

requests from the client.

• Platform independent: Users can access to this system on different platforms inside and

 outside GSC(A).

• Security: Users can view the visualization result, but cannot save it on the client disk

because of the security measures imposed by Java.

We now explain the features of the interface presented to the end user by the

Harness applet.

73

73

Input prompts Notes

Give name of input file: Ask for the dataset file name and its whole path
Select the type of plot output: X Window, postscript, etc.
Size: The size of Printer paper for the plot output
Give name of the output plot file: Ask for the output name and its whole path
Give plot-title (max 80 characters):
Give the reference latitude: Usually input default 0
Give area – lat – lat, lon – lon: Ask for the latitudes and longitudes to select area
Rotate? Portrait or landscape
Give Scale: 1. Scale with legend 2. larger plot
Give space between plot and frame: The default is 0.0 cm
Select frame: Ask for the type of the frame
Give color for frame:
Plot legend? The default is “yes”
Give the saturation: Inactive for RGB color scheme
Give angle of sun: The sun angle affects the relief shadow
Give line width factor and
resolution:

Usually use the default (2.0, 0.054)

Specify the type of color bar: Ask for the legend color bar type
Give name of color bar: Ask for the color bar file name and its whole path
Give minimum and maximum
shadow gradient:

The default is (-12, 12)

Give gradient interval: The default is “4”
Give percent white contrast 0 to
100:

The default is “50”

Give percent black contrast 0 to
100:

The default is “50”

Plot land file? The default is “yes”
Give color for the coast-line: There are 14 colors for selection.
Give width for coast-line: The default is 1.0 mm
Give option for coast line area and
resolution:

Usually use the default settings, i.e. the default
area is the whole world and the default resolution
is medium

Table 6.1 Typical GSC(A) Display User Inputs for a Relief Map

74

74

6.2.1 The Initial Viewer Window

When the end user starts Web-based GSC(A) Display, a dialog box appears,

prompting for the user name and password. Once these entries are validated, the initial

viewer window (Figure 6.1) is presented.

Near the top of the window is a drop down list labeled DataType, which

identifies the current data set and allows the user to choose another data set. A button

panel is located below the drop down list, which provides an InputManager button to

invoke input windows, a Stop button available once a visualization request has been

dispatched to the server, and Zooming buttons available once the image arrives from the

server.

The large viewing pane with two rulers is used to display the images from the

server. Quick Tips and Legend, located on the right, will be discussed later.

6.2.2 Selecting a Data Set and Invoking an Appropriate Input Manager

In the viewer window (Figure 6.1), the user selects the data set for which a

visualization is required, using the drop down list labeled DataType, then clicks the

InputManager button to pop up a new input window appropriate to the chosen data

set.

6.2.3 The Input Windows

The relief map input window is shown in Figure 6.2. This window consists of

three main components, other than Quick Tips. These are an index panel, a sun angle

panel and a button panel.

75

75

Figure 6.1 The initial viewer window.

76

76

Figure 6.2 The input window for relief map.

The index panel is used for selecting the region for which a visualization (a relief map in

this case) is required. The index map is located in the top of this panel. As the cursor

moves over the index map, its position in latitude and longitude is displayed next to it

(Figure 6.2). The user can select an area for viewing by holding the mouse button down

and dragging a rectangular marquee on the index map. When the mouse button is released a

selection is created, indicated by a rectangle as shown in Figure 6.3. If desired, the user

can resize the selection by dragging its edges or corners. The dimmed regions on the index

map indicate areas that are not available for visualization. The four spinner controls

labeled Lower LAT, Upper LAT, Left LON, and Right LON below the index map

77

77

display the coordinates of the corners of the selected area rectangle. The user can edit

these coordinates by incrementing or decrementing them using the scroll arrows. The

increment/decrement step is determined by the setting of the radio buttons labeled

Increment/decrement. As the values in the spinners are edited, the selection rectangle in

the index map changes accordingly.

In the sun angle panel, the user can specify the Sun Angle for visualization of the

relief by dragging the handle of the circular slider or by adjusting the spinner next to it.

In the button panel, the Cancel button is used to close the current input window.

Clicking the Reset button resets all parameters to their defaults, and clicking the OK

button requests the server to generate the required visualization.

Figure 6.4 shows the ship tracks input window, which differs from the relief map

input window only in that the sun angle panel is replaced by a color selector panel, in

which the user can specify track line color by clicking on the appropriate color button in

the palette. The chosen color appears above the palette.

78

78

Figure 6.3 Rectangular selection on the index map.

79

79

Figure 6.4 The input window for the NW Atlantic ship tracks with a rectangular selection

on the index map and red selected as ship track line color.

