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Abstract

 

Until relatively recently computer programmers had to use machine-oriented pro-

gramming languages owing to the fact that memory and processing power were insuf-

ficient for both computation and complex human-computer interaction. Computers

today are equipped with larger memory capacity and offer much higher processing

power. Visual programming is one of the many research fields that has emerged and

become active as a result of this technological advancement. Recently, there has been

considerable interest in applying visual programming languages to robot control. In

this work, we will introduce the reader to our proposed visual language for program-

ming autonomous robots. In this system the physical characteristics of a specific robot

can be incorporated with the general syntax and semantics of the underlying control

architecture to provide both generality and domain specificity. This has been accom-

plished by dividing the programming system into two major modules; Hardware Def-

inition Module or HDM and Software Definition Module or SDM. This work

focuses on the second module SDM and describes in detail how a control program is

created by using the models previously generated in HDM. We also present a com-

plete and precise reformulation of the subsumption architecture for robot control on

which our system is based.
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Introduction

 

Until relatively recently Computer programmers had to use machine-oriented pro-

gramming languages owing to the fact that memory and processing power were insuf-

ficient for supporting both computation and complex human-computer interaction.

Programming in machine-oriented programming languages requires programmers to

highly abstract the original problem in textual machine code procedures. A program-

mer who maps the original problem into a machine-oriented language should not

only have a strong knowledge of the problem domain, but also a solid understanding

of the programming language in use.

Computers today are equipped with larger memory capacity and offer much higher

processing power. Visual programming is one of the many research fields in computer

science that has emerged and become active as a result of this technological advance-

ment. Visual Programming Languages (VPLs) enable programmers to directly repre-

sent the structure of algorithms and data. As a result, a programmer is able to build

programs that are more comprehensible, robust, and maintainable. While VPLs in

general are aimed at visually representing the structure of algorithms and data, they do
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not specifically benefit from the visual representation of physical entities in the problem

domain. Programming a robot using VPLs is a good example.

Recently, there has been considerable interest in applying VPLs to robot control. This interest

can be traced back to the work of Gindling 

 

et al.

 

 [11] that inspired Allen Ambler to propose a

competition in which visual languages were to be used to control a simple robot to achieve a

specific task. The competition was judged at the 1996 IEEE Symposium on Visual Languages

and was repeated the following year. Although research in applying visual languages to the

problem of robot control is a recent activity, many different models and approaches have been

employed for this purpose. Altaira [9] is a visual language that implements a rule-based model

for robot control. Cocoa [1] is another visual language that implements a rule-based model but

is not specifically designed for robot control; however, with minor changes it can effectively be

used for programming simple robots in a 2D environment. Such a modified version was sub-

mitted to the competition held at the 1997 Symposium on Visual Languages. VBBL [15] is a

message flow domain-specific visual language based on Brooks’ subsumption architecture [20]

designed as an extension to the application framework of Prograph CPX [17].

Robots physically exist and therefore have an obvious visual representation. In addition, the

common feature of robots when operating, is that they make physical changes in their sur-

rounding environment, including themselves, at least some of which are physically observable,

such as changes in position or colour. Existing VPLs are no more useful for programming

robots than they are for any other problem domain since they do not directly represent domain

entities or observable changes.

 

1.1 Hypothesis

 

Considering the increasing interest in applying VPLs to the problem of controlling robots and

the aim of VPLs to simplify programming tasks, it should be possible to design a domain-spe-

cific visual language for robot control that incorporates a good editor environment in which
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programming is performed by direct manipulation of programming constructs that reflect the

physical characteristics of the robot and its environment.

 

1.2 Research Objectives

 

The overall objective of this research is to investigate the feasibility of a domain-specific VPL

for programming robots. To this end we will:

• Provide a summary of the concepts of VPLs on which this research relies.

• Introduce robot control systems design in general and Brooks’ subsumption architecture

[20] in detail as a basis for our control system design.

• Give a precise reformulation of the subsumption architecture to provide a control system

on which to base our VPL.

• Design a robot programming system in which the physical characteristics of a specific

robot can be incorporated with the general syntax and semantics of the underlying control

architecture, thereby providing both generality and domain specificity.

• Evaluate the language and its tools and proposed environment.

This research does not address the applicability of VPLs to high level tasks such as planning

and problem solving which may arise during the process of programming a robot, although

such investigations would provide an interesting extension to our work.

 

1.3 Overview

 

The remaining chapters of this work provide the background, design and evaluation of a

visual programming environment for robot control. In Chapter 2 visual languages are dis-

cussed in general with an emphasis on those aspects of VPLs that seem to be most relevant to

our work. A well known set of criteria for VPL evaluation, the 

 

Cognitive Dimensions

 

 due to

Green and Petre [7] is also discussed in Chapter 2 and will be used in Chapter 6 for assessing
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our results. Since we have not implemented the proposed model, there can be no additional

practical assessment via experiment.

In Chapter 3 we provide a general introduction to robot control systems. A traditional control

system design for robot control is presented and its drawbacks discussed. We then present the

subsumption architecture due to Brooks [20] intended to address the shortcomings of the tra-

ditional approach, and explain the ways in which this model is inadequate as a basis for a VPL.

A new subsumption model is proposed, followed by an illustrated example.

In Chapter 4 we present the overall structure of our proposed system, and discuss the necessity

for dividing the robot programming process into two distinct consecuitive tasks, performed in

two seperate modules. In this chapter we will also explain the first of these, the Hardware Def-

inition Module (HDM), its design environment and the data structure used for defining robots

and objects. The Software Definition Module (SDM) is discussed in Chapter 5 illustrated by

an example. This chapter explains how the robot and objects previously defined in HDM are

used to build a simulated environment in which to program a robot by direct manipulation.