6.2.4 Requesting the visualization

When the OK button in an input window is pressed, the window disappears and

a request to the server is made for generating the required image.

Creating the image and transferring it to the client is time-consuming, so a waiting

message box is popped up (Figure 6.5). At this time, the InputManager button in the

80

80

viewer window is not available, but the Stop button is available and can be pressed to

cancel the request.

 6.2.5 Viewing

When the required image is generated and transferred to the client, it is displayed

in the viewing pane (Figure 6.6), the Stop button is disabled, and the InputManager and

Zooming buttons are enabled. The image can be traversed by clicking the zooming

buttons and scrolling. The rulers for latitude (nonlinear, Mercator Projection) and

longitude (linear) change their values correspondingly. If the mouse button is held down

while the cursor is in the image, information related to the corresponding map coordinates

will appear if available, providing a simple form of information drill-down. For example,

in Figure 6.7, the height or depth is shown on a relief map. This information will

disappear when the mouse button is released.

6.2.6 Legend

On the bottom right of the viewer window is a legend panel, which gives

information related to the displayed image. For example, when we view relief maps, the

legend displays the depths or heights indicated by the various colors. When we view ship

tracks, the legend explains the meanings of the different colored lines.

81

81

Figure 6.5 Waiting during a request to the server.

82

82

Figure 6.6 Viewing a NW Atlantic relief map.

83

83

Figure 6.7 Depth is displayed by pressing and holding the mouse button at location of

interest.

84

84

6.2.7 Quick Tips

On the right side of the viewer window and each input window is a scroll pane

labeled Quick Tips, which provides help information appropriate to the context.

6.3 Web-Based GSC(A) Display Software

We first describe the architecture of the software, then discuss some important

details.

6.3.1 Architecture

Our aim was to use the general re-engineering approach described in the chapter 5

to develop an architecture for Web-based GSC(A) Display without changing the existing

non-distributed GSC(A) Display system. The architecture of the system, shown in

Figure 6.8, is an expansion of the generic client server architecture in Figure 5.4.

The Harness is a Java applet, which includes a mechanism to communicate with

the web server and provides the visualization environment for the end user. It was

designed using object-oriented principles, and is explained in Appendix A.

The Back End Manager consists of an HTTP Web server which attends to the

client Harness connections, the CGI script to drive the controller, the controller which

starts the visualization engine using a shell script, and the PS2GIF converter to change the

image generated by the engine from Postscript to GIF format.

The visualization framework and processing reside with a high-end Hewlett-

Packard visualization server. The end user accesses the visualization facilities on the

85

85

visualization server, driving the visualization from a Web browser by using the Harness

Figure 6.8 The Architecture of Web-Based GSC(A) Display.

 Web Browser

 Harness (Java Applet)

 Web Server

CGI (Driver)

Controller

 Visualization Engine

PS2GIF

DB

Client

Server

Back End Manager

Socket ConnectionGIF

Shell Script
PostScript

86

86

downloaded to the browser on the fly. Visualization requests are delivered to the server

which generates a GIF image and returns it to the client.

In the following, we explain some details of the software in this architecture.

6.3.2 Connection from Client Harness to Server Host

The Harness applet is downloaded from the server host to the client as required. It

provides a visual user interface to the end user, collects user’s inputs, sends them back to

the server host for the visualization result, gets the GIF image from the server host and

supplies various tools to the end user for the display.

There are three options to make a communication connection from a Java applet

to the server host. The first is to make our own network connection from the Java applet

to the server host. This would be done by implementing a server program, which waits

for its client applets to contact it. To make the contact, this server program must

continually monitor an agreed-upon port, which is not used by any of the standard

services, such as email, HTTP and FTP services. The port is not a physical location, but

is instead a software abstraction to identify a unique service program in a machine (mainly

for bookkeeping purposes).

Although this seems like an elegant approach, it suffers from some problems,

including a rather subtle one as follows. Since such a server program would be running

constantly and spending most of its time waiting, it may affect CPU performance for

other programs [6]. The second problem concerns firewalls in the client’s organization. A

firewall is a system that controls communication between the organization network and

the Internet, monitoring all traffic to and from the Internet to ensure that communications

conform to some standards. A firewall requires that all traffic meets these standards, and

87

87

blocks any communication that does not. If a client is behind a firewall set by its own

organization and the client starts connecting to the Internet using a Web browser, the

firewall expects that all the client’s transactions will connect to the server host using the

standard HTTP port, which is 80. If the applet is trying to connect to a different port as

described above, which is outside the range of the "protected" ports 0 – 1024 for standard

services, the firewall does not allow the transaction to happen. As long as clients have

direct connections to the Internet (for example, using a typical Internet Service Provider)

without firewalls, there is no problem. But the VSP may have some important clients

dwelling behind firewalls, and they will not be able to use an applet provided by the VSP

to connect to its server host in this way. These situations are out of the VSP’s control.

An alternative approach is to use HTTP and the CGI mechanism which provides

a standard for interfacing external applications with HTTP servers. Such interfaced

external applications are called CGI programs or CGI scripts, and can be invoked by Web

users.

 With this approach, the applet can send a CGI request to the Web server which

would invoke a CGI script to process the request. This mechanism does not have the

monitoring overhead required by the first option. There is no problem with firewalls

either since all communications occur through an authorized port.

Obviously, there would be an advantage if there were a direct way for an applet to

use the CGI mechanism that is already present in the browser. Unfortunately, the

standard Java library does not provide such a communication path yet. We need to invoke

a CGI script in the same way that a Web browser would by programming a socket

connection through the HTTP port (port 80) of the server host and writing into the port a

code that the Web server can understand. The socket is the software abstraction used to

88

88

represent the "terminals" of a connection between two machines. For a given connection,

there is a socket on each machine.

There is a problem with this second approach if the CGI script is written in Java.

HTTP servers cannot start up a Java program because a compiled Java program

(bytecode) is not executable and a Java interpreter has to be invoked to run the bytecode.

The third approach depends on a planned but not yet completely implemented

technology known as servlet servers, which can automatically start up and run special

server-side Java programs (called servlets) written using the Java Servlet API. With this

technology, 100% pure server-side Java programs can be used to handle a client’s

connection and request. At present a low-cost servlet server is available from

java.sun.com. In addition, Sun is encouraging other manufacturers to add servlet

capabilities to their Web servers.

Because of the firewall issue and the lack of servlet servers on current Web

servers, we chose the second option (Web server and CGI mechanism) for the connection

from the Harness Java applet to the server host. A class called HarnessConnection was

developed for this purpose and its Application Programming Interface (API) is shown in

Appendix B. In addition, we wrote the CGI script in Java and overcame the problem that

Web servers cannot start up a Java program automatically, by adding a CGI script driver,

discussed in the next section.

6.3.3 CGI Script Driver

CGI scripts can be written in many languages that can read from standard input

and write to a standard output. CGI programs are typically written in either Perl or C,

89

89

and must handle everything from the client request. For consistency, we chose to use Java

instead of C or Perl to write our program called Controller, which will be discussed in the

next section.

Of course, we faced the problem described above, that a Web server cannot run a

Java program automatically. To solve this problem we used a CGI script driver, software

that performs an interfacing function between the Web server and our Java program by

invoking a Java interpreter to run the Java bytecode. The driver is written in Unix K shell

script, and can be started up automatically by the Web server through the CGI

mechanism. It in turn invokes the Java interpreter to run the Controller in Java bytecode.

The CGI script driver for world relief is shown in Appendix C.

6.3.4 Controller

The Controller receives inputs from the client, sets default values for parameters

which are hidden from the users but are required by the visualization engine (refer to

Table 6.1), and drives the visualization engine. The controller for world relief is shown in

Appendix D. After the visualization engine generates the Postscript image, the Controller

invokes the PS2GIF program to change the image format to GIF for Internet transport.

6.3.5 PS2GIF Converter

The GSC(A) Display visualization engines can generate only Postscript since the

original aim of the software was to produce printed maps. Postscript is in fact a complete

programming language and not a graphics-description format, so for graphics, Postscript

files tend to be large and therefore expensive to transmit over the Internet.

90

90

There are two criteria for deciding whether an image format is suitable to be

displayed by an applet over the Internet. One is whether the format is compact enough to

be sent in reasonable time, another is whether the format is supported directly by

browsers or by classes already available in the Java libraries. Postscript is excluded on

both counts, while the GIF format satisfies both criteria.

The Graphic Interchange Format (GIF) is a widespread graphic format with an 8-

bit (256 colors) color palette, and incorporates a compression scheme (Lempel Zev

Welch, or LZW) to keep files sizes at a minimum. LZW compression squeezes out

inefficiencies without causing any loss of information. GIF was introduced by the

Compuserve Information Service in the 1980s as an efficient means to transmit images

across data networks. In the early 1990s the designers of the Web adopted the GIF

format for its efficiency and widespread familiarity. There are now several slight variants

(such as “GIF87a” or “GIF89a”) of the basic GIF file format that add support for

transparent color, and support for the interlaced GIF graphics popularized by the

Netscape Navigator Web browser.