In Chapter 6 we apply Green and Petre’s cognitive dimensions to our work as a preliminary

assessmentt of our VPL for robot control.

Finally, in Chapter 7 , we summarize our results and suggest directions for further research.
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2

 

Visual Programming

 

Although the many definitions of the term “ visual programming” do not agree in detail, a

notion common to them all is that visual programming is “the use of meaningful graphical rep-

resentation in the process of programming” [22]. Visual programming has been an active

research area in recent years resulting in many visual programming languages (VPLs) and visu-

alization systems. Some of these visual languages are designed specifically to facilitate the pro-

cess of programming in a certain field, while others aim for a wider range of problem domains.

Regardless of the problem domain, the philosophy behind VPLs is that programs created with

images and graphics are easier to understand than those presented in text. There is empirical

evidence for and against the usability of visual languages in certain fields [18][23]. There are

many factors that should be considered when the usability of a visual language or a visualization

system is studied, such as the nature of the problem domain, the targeted user’s programming

skills and cognitive abilities, and the environment in which the languages are implemented.

Visual programming languages aim to directly represent the structure of algorithms and data,

thereby enhancing the programmer’s ability to build and comprehend programs. In traditional

textual languages the structure of algorithms and data is encoded in strings of text. Visual lan-

guages remove this layer of abstraction and allow programmers to directly manipulate the

structure of the program. This direct representation is cited by Green and Petre [7] as one of
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the most important factors in enhancing the programmer’s ability to build and understand the

structures of a program.

There are two distinct aspects to visual programming; visual programming environments and

visual programming languages.

 

2.1 Visual Programming Environments

 

Visual Programming Environments or VPEs, assist programmers to build, edit, debug and exe-

cute programs by incorporating appropriate graphical representations. A VPE consists of a set

of tools and a user interface for accessing them. A system is said to be a VPE when some of

these tools are graphical [13]. Programs written in VPEs are typically still created in a textual

programming language so that both the structure of the program and the relationships between

the programming constructs are defined in some textual format. Although VPEs for textual

programming languages are not VPLs [12], they can effectively improve the process of creating,

editing and debugging textual programming language programs. Java Workshop and

Microsoft Visual Basic are good examples of VPEs, providing graphical representation of inter-

face elements which can be arranged and manipulated directly.

Some visual programming implementations provide VPEs. For example, the Prograph CPX

[17] is a VPE which provides the VPL Prograph as the programming language.

 

2.2 Visual Programming Languages

 

In a VPL, the semantics of the language are defined by “meaningful graphical representations”

[22] intended to help programmers to more easily comprehend the structure of programs and

data. In a visual programming language the relationships between the programming con-

structs are represented visually, using devices such as lines, graphs and trees. These “meaning-

ful graphical representations” are intended to reduce the abstraction levels of the program’s
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parts, thereby enhancing the “directness” of the program. Directness of a program is a measure

of how concretely it displays code and data structure, a property also refered to by Green and

Petre as “closeness of mapping”. We will further discuss closeness of mapping in section 2.3. A

good example of directness is a rule-based visual language in which the rule set directly repre-

sents how the output of a process or action is implied by detecting a condition in the rule

domain, as in AgentSheets [2] or Cocoa [1]. Another good example of directness is the graph-

ical representation of class hierarchies in Prograph [17].

Classifying a language as visual or not is controversial. The phrase “meaningful graphical rep-

resentation” is an important factor in making this classification. In the literature a number of

definitions for a VPL can be found, for example:

“When at least some of the terminals of the language are graph-
ical, such as pictures or forms or animations, we say that the
language has a visual syntax........ We use the term visual pro-
gramming language (VPL) to mean a language with a visual
syntax.” [13]

and

“[A visual language is one in which] a pictorial, iconic or graph-
ical syntax (as apposed to a textual syntax) is used as the pri-
mary means of expressing the logic of the program being
written.” [21]

For example, Prograph is a VPL according to both definitions, while Visual C

 

++

 

 [14] is a VPL

according to the first definition but is not a VPL according to the second.

Visual programming languages may effectively employ text to enhance their directness. For

example, when a conditional branch in a flow of a program is desired, a simple textual “if”,

framed in a box, may express the concept of conditional branch more effectively than a not very

expressive icon. Text can also be used in tables and charts or even as comments. The fact is that

the evidence supporting the expressiveness of graphics does not disprove the benefits of text in

certain cases.
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2.2.1 Common Characteristics of VPLs

 

VPLs are usually integrated with visual environments. This suggests that a VPL is to be char-

acterized by attributes of both its syntax and environment [13]. Some of the common charac-

teristics of VPLs are [4]:

 

1.Simplicity

2.Concreteness

3.Explicit depiction of relationships

4.Immediate visual feedback

5.Closeness of mapping

 

VPLs aim to provide simplicity in the process of creating and editing programs by reducing the

number of concepts used to build a program. VPLs achieve this by removing many of the com-

plex and difficult abstractions that usually are used in textual programming languages. For

example, most VPLs relieve programmers from defining variables for the implicit dataflow in

textual languages.

Concreteness means “use of specific values, rather than a description of possible values” [13].

VPLs use explicit visualization for expressing the relationships between program elements. For

example, flowcharts in a VPL show the control flow of the program clearly, and data flow dia-

grams depict the data dependencies between operations.

Immediate visual feedback provides instant response to the changes made to a program. When-

ever a programmer makes a change, the system automatically updates any related display infor-

mation. For example, in spreadsheets changing a value immediately propagates changes to

dependent cells.