We chose the GIF format for transmitting our images for two additional reasons.

GSC(A) Display generates the map images with only a small number of colors. So the 8-

bit color palette (256 colors) is suitable for these kinds of images. Secondly, Ghostscript

(GS) available on most UNIX systems including the GSC(A) servers, is an interpreter for

the Postscript language providing several output devices. One of them, “gif8”, translates

GS bitmap output into Compuserve GIF format. This provides us with the Postscript to

GIF translations capability we need.

91

91

Appendix E provides details of the PS2GIF converter for world relief. The

program not only runs the GS interpreter but also sets many appropriate options in order

to correct results.

6.4 Summary

In this chapter we have presented a practical and concrete example of the general

reengineering approach described in the chapter 5. In this example, the existing non-

distributed GSC(A) Display was reengineered into the Web-based GSC(A) Display

system with many useful features and functions. Details of the system architecture and

implementation, as well as key software programs were discussed.

92

92

Chapter 7 Conclusions and Future Work

Over a period of forty years GSC(A) has collected large amounts of useful

geographic data and more recently has developed in-house display software (GSC(A)

Display) to generate color images of selected data sets for information visualization and

analysis. This application is non-distributed and can only be used internally by GSC(A)

staff. In order to make more widespread use of the data and visualization software,

GSC(A) were interested in somehow deploying it via the Web. Addressing this practical

problem provided the starting point for the research reported here. During the progress of

our software development effort, we found that most legacy SciVis software has

limitations similar to those of GSC(A) Display and could benefit from a similar re-

engineering. The issues involved led to the systematic study reported here.

The World Wide Web provides a new mechanism for publishing scientific

visualizations to a wide audience. Our work started with studying DiBiase’s scientific

visualization sequence which characterizes the evolution of the use of SciVis tools. This

resulted in an extension to DiBiase’s model. In this extended model, scientific

visualizations can be categorized into four types (“I See”, “They See”, “We See” and

“World Sees”) and can be used in three realms (private, public and global). Scientific

visualizations can be applied in the global realm to provide a public service: that is a

visualization service to be used by individuals with a technical or professional interest in

the data. An additional classification of visualization systems in a multidimensional space

with three variables (purpose/task, user, and HCI) was also presented.

The work then progressed to an investigation of the structure of current SciVis

software. SciVis software is implemented according to the visualization pipeline

architecture [11, 39] and can be classified as “commercial” or “in-house”. Commercial

93

93

SciVis software provides solutions for simple and general problems. In-house SciVis

software is built using graphics packages within scientific organizations and meets

specific needs in certain scientific fields. However, both commercial and in-house SciVis

software has generally been designed as non-distributed applications, not in the “World

Sees” category. It is expected that commercial SciVis software will be updated by its

manufacturers into collaborative or Web-based versions. The remaining problem is how to

re-engineer in-house visualization applications cost-effectively as multiple-user

applications for public service.

The rest of our work dealt with this problem. A client/server architecture is used

in the re-engineering with the Web providing the deployment medium. Taking this

approach, we examined several possible scenarios for SciVis to be made available on the

Web. These scenarios are:

• Provider creates the image visualization (static)

• Provider creates the 3D visualization (static)

• User creates the visualization (dynamic)

• Provider creates visualization framework and user chooses the options (dynamic)

Through the analysis of the re-engineering requirements, we made two important

decisions, one of which was to choose a compromise scenario for dynamic visualization

and the other was to use the Web as the deployment medium. A modified three-tier

client/server configuration was proposed according to these two decisions. This

configuration uses a thicker client providing some application services, and can satisfy

both the needs of visualization and the partitioning of functionality that is necessary for

Web deployment. An extension to the visualization pipeline architecture was also

proposed to tailor the pipeline to this client/server configuration. The central parts of the

94

94

re-engineering are the development of a Back End Manager on the server and a Harness

on the client requiring minimal modification to the existing software.

Finally, an example of this re-engineering approach is provided, consisting of the

implementation of a Web-based geographic information visualization service based on the

legacy SciVis software developed by GSC(A).

7.1 Future Work

In the Harness class diagram (Appendix A), some useful tools for scientific

visualization have been identified. It would be worthwhile to continue to identify more

such general tools in order to develop a framework for building Web-deployed scientific

visualization systems. Currently, one of the most promising technologies for

implementing such a framework is Java Beans, which provide components rather than

classes, and are therefore ideal for implementing more complex tools. Furthermore, there

are many integrated development environments that support Beans.