VPLs aim to improve the way in which programmers express data and algorithms in a program

and the way they edit and modify programs. VPLs help programmers to understand the logic

of their programs and algorithms by explicit depiction of program relationships. This is

achieved through the visual nature of the VPLs and “closeness of mapping” that allows the gap
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between the problem world and the programming world to be narrowed. This should be par-

ticularly applicable to and attainable in a concrete domain such as robot control. 

One of the primary goals of domain-specific VPLs is to enable experts and scientists to solve

complex problems in their domains of expertise through programming without necessarily

being expert programmers. In this case the programmer can concentrate on the solution to the

problem rather than fitting the solution to the language. According to Green and Petre “The

closer the programming world is to the problem world, the easier the problem-solving ought

to be” [7]. While some textual languages have effectively relieved programmers from fitting the

solutions into the machine-oriented procedures of code, they are a long way from mapping

between a problem world and a program world (at least insofar as the problem world can have

a graphical representation). Closeness of mapping between a problem domain and a program-

ming language and its environment, dictates how much mental effort a programmer must

expend to create, edit, debug, examine and maintain a program.

 

2.3 Evaluation Techniques for Visual Programming 
Languages 

 

Every programming system is composed of its notational structure and its support environ-

ment. Notations are those symbols that the user sees and manipulates, while the environment

provides the necessary techniques to manipulate those symbols. Evaluation of a programming

system must include both the notation and environment, because a user’s interaction with the

system relies on both.

The Cognitive Dimensions introduced by Green and Petre [7] provide a framework for a com-

prehensive assessment of a programming system. This framework is aimed at assessing a pro-

gramming system based on a number of cognitively important aspects of the system’s notation

and interaction style. Green and Petre list 13 cognitive dimensions of a system. Table 2-1 pro-

vides a brief definition of each.
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Dimension Informal Definition

 

Abstraction Gradient Availability and scope of abstraction mecha-

nism

Closeness of mapping Closeness of programming structures to

problem domain

Consistency Similar semantics are expressed in similar

syntactic forms, so that when some of the

language is learnt the rest can be inferred

Diffuseness Number of symbols required to express a

single concept

Error-proneness Possibility of making mistakes because of the

poor notational design of the language

Hard mental operations Thought processes required to formulate an

expression, made difficult by the notation

Hidden Dependencies Important relationships between entities are

not visible

Premature Commitment Making decisions before the needed infor-

mation is available

Progressive evaluation The ability to execute the program partially

before all of it is put together

Role-expressiveness The purpose and role of each component is

easily inferred

Secondary notation Extra information other than program syn-

tax that conveys extra meaning, above and

beyond the semantics of the language

Viscosity The effort needed to make a single change.

Visibility Ability to view parts of a program simulta-

neously and easily

 

Table 2-1. 

 

Green and Petre’s Cognitive Dimensions.
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There are important trade-offs between different dimensions for a programming system.

Improving the system in one dimension is likely to affect other dimensions as well. For exam-

ple, adding abstractions tends to impose hidden dependencies. Increasing the level of abstrac-

tion can reduce both visibility and viscosity. Programmers have to guess ahead and commit

prematurely when abstractions are added to a system owing to the fact that they have to define

the abstractions before anything else is done. In general it is important to note that changing

a system in order to alter its rating along one of these cognitive dimensions can not be done

arbitrarily, since many of these dimensions are coupled and changes in one will impose changes

on the others. 

 

2.4 Summary

 

Visual programming languages and visual environments are aimed at facilitating the process

of programming by incorporating images and meaningful graphical representations of data,

algorithms and tools. VPLs use graphics as part of their notations and to express relationships

between programming constructs, while VPEs use graphical tools to manipulate the symbols

and notations of a language.

Closeness of mapping between problem domain and program structure, regardless of being

textual or visual, is an important factor in usability of a language in a specific field. However,

for problem domains with concrete visual representations visual languages seem to have obvi-

ous advantages over textual ones.
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3

 

Robot Control

 

3.1 Introduction

 

A robot, in most people’s understanding, may be a programmable mobile machine or simply

an articulated arm that can move objects in its reachable space. For the purpose of this work a

 

robot

 

 is a programmable machine equipped with at least one 

 

actuator

 

. An actuator is a device

that can release non-mechanical energy in its surrounding environment, such as light or other

electromagnetic waves, or can mechanically change the geometry of the objects in its environ-

ment, including itself, in a controlled fashion.

A robot can also be equipped with 

 

sensors.

 

 A sensor is a device that can sense the existence of

or measure a specific kind of energy in its operating domain, such as an infrared sensor mea-

suring infrared light or a touch sensor sensing mechanical energy. The sensors and actuators of

a robot are connected by some structural parts collectively called the 

 

body

 

. The body of a robot

simply provides connecting structure and has no significance for programming purposes

except for the geometric relationships it imposes on sensors and actuators.

Robots are divided into two major categories. The first consists of robots with actuators and

no sensors, such as those used in assembling products. “Such robots perform repetitive and
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possibly quite complex sequences of actions and operate in a fully defined environment”[16].

Robots in this category do not require problem-solving capabilities and fail to adapt to a new

environment unless reprogrammed. Programs controlling these robots essentially define a

sequence of actions with no feedback processing.

Robots in the second category are equipped with sensors as well as actuators and are designed

to operate in an environment which is dynamic in some respects. Programs controlling these

robots contain feedback processing which computes values for the actuators based on the sen-

sors’ measured values. Autonomous robots, a subcategory of robots with both sensors and

actuators, can perform certain assigned tasks without the supervision of an operator. The level

of autonomy is the degree to which a robot can respond to environmental changes in a logical

fashion as it was being controlled by an operator. Mobile autonomous robots such as the Mars

Rover [8] and Autonomous Underwater Vehicles [24] are two examples of robots in this sub-

category.