Once a visualization has been requested, the user of Web-based GSC(A) Display

must wait for a considerable time for the image to be generated and transmitted. There are

two bottlenecks, which might be removed in the future. One is the visualization engine,

which needs approximately one minute to generate the large Postscript file that results

from a typical request using the current GSC(A) data sets. Approximately one more

minute is required to convert this Postscript file to a GIF file. Although our focus so far

has been on providing a service without changing the legacy software, such changes will

clearly be necessary to improve performance. In the future, therefore, the visualization

engine may be modified to generate the small GIF file directly. Another bottleneck is

simply the need to transmit large image files, GIF files in our case. To obtain a significant

95

95

improvement in cases where the data size is small and the corresponding image file is

large, the data could be transmitted to the client which would perform the data

manipulation and rendering. Under this policy, the whole or much of the visualization

pipeline must be moved from the server to the client and implemented in the form of a

Java applet or Plug-in. Note that in this case, we are abandoning the legacy system

altogether.

In any future framework for building Web-based SciVis systems, we should

provide a tool for integrating visualization on the server and visualization on the client.

This tool should have the capability to generate visualization programs for simple

visualization tasks on the client as well as the capability to allow these new programs to

cooperate with the legacy system.

96

96

References

[1] Alias|Wavefront (November 1998), Alias|Wavefront – Home,
http://www.aw.sgi.com/pages/home/index.html

[2] AVS Inc. (November 1998), Advanced Visual Systems, http://www.avs.com

[3] Booch, G. (1994), Object-Oriented Analysis and Design, Addison-Wesley, New
York.

[4] Buckingham Shum, S. (1996), The missing link: hypermedia usability research &
the Web, ACM SIGCHI Bulletin 28 (4): 68-75.

[5] DiBiase, D. (1990), Visualization in the earth sciences, Earth and Mineral
Sciences, Bulletin of the College of Earth and Mineral Sciences, PSU, 59(2):13-18.

[6] Eckel, B. (November 1998), Thinking in Java,
http://www.eckelobjects.com/javabook.html

[7] Edmonds, E.A., Murray, B.S., Ghazikhanian, J. and Heggie, S.P. (1992), The re-
use and integration of existing software: a central role for the intelligent user
interface, People and Computers VII, Proceedings of the HCI’92 Conference
(York, September 1992): 415-427.

[8] ESRI (November 1998), ArcView GIS,
http://www.esri.com/software/arcview/index.html

[9] Graphics, Visualization and Usability Center, Georgia Institute of Technology
(February 1998), Scientific visualization tutorial,
http://www.cc.gatech.edu/scivis/tutorial/tutorial.html

[10] Green, T.R.G. and Petre, M. (1996), Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework, Journal of Visual Language
and computing 7: 131-174.

[11] Haber, R.B. and McNabb, D.A. (1990), Visualization idioms: A Conceptual
model for scientific visualization systems, In: Visualization in Scientific
Computing, Shriver, B., Nielson G.M. and Rosenblum L.J. (ed.), IEEE Computer
Society Press, 74-93.

97

97

[12] Haber, R.B. and McNabb, D.A. (1990), Eliminating distance scientific computing:
an experiment in televisualization, The International Journal of Supercomputer
Applications, 4(4):71-89.

[13] Hearnshaw, H.M. and Unwin D.J. (1994), Visualization in Geographical
Information Systems, John Wiley & Sons, New York.

[14] Hornby, A. S. (ed.) (1985), Oxford Advanced Learner’s Dictionary of Current
English, Oxford University Press, Oxford.

[15] Horstmann C. S. and Cornell, G. (1997), Core Java, Sun Microsystem Press,
California.

[16] IBM (November 1998), IBM data visualization explorer (DX),
http://www.almaden.ibm.com/dx/DXHome.html

[17] Jern, M. (December 1997), Information drill-down using Web tools,
http://www.uniras.dk/info/seminars/Drilldown.htm

[18] Johnson, C. (February 1998), The impact of retrieval delays on the value of
distributed information, http://www.dcs.gla.ac.uk/~johnson/papers/value.html

[19] Landay, J. (August 1998), Model view controller,
http://bmrc.berkeley.edu/people/allanl/160/lectures/model-view-
controller/sld001.htm

[20] Lemay, L. (1995), Teach Yourself Web Publishing with HTML in a Week, Sams
Publishing, Indianpolis.

[21] Lynch, P. and Horton, S. (December 1997), Yale C/AIM Web style guide,
http://info.med.yale.edu/caim/manual/index.html

[22] MacEachren, A.M. and Kraak, M. (January, 1998), ICA commission on
visualization, http://www.geog.psu.edu/ica/ICAvis.html

[23] MacEachren, A.M., Bishop, I., Dykes, J., Dorling, D. and Gatrell, A. (1994),
Introduction to advances in visualizing spatial data, In: Visualization In
Geographical Information Systems, Hearnshaw, H.M. and Unwin D.J. (ed.), John
Wiley & Sons, New York, 51-59.