There are two major distinct methodologies for controlling a practical autonomous robot:

highly structured hierarchical [3] control systems and distributed layered control systems

based on the concept of subsumption [20]. In a layered system, the control system is con-

structed from a set of layers, each of which implements a class of the robot’s behaviours, with

the most basic behaviours at the bottom encompassed by layers of increasingly sophisticated

behaviours. Subsumption means that behaviours on one layer can substitute for behaviours on

another layer.

 

3.2 Hierarchical Structure

 

In the NASA Standard REference Model for telerobots (NASREM) [3] architecture, a com-

plex control system is partitioned into several functional levels. Each level is divided horizon-

tally into sensory processing, world modeling and task decomposition modules. Figure 3-1

illustrates the NASREM’s control systems block diagram. Each level receives commands from
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the level above and sensory information from the level below. In NASREM the layers from

top to bottom are defined by the time frame in which they perform their tasks. The architec-

ture is a hierarchy of control loops with response time constraints becoming increasingly tight

as one progresses down the hierarchy. Higher levels in the hierarchy require slower update fre-

quency and provide increased problem-solving capability.

Levels in NASREM represent levels of autonomy. For example, lower levels are concerned with

robot geometry and dynamics, medium levels are concerned with the geometry of the world,

and higher levels are concerned with the function and coordination of objects in the world,

including the robot itself.

 

Figure 3-1. 

 

NASREM Control Systems Block Diagram

 

3.3 Subsumption

 

The traditional method for designing a control system for a robot is to decompose the problem

into a series of subproblems. Each subproblem in this method is a functional unit as illustrated

in Figure 3-2. In this traditional method the sequence of all functional units composes the over-

Task
Decomposition

World
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Sensory
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Sense Action
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all control system. Input signals are received by the robot’s sensors, and processed by a percep-

tion module which passes the results to the next functional unit of the control system

 

Figure 3-2. 

 

Traditional decomposition of a mobile robot control system into functional units (Brooks 1986)

 

Hence each slice of the control system in Figure 3-2 receives its inputs from the previous slice,

processes the data and passes the results to the next functional unit (next slice). In general, the

robot receives input signals through its various sensors, and processes them to obtain com-

mands which are applied to the actuators to achieve the required response.

Brooks [20] mentions many drawbacks to this system. For example, the robot cannot effec-

tively be tested unless all pieces in the control system are already built. This is because informa-

tion from the sensors is transformed as data passes through the stages of the control model.

Information received from sensors’ output is meaningful only for the first stage of the model

and meaningless for the rest. Either changes to a particular piece must be done in a way that

avoids changes to the interfaces to adjacent pieces, or the effects of a change must be propagated

to the adjacent pieces, changing their interfaces and functionality.

Another problem with the traditional control system is the time required for a signal to go

through all the stages from the sensors to actuators. A problem may arise when changes in the

robot’s environment occur more quickly than the robot can process them.

Based on these difficulties, Brooks introduced a new control system model in which, instead of

decomposing the problem into subproblems based on “internal working”, the decomposition

Sensors Perception Modeling Planning Motor
Control

Actuators   Task
Execution
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is based on “task achieving behaviours”. Figure 3-3 illustrates this horizontal control layer struc-

ture.

 

Figure 3-3. 

 

Decomposition of a mobile robot control system based on task achieving behaviours (Brooks 1986)

 

Behaviours illustrated in Figure 3-3 ideally can run in parallel. Each layer of behaviour can

receive the sensors’ outputs, process them and send the commands to the connected actuators.

Unfortunately, this can lead to another problem. Behaviours running in parallel may battle

each other for control of the robot. For example consider a mobile robot with two simple

behaviours: the first behaviour causes the robot to transit to point A, while the other behaviour

makes the robot avoid obstacles it approaches. If both behaviours have equal priority to control

the robot and there is an obstacle on the way to point A, then two contradictory behaviours

will battle each other to control the robot.

Brooks introduced a solution to this problem in the form of 

 

subsumption

 

 [20]. In general, sub-

sumption is a way to resolve such conflicts between different behaviours. The key idea in sub-

sumption is to prioritize those behaviours which have access to the same actuator or set of

actuators. Behaviours with higher priority can overrule the behaviours with lower priority by

subsuming or inhibiting them (explained shortly). In the subsumption architecture all behav-

iours run in parallel. Those behaviours that have actuators in common have to be ranked. In

general each behaviour is not aware of the existence of the other behaviours and generates its

outputs anyway, but at the end only the behaviour with the highest priority takes the respon-

sibility for controlling the common actuator by overriding the outputs of other behaviours. In

Wander

Avoid Objects

Seek light

Roll Over

Play dead

Sensors Actuators
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our previous example, to resolve the conflict, obstacle avoidance behaviour will subsume the

other behaviour when an obstacle is detected to make sure that the robot does not hit any

object on its way to point A.

One of the advantages of this subsumption architecture is that unlike the traditional control

system, each layer of behaviours can be connected to sensors, actuators and any other behaviour

layer. Since the layers of behaviours are not strongly tied to each other, new behaviours can be

added to the previous ones to create a higher level of autonomy. 

3.3.1 Levels of Competence
In the subsumption architecture a number of levels of competence for an autonomous robot are

defined. A level of competence consists of a desired set of behaviours for a robot [6]. All lower

levels of competence are subsets of a higher one and a higher level of competence implies a

higher degree of autonomy.

As an example, four levels of competence can be defined for a mobile robot as introduced by

Brooks[20]:

1. Avoid contact with stationary and moving objects.

2. Wander aimlessly around without hitting things.

3. “Explore” the world by seeing places in the distance that look reachable and heading

for them.

4. Build a map of the environment and plan routes from one place to another.

3.3.2 Layers of Control
Each level of competence is made up of a series of control layers. A new layer can simply be

added to the existing level to obtain the next higher level of overall competence [24].

The first step is to build a complete robot control system that achieves level-0 competence. This

system will never be altered. Next, another control layer is added to the level-0 control system
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to obtain level-1. The new layer can examine the outputs from the level-0 control system and

is also permitted to inhibit or suppress the normal flow of inputs and outputs of the lower level.

This new layer, combined with level-0, achieves level-1 competence. To achieve higher levels

of competence the same process can be repeated. Figure 3-4 illustrates this architecture.

Figure 3-4. “Control is layered with higher level layers subsuming the roles of lower layers when they wish to 

take control. The system can be partitioned at any level, and the layers below form a complete operational 

control system.” (Brooks 1986)

Figure 3-4 is taken directly from [20], however, we feel that boxes in this figure should be

labeled with the name of layers rather than levels to follow the terminology. Then a collection

of layers from bottom up represents a level.

3.3.3 Structure of Layers
In Brooks’ subsumption architecture, layers are built from a set of small processors that send

messages to each other [20]. Brooks defines each processor as a Finite State Machine (FSM),

augmented with some variables, which can hold simple or structured data. Brooks’ FSMs can

hold some data, and send and receive messages over the connecting wires. They require no

handshaking or acknowledgment of messages. Brooks defines each FSM as a module which has

a number of input lines and a number of output lines. Input lines are buffered and the most

recently arrived message on a line is always available for inspection [20]. Each state is named,

and when the system first starts up each module starts in its distinguished state NIL. Each

Level 3

Level 2

Level 1

Level 0Sensors Actuators
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module has a distinguished input called Reset. When a message is received on the reset input,

the module switches to state NIL. . A state in Brooks’ FSMs can be specified as one of four

types. Output, Side Effect, Conditional Dispatch, and Event Dispatch. When the FSM is in an

Output state, a message is sent to an output line and a new state is entered. The output message

is a function of the module’s input buffers and instance variables. In a Side Effect state, one of

the module’s instance variables is set to a new value and a new state is entered. The new value

of the instance variable is a function of the module’s input buffers and variables. In a Condi-

tional Dispatch state, one of two subsequent states is entered determined by a predicate on the

module’s instance variables and input buffers. In an Event Dispatch state, a sequence of pairs

of conditions and states to branch to are monitored, and when condition found to be true, the

corresponding state is entered.

In Brooks’ subsumption architecture, a layer is a set of behaviours implemented as FSMs. An

input line of a module is connected to an output line of another module from the same layer

or a lower layer, or is directly connected to a sensor. An output line from one module is con-

nected to input lines of one or more other modules or is directly connected to an actuator. Out-

puts may be inhibited, and inputs may be suppressed by output lines of other modules from

higher layers. An inhibitor signal inhibits any output message from a module’s output line for

a predetermined time. Any message sent out that particular output line during that period is

lost. A suppressor is very similar to an inhibitor. A suppressor signal replaces the input line sig-

nal.Figure 3-5 illustrates a module, suppression, and inhibition. For both suppression and inhi-

bition, the time constants are written inside the suppression and inhibition circles.
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Figure 3-5. “A module has input and output lines. Input signals can be suppressed and replaced with the 

suppressing signal. Output signals can be inhibited. A module can also be reset to state NIL.” (Brooks 1986)

3.3.4 Notes on Brooks’ Subsumption Architecture
One of the major motivations behind subsumption architecture is to build control systems

which are made up of independent layers that can run in parallel. Each layer can be consid-

ered as a transduction from sensors’ input values to actuators’ output values. Brooks mentions

that in the subsumption architecture each higher layer can monitor the data from lower levels

and suppress or inhibit the normal internal data flow of lower levels if required. This means

that although the lower levels are unaware of the existence of the higher layers and can control

the robot independently with some degree of autonomy, the higher layers are not independent

of lower levels unless their inputs are limited to sensor values. In the subsumption architec-

ture, whether or not a higher layer is independent of lower levels depends on whether it

requires data from the internal data flow of lower levels. The form of data monitoring, sup-

pression and inhibition in Brooks’ subsumption architecture prevents us from looking at each

layer of behaviours as a black box. This means that although the degree of autonomy of the

control system increases with the addition of higher layers, the overall control system must

still be viewed as a distributed system made up of many small processing modules. The final

block diagram of a control system constructed according to Brooks’ architecture must include

s
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the internal connections between layers, where one layer monitors or interferes with the inter-

nal data flow of data in another. Consequently, such a diagram cannot have the neatly layered

structure suggested in figure 3-4. This in turn can impede the understanding of the control

system by other designers, complicating the process of editing and maintaining such systems. 

Another consequence of the internal connections between layers is that sometimes the design-

ers of control systems must make premature commitments owing to the fact that they have to

include unused output lines for some of the modules in their design that might be used by

higher layers in future. The example presented in [20] provides a good illustrtation of such pre-

mature commitments.

Another characteristic of Brooks’ subsumption architecture is that suppressions and inhibitions

are limited to inputs and outputs, respectively. Considering that the output of each module is

connected to the input of another module, except if directly communicating with the hard-

ware, the inhibiting of an output is equivalent to inhibiting of the input of the succeeding mod-

ule. The same argument holds true for suppression. This means that, practically, inhibition and

suppression can affect both input and output of a module, although in cases that there are both

suppressor and inhibitor signals on one single line from an output to an input, the order of

them is significant.