98

98

[24] MacEachren, A. M. and Ganter, J. H. (1990), A pattern identification approach to
cartographic visualization, Cartographica 27(2): 64-81.

[25] MacEachren, A. M. and Taylor, D.R.F. (1994), Visualization in Modern
Cartography, Elsevier Science, Oxford.

[26] Maui High Performance Computing Center (November 1998), Introduction to
Khoros visualization tools,
http://www.tnt.unihannover.de/soft/imgproc/khoros/khoros1/more-info.html

[27] McCormick, B.H. , DeFanti, M.D., Brown, M.D (eds). (1987), Visualization in
scientific computing, Special Issue ACM SIGGRAPH Computer Graphics 21(6).

[28] McKie, S. (1997), Client/Server Accounting, Reengineering Financial Systems,
John Wiley & Sons, Inc., New York.

[29] Miller, A.I. (1996), Insights of Genius: Imagery and creativity in science and art,
Springer-Verlag, New York.

[30] Putz, S. (1994), Interactive information services using world-wide web hypertext,
Computer networks and ISND System 27: 273-280.

[31] Rational Software Corporation (November 1998), Unified Modeling Language,
http://www.rational.com/uml/index.shtml

[32] Rhyne T. M. (1994), The Application Visualization System (AVS) as a tool for
visualizing geographic data sets, In: Visualization in modern cartography,
MacEachren A. M. and Taylor D. R. (ed.), Elsevier Science, Oxford, 106-112.

[33] Rhyne T. M. (1995), A WWW viewpoint on scientific visualization: an EPA case
study for technology transfer, Proceedings of 1996 IEEE Information
Visualization October 1995, Atlanta, Georgia: 112-114.

[34] Rhyne T. M. and Fowler T. (February 1998), Examining dynamically linked
geographic Visualization, http://www.epa.gov/vislab/svc/publications/awma-
gisvis.html

[35] Schmidt, V. (December 1997), Dynamic 2D information visualization,
http://www.avs.com/products/web/pres-2d

99

99

[36] Scientific Visualization Center, USA Department of Defense (December 1997),
What is Scientific Visualization? http://apollo.wes.army.mil/svc/scivis.html

[37] Synder, J.P. (1987), Map projections – a working manual, United States
Government Printing Office, Washington.

[38] The Numerical Algorithms Group, Inc. (November 1998), IRIS explorer
documentation, http://www.nag.co.uk/visual/IE/iecbb/DOC/Index.html

[39] Upson, C., Faulhaber, T., Kamis, D., Schleger, D., Laidlaw, D., Vroom, F.,
Gurwitz, R. and vainDam, A. (1989), The application visualization system: A
computational environment for scientific visualization, IEEE Computer Graphics
and Applications 9(4): 30-42.

[40] US Army Construction Engineering Research Laboratories (November 1998),
USACERL WWW HomePage, http://www.cecer.army.mil

[41] Visual Numeric Inc. (November 1998), PV-WAVE – Analysis, Mathematics,
Visualization, http://www.vni.com/products/wave

[42] Wessel, P. and Smith, W.H.F. (December 1997), Online map creation,
http://www.aquarius.geomar.de/omc/

[43] Wood, J. (1998), Collaborative visualization, PhD thesis, University of Leeds,
Leeds.

[44] Wood, J., Brodlie, K. and Wright, H. (1996), Visualization over the World Wide
Web and it’s application to environmental data, Proceedings of Visualization ’96
October 27 – November 1, 1996. San Francisco, CA: 81- 86.

100

100

 Appendices

Appendix A - Harness Class Diagram

The diagram of the major classes involved in the Harness is shown in Figure A.1,

expressed in Unified Modeling Language (UML), the standard notation for describing

object-oriented designs [3]. These classes might be considered in further research on the

development of scientific visualization framework. Before we discuss them, we will

briefly describe UML and the structure of class diagrams for the benefit of readers

unfamiliar with this notation. For a full description, see UML Summary [31].