In Brooks’ architecture, although the overall control system is decomposed based on the desired

behaviours of the robot, one might argue, quite justifiably, that each layer must still be decom-

posed in the traditional manner as illustrated in figure 3-2 and must therefore be completed

before the expanded control system can be used.

In view of these observations and as a basis for a direct-manipulation visual programming sys-

tem, we now propose a simpler, more streamlined subsumption model which is functionally

equivalent to Brooks’ architecture. In this model, each layer consists of a single FSM which is

likely to be more complex than those that comprise the modules in Brooks’ model. Layers can

not monitor or interfere with the internal data flow of other layers since there is only one FSM
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at each layer, however a higher layer can accept the output of a lower layer as an input in order

to monitor the functionality of the lower layer. A layer is also permitted to inhibit or suppress

the inputs and the outputs of the layers below it. The succeeding sections explain this new view

of subsumption architecture in more detail. Since FSMs are central to our discussion, we will

now define them briefly but precisely. For a thorough presentation, the reader should consult

one of the many books on automata and languages such as [10] from which our explanation is

taken.

3.3.5 Finite State Machines
A Finite State Machine (FSM) is a simple, abstract computational device with a single input.

A FSM consists of a finite set of internal configurations or states and a set of transitions

between states. In Deterministic FSMs (DFSMs), for each input symbol there is exactly one

transition out of each state. Each FSM has an initial state and some final or accepting states. A

FSM processes a string of input symbols by consuming them in sequence, and making corre-

sponding transitions between states. The machine accepts a string if this processing leaves the

machine in a final state.

Definition: A Deterministic Finite State Machine is a 5-tuple where

 is a finite set of states

 is a finite input alphabet

 in is the initial state

 is the set of final states and

 is a function from  to  called the transition function.

A FSM is illustrated by a directed graph called a state diagram. The vertices of the graph corre-

spond to the states and each arc labelled with an input symbol corresponds to a transition from

one state to another. To be more precise: an arc from  to  labelled a indicates that

Q Σ δ q0 F, , , ,( )

Q

Σ

q0 Q

F Q⊆

δ Q Σ× Q

q1 q2
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. In a DFSM’s state diagram there are exactly n transition arcs out of each state

where n is the number of the elements in the input alphabet. Figure 3-6 illustrates a state dia-

gram for a DFSM that accepts any string over the alphabet  ending either in ab or ba.

The input alphabet is , the initial state, indicated by the arrow, is , and

 is the set of final states each represented by two concentric circles.

Figure 3-6. A sample State Diagram for a DFSM.

The FSMs that implement a robot’s behaviours must produce outputs for actuators. DFSMs

do not produce outputs; they just accept or reject a string of symbols. However there are two

types of DFSM that generate outputs from a second alphabet. In Moore machines output is

associated with the states and in Mealy machines output is associated with the transitions from

one state to another. It can be proved that the two machine types produce the same input-

output mappings.
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Definition: A Moore machine is a six-tuple  where , , , and  are as

in the DFSM. is a finite output alphabet and is a function from  to  called the output

function.  is the output associated with state .

The output of a Moore machine corresponding to the input string , is

 where  is the sequence of states such that

 for .

A layer implementing a robot behaviour must process values from several different input lines

rather than just one, so in order to use Moore machines to implement behaviours, we must

combine several input alphabets into one. Similarly, we must define an output alphabet which

can split into several alphabets corresponding to the outputs of the behaviour. Consequently,

to realise a behaviour with n inputs from alphabets , we can define a Moore

machine with input alphabet . Note that from the machine’s point of

view, elements of  are indivisible symbols. Similarly, If the layer has several outputs, the

output alphabet of the machine will be the Cartesian product of output alphabets of the behav-

iour.

The state diagrams for Moore machines are similar to those of the DFSMs. The only difference

is that in state diagrams representing Moore machines, each state is associated with a unique

output. The name of the state is written in the upper half of the circle representing the state,

and the output is written in the lower half.

A robot behaviour must respond to the changes in the environment by reading sensor values.

Sometimes, the responses to the environmental changes must be a function of different sensor

values. For example, when an autonomous mobile vehicle detects a pedestrian on the road the

pressure applied to the brake pedal must be a function of speed. Each state of a Moore machine

realising a robot behaviour must be able to generate different outputs according to the values

of inputs that caused the transition to that state. We define Extended Moore machines to add

this capability.

Q Σ ∆ δ λ q0, , , , ,( ) Q Σ δ q0

∆ λ Q ∆

λ q( ) q

a1a2…an n 0≥,

λ q0( )λ q1( )…λ qn( ) q0 q1 … qn, , ,

δ qi 1– ai,( ) qi= 1 i n≤ ≤

A1 A2 … An, , ,

Σ A1= A2× … An××
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Definition: An Extended Moore machine is a six-tuple  where

, , , , and  are as in the Moore machine and is a function from  to , where 

is the set of all functions from  to  and  is a constant function.

We can show that each Extended Moore machine is equivalent to a Moore machine. Two

machines are equivalent iff for every input string they generate exactly the same output string.

Let  be an Extended Moore machine, then we define a Moore machine

 as follows:

We leave it to the reader to show that M and  are equivalent. Since each Extended Moore

machine (EMM) has an equivalent Moore machine, here on we use the term EMM to indicate

both.

3.3.6 Conventions
In order to simplify the examples we present in the remainder of this chapter, we introduce

some notational conventions

• In a robot control system, an input or output line may or may not carry a signal. The way

that a signal or lack of a signal is interpreted will depend on the hardware receiving it. For

example, a signal value of zero on the input line of a motor may have the same effect as no

signal at all. In order to support “no signal” values, we define a new no-value symbol 

which is added to all the input and output alphabets by default.