UML is a highly visual language relying mainly on graphics and symbols, and to a

lesser extent on textual annotations. In objected-oriented analysis and design, the class

diagram is of primary importance. The two essential elements of a class diagram are

classes and the relationships between them. In the class diagram, a class is represented by

a rectangle containing the class name at the top, optionally followed by the names of

attributes and methods. Preceding the names of attributes and methods are symbols

representing visibility modifiers. For example, a lock symbol expresses the fact that an

attribute or method is ‘Private’. The connections between classes indicate inheritance,

aggregation or association relationships. Inheritance appears as a single line with an

arrowhead indicating the superclass. Aggregation (or composition) is denoted by a single

line with a diamond at the end denoting the aggregate or container. Association, a semantic

connection between two classes, appears as a simple line. The cardinality of each

relationship can also be shown in the diagram, but it is omitted in the Harness class

diagram for the clarity because most relationships in this class diagram are one-to-one.

The Harness class diagram (Figure A.1) supplied the expressive notation and

working heuristics needed for efficient development and maintenance of the visualization

101

101

Figure A.1 The Harness Class Diagram.

environment during the design and implementation of Web-Based GSC(A) Display. The

visualization environment supplies the visual user interface, which consists of concrete

102

102

objects corresponding to real-world entities, such as rulers, index maps, circular sliders,

and so forth.

In the class diagram, the visual user interface starts at the MyApplet object, which

invokes the ViewerFrame object when a user presses the access button. The

ViewerFrame object has an InputManager object, which can invoke WoldReliefInput

object, NWReliefInput object, or NWShipTrackInput object according to the selected

item in the data type Choice object.

There are several objects in the ViewerFrame object. The Choice, Button and

ScrollPane classes are all from the Java AWT package. VRuler class and HRuler class

are both inherited from Ruler class, which is abstract and contains several general

concrete methods for a ruler. The subclasses of the Ruler have to implement its abstract

method paint(). The VRuler is a linear scale ruler. The HRuler is a non-linear ruler the

scale of which is calculated according to the Mercator Projection [37]. They are

responsible for dynamically displaying latitude and longitude coordinates for the map area

shown in the scroll pane during scrolling or zooming. The PassWordDialog class controls

the login into the ViewerFrame and the rest of the program. The ViewerQuickTips

class provides on-line help for viewing while the LegendCanvas class dynamically

supplies the corresponding legends to different visualizations. The WaitingPopUp class

pops up a dialog frame to a while the user’s visualization request is being processed. The

ScrollPane class has a PictureCanvas class, which displays the visualization in the

ScrollPane.

The WorldReliefInput class, NWReliefInput class and NWShipTrackInput

class are all inherited from InputFrame class. These three subclasses aggregate

103

103

WorldIndexMap, NWIndexMap, CircularSlider, and/or ColorSelector classes. The

CircularSlider is in charge of the user input for the sun angle, and the ColorSelector is

used for choosing ship track line color. The WorldIndexMap and NWIndexMap classes

are both inherited from IndexMap class, which provides marquee selection and displays

latitude and longitude corresponding to mouse position.

The InputFrame class provides functionality inherited by its subclasses for

inputting, making requests to the server, and processing the visualization result from the

server. There are a few objects in this class. The Button and RadioButton are from Java

AWT package. The NumericalSpinner is used for display of the input parameter value

and fine adjustment of the input. The InputQuickTips supplies on-line help for

inputting. This class also uses the HarnessConnection to send a request to the server

and fetch the visualization result from the server, the PictureSizeFetcher to obtain the

image size for image processing, and the ImageProcessor to remove the blank space in

the original image.

104

104

Appendix B – Class HarnessConnection API

Class HarnessConnection
Description : The class connects to the server and fetches back the generated

GIF to the client.

public Harnessconnection()
description: the constructor.

public Image connectAndFetch()
description: connect client to server, send the data, invoke back end programs and
fetch the generated GIF file from server to client
You should call setHome(), setScript() and setSendingData() before using this
method.
return value: an image object containing the generated GIF image

public void setHome(String home)
description: set the server host name, e.g. "agc2.bio.ns.ca"
parameter home: server host name

public void setScript(String script)
description: set the cgi script name and its whole path, e.g. "/cgi-
bin/cgiwrap/gao/InfoReceiver.cgi"
parameter script: the cgi script name and its whole path

public void setSendingData(String sdata)
description: set the sending data, which will be delivered to server
parameter sdata: the sending data string (a datum per line)

105

105

Appendix C – Source code of CGI Script Driver for World Relief

The first line invokes the Unix K shell interpreter of the Unix operating system to

run the rest of this driver written in K shell script. The second and third lines set the

CLASSPATH required to run Java program, and the last line brings up the Java

interpreter to run Controller program, detailed in the following.

#!/usr/bin/ksh
CLASSPATH=/opt/java/lib/classes.zip/:/home/mrg/gao/public_html/cgi-bin/
export CLASSPATH
/opt/java/bin/java WorldReliefController

106

106

Appendix D – Source Code of the Controller for World Relief

Figure 6.12 Source code of the controller for world relief.