The remaining conventions are introduced in order that Moore machines can be specified in a

more compact form in which a single transition may be an abbreviation for a set of transitions.

M' Q Σ ∆ δ λ q0, , , , ,( )=

Q Σ ∆ δ q0 λ Q Γ Γ

Σ ∆ λ q0( )

Q Σ ∆ δ λ q0, , , , ,( )
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• We define a transition arc labeled with set  as an abbreviation for n transition arcs labeled

 where  as shown in figure 3-7.

Figure 3-7. A transition labeled with set notation.

• A Cartesian product  is abbreviated as . 

• Where x is an element in set A, we will also use x to mean  when this meaning is clear

in context.

• We indicate the complement of a subset by a bar over the subset. For example, if the input

alphabet of a Moore machine is , where

 and  then  denotes the set

.We extend this complement notation by

applying it to consecutive components of a Cartesian product. For example,

 denotes the set

 where  for . The usefulness or applicability of this notation in particular

situations depends on how the components of a Cartesian product are ordered.

S
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S
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q1 q2

q1 q2

is equivalent to

X1 X2× …× Xk× X1X2…Xk

x{ }

A a … z, ,{ }× B η{ }∪( )×

A 1 2 … 10, , ,{ }= B    ,    ,        ,       { }= 1 2,{ } a  

3 … 10, ,{ } b … z, ,{ }×    ,      ,      ,   { }× η

x1x2…xk 1– xk…xlxl 1+ …xn

x1{ } x2{ }× …× xk 1–{ }× XkXk 1+ …Xl xkxk 1+ …xl{ }–( )× xl 1+{ }× …× xn{ }×

xi Xi∈ k i l≤ ≤



27

• If x is an n-tuple then we write  to denote the ith component of x for . In an

EMM the output associated with each state is a function of the input value that caused the

transition to the state. We use  to denote the input value that caused this transition. For

example when the output of a state in an EMM is the  component of the input value,

we use  to denote the output of that state. We use this convention extensively in the

next section where we introduce the state diagrams for EMMs for suppression and inhibi-

tion.

3.3.7 Suppression and Inhibition
In the subsumption architecture the conflicts between different behaviours that wish to send

messages to the same destination (an input to another behaviour or an input to an actuator) is

resolved by using suppressors and inhibitors which can be defined as EMMs. Suppression and

inhibition EMMs prioritize behaviours by selecting only one of the two components of their

input symbols as their output. In the suppression EMM, the output is the first component of

the input as long as this component is not . When the first component is , the output is

the second component of the input. Figure 3-8(a) illustrates a suppressor and figure 3-8(b)

illustrates the state diagram for the EMM that realises it. The input alphabet of the EMM in

figure 3-8(b) is  where  and  are the alphabets of the suppressing and normal inputs

respectively. Notice that both  and  contain . The output alphabet for the suppression

EMM is .
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Figure 3-8. A suppression EMM state diagram.

In the inhibition EMM, the output is  as long as the first component of the input is not .

When the first component is  the output is the second component of the input. Figure 3-

9(a) illustrates an inhibitor and figure 3-9(b) illustrates the state diagram for the inhibition

EMM the input alphabet of which is . The output alphabet for the inhibition EMM is .
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Figure 3-9. An inhibition EMM state diagram.

3.3.8 Control System Block Diagram
In our model of the subsumption architecture, a layer consists of a single behaviour imple-

mented as an EMM. The outputs of a higher priority behaviour can subsume or inhibit the

inputs and outputs of a behaviour with lower priority. A behaviour with higher priority can

also monitor the data generated by lower priority behaviours by accepting their outputs as part

of its input. The outputs of lower layers used as inputs for higher layers can be used as simple

inputs, but can not be used to suppress or inhibit other inputs: however they might be sup-
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pressed or inhibited by others. This restriction maintains the priority scheme between different

layers. Figure 3-10 illustrates the control system block diagram for level-0.

Figure 3-10. Control System Block diagram for level-0.

In figure 3-10 each thin line carries a single value while the thick output line carries a vector of

values. The triangle preceding level-0 is a collector, which receives a number of individual and

vector inputs and generates an output vector that contains all the individual elements of the

inputs by concatenating its input values and vectors. The triangle following the collector is a

distributor. A distributor receives a vector and, in general, generates a number of values or vec-

tors each of which is composed of a subset of individual elements of the input vector. In this

case, the output of the distributor are individual values, as indicated by the thin lines. In figure

3-10, the distributor is part of the internal structure of level-0 while the preceding collector is

not. 

A level-0 control system is a transduction from sensor values to actuator values with no feed-

back from outputs to inputs. Feedback in a control system is used to remember the previous

state of the system; however, since a level-0 control system in this model is implemented as a

single EMM, the state of the EMM completely represents the state of the system, so feedback

is unnecessary.

Figure 3-11 illustrates the control system block diagram for level-N. Notice that there is no

internal interconnection between layer-N, level-(N-1) and the subsumption function blocks

Sensors
Layer-0 Actuators

Level-0

behaviour
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within level-N. All the interconnection between different layers in the control system is

achieved through a single external feedback.

Figure 3-11. A recursive Control System Block Diagram for level-N.

In the subsumption function, the outputs of layer-N can be used to subsume or inhibit other

inputs. The inputs to level-(N-1) are items selected from the external feedback vector and the

sensor values. Inputs to layer-N are items selected from the external feedback vector corre-

sponding to the outputs of level-(N-1) and the sensor values. The items selected from the exter-

nal feedback vector corresponding to the outputs of level-(N-1) enable layer-N to monitor the

outputs of lower layers if required.
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As an example of how the behaviours and subsumption functions

can be used to control a system, consider a car in a square grid.