 (Contd)

import java.io.*;

/** WorldReliefController class
 * This is a short application program. It is invoked by
 * a cgi scrip 'WorldReliefDriver.cgi'. Then it receives
 * the parameter values from client end, links its database
 * and starts its visualization engine, and invokes PS2GIF
 * to convert postscript to gif after the visualization
 * engine generates the postscript image.
 * @version GSC(A) DISPLAY 1.0, 1998
 * @author Zhihong GAO
 * Copyright (C) 1998 GSC(A) & Daltech All right Reserved
 */

public class WorldReliefController {
 public static void main(String[] args) {
 System.out.println("Content-type: text/plain\n");
 try {
 BufferedReader stdin = new BufferedReader (
 new InputStreamReader(System.in));
 //{ receive the inputs from client side
 String latL = stdin.readLine(); String latU = stdin.readLine();
 String lonL = stdin.readLine(); String lonR = stdin.readLine();
 String sunAngle = stdin.readLine();
 stdin.close();
 //}
 // { set other parameter values required for visualization engine
 String shell = "#!/usr/bin/csh";
 String gksdir = "setenv gksdir /usr/grafpak/gks4101"; //gks = Graphical Kernel System
 String displayProg = "/home/mrg/gao/public_html/programs/”
 + “sunmer_gao_world << MMM";
 String dataset = "/home/mrg/gao/database/etopo.i2";
 int typeOfOutput = 3; int size = 1;
 String psFileName = "/home/mrg/gao/public_html/dynamic_bin/”
 + “World_relief.ps";
 String title = "WORLD RELIEF"; int refLat = 0;
 String rotate = "n"; String scale = "/";
 double space_plot_frame = 0; int typeOfFrame = 2;
 int frameColor = 1; String legend = "n" ;
 double saturation = .75; String factor_resolution = "/";
 int typeOfColorBar = 6;
 String nameOfColorBar = "/home/mrg/gao/ice.colors";
 String shadowGradient = "/"; String gradientInterval = "/";
 String whiteContrast = "/"; String blackContrast = "/";
 String plot_land_file = "n"; String end = "MMM";
 //}

107

107

 //{ The following is to create the shell script
 PrintWriter out = new PrintWriter((new
 FileWriter("/home/mrg/gao/public_html/dynamic_bin/” +
 “World_relief.txt")), true /*autoFlush*/);
 out.println(shell); out.println(gksdir); out.println(displayProg);
 out.println(dataset); out.println(typeOfOutput); out.println(size);
 out.println(psFileName); out.println(title); out.println(refLat);
 out.print(latL); out.print(" "); out.print(latU); out.print(" ");
 out.print(latL); out.print(" "); out.print(latU); out.print(" ");
 out.print(lonL); out.print(" "); out.println(lonR);
 out.println(rotate); out.println(scale);
 out.println(space_plot_frame); out.println(typeOfFrame);
 out.println(frameColor); out.println(legend);
 out.println(saturation); out.println(sunAngle);
 out.println(factor_resolution); out.println(typeOfColorBar);
 out.println(nameOfColorBar); out.println(shadowGradient);
 out.println(gradientInterval); out.println(whiteContrast);
 out.println(blackContrast); out.println(plot_land_file);
 out.println(end); out.close();
 // }
 // { To invoke Visualization engine through the shell script
 Runtime rt = Runtime.getRuntime();
 Process p = rt.exec("/home/mrg/gao/public_html/dynamic_bin/
 + “World_relief.txt");
 p.waitFor();
 // }
 // { To invoke a script ps2gif to change image format from PS to GIF
 Process pp = rt.exec("/home/mrg/gao/public_html/dynamic_bin/” +
 “ps2gif_WR/home/mrg/gao/public_html/dynamic_bin/World_relief.ps");
 pp.waitFor();
 // }
 } catch (Exception e) {System.out.println("Error " + e);}
 }
}

108

108

Appendix E - PS2GIF Converter for World Relief

#!/usr/bin/csh
#
Author: Zhihong GAO
Copyright (C) GSC(A) & Daltech 1998. All Rights Reserved.
#
“gs” run Ghostscript interpreter
"-q” to prevent gs from writing messages to OutputFile
"-dNOPAUSE" don't pause between pages
"-sDEVICE" switch the output device
"-sOutputFile" switch the output file
"--" when gs finishes executing the file, it exists back to the shell
#
set file = $argv[1]
/usr/contrib/bin/gs -q -dNOPAUSE -sDEVICE=gif8
-sOutputFile="/home/mrg/gao/public_html/Images/dynamic_image_WR.gif" $file --