Each cell is either empty or occupied with a block. Each empty

cell in the grid is marked with a black cross in the centre. The car

is equipped with four infrared sensors mounted at the front,

Figure 3-12. A robot and maze.right, left and the back of the car, and two motors at either 

side of the car. The sensors look horizontally, sensing the presence of objects. Blocks placed on

the board create a maze as illustrated in figure 3-12. The robot is also equipped with an infrared

sensor mounted underneath the robot slightly to the left side, detecting the black crosses. This

sensor is used to identify when the car is in the middle of a cell. It can also detect when a 

rotation to the right or left is complete because of its left offset.

The most trivial behaviour of the robot, called Command, is to move from one cell to another

in either the forward or reverse direction, or to rotate in the same cell around its centre 

clockwise or counterclockwise. A level-0 control system can implement such behaviour. The

input alphabet for the Command behaviour is  where  and

U={ }. The symbols  and  respectively represent the presence or absence of a marking

beneath the underneath infrared sensor. The symbols in C, from left to right, represent the

commands move forward, move backward, turn right and turn left. The output alphabet is

 where .  and  represent the left and the right

motors, respectively.  indicates a motor is in the forward direction and  represents a motor

in reverse. Figure 3-13 illustrates the state diagram for the Command EMM.
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Figure 3-13. State diagram for the Command EMM.

In figure 3-13, the output  will move the robot one cell forward when applied to the

motors. A symbol with two arrows in different directions makes the robot rotate  clockwise

or counterclockwise around its center in the same cell. Figure 3-14 shows the block diagram

for the level-0 control system.
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Figure 3-14. Level-0 control system block diagram.

A simple algorithm for traversing a maze and finding an exit is to keep a wall at the right side

of the robot. We will call this the Forward behaviour of the car. A layer-1 control system can

implement such a behaviour. First we define the input and output alphabets of the EMM that

realises the Forward behaviour. The value of each horizontal infrared sensor is represented by

rectangular symbols similar to underneath infrared sensor. An empty rectangular symbol

( )represents an opening in the direction corresponding to that sensor. A solid rectangular

symbol ( ) represents the presence of a block in that direction. The input alphabet for the For-

ward behaviour is  where F = R ={ } and F and R represent the values

of the front and the right sensors, respectively. The output alphabet for the Forward EMM is

C. Figure 3-15 illustrates the state diagram for the Forward EMM.

Command

behaviour

Level-0

Command

Underneath Infrared Sensor

Right

&
Left
Motors

C

U
(UIS)

Rm

Lm

Command

UIS

F R ML MR××× ,



35

Figure 3-15. State diagram for the Forward EMM.

This example assumes that the cell the car starts in is not a trap or loose cell; that is, there is at

least one opening from the start cell and at least one block in one of the four cells adjacent to

the start cell. 

Figure 3-16 illustrates the level-1 control system block diagram. In figure 3-16, the external

feedback vector carries 4 elements.
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Figure 3-16. level-1 control system block diagram.

In the Forward behaviour the robot takes two left turns when it comes to dead ends. A new

Backup behaviour can effectively improve the traverse time by avoiding unnecessary turns

when a robot encounters a dead end. This new behaviour is added to the level-1 control system

to obtain level-2. Figure 3-17 illustrates the state diagram for the Backup EMM.

The input alphabet for the Backup EMM is  where L = F = R = B

={ }, and L, F, R and B represent the values of the left, front, right, and back sensors,

respectively. For example,  indicates an opening at the left side, an obstacle in the front,

an opening at the right side and an obstacle behind the robot. The output alphabet for the

Backup EMM is . In figure 3-17, the machine stays in the initial state Idle generating  as

long as the robot does not encounter a dead end. In the Backup EMM, transitions occur only
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when the Command EMM is in the Idle state, that is when the robot has finished a move from

one cell to another or has finished a turn to the left or right.

Figure 3-17. State diagram for the Backup EMM.

Figure 3-18 demonstrates the level-2 control system block diagram. 
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Figure 3-18. Level-2 control system block diagram for the Lego car.
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4 Hardware Definition Module

Achieving a general purpose visual programming language for robot control which concretely

represents the physical characteristics of a robot, while at the same time maintaining the gen-

erality of the language presents an interesting dilemma [16]. The programming constructs of

such a language must be adequately specific to directly represent the physical characteristics

and actions of a specific robot, while appropriately general to reflect the visual representations

of a wide variety of robots. Although bringing these two characteristics together in a visual

programming language is desirable their contradictory nature implies that conventional pro-

gramming language design is unlikely to provide a solution.

4.1 Reconciliation of Generality and Concreteness

To achieve a concrete, general-purpose VPL for robot control, Cox and Smedley propose in

[16] that a robot control programming systembe constructed from two major modules. The

Hardware Definition Module (HDM), is the first part of the system in which the structure of

the robot and its environment is defined. The HDM environment provides the necessary
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tools to customize the overall programming language for a specific robot. The Software Defi-

nition Module (SDM), is the second part of the system in which the control program is

defined by using the control model created in Chapter 3 and the more concrete programming

constructs previously defined in HDM. The SDM environment simulates the robot in action

and provides the required tools to define the different levels of a robot’s behaviours by direct

manipulation of parts representing that robot as described in Chapter 5.

4.2 Hardware Definition Module

The HDM is a design environment similar to those used in Computer Aided Design (CAD)

tools. The purpose of HDM is to model a robot and the objects in its environment. These

models are used in SDM as the basis for simulation used to drive the programming process.

The concept of HDM and SDM was originally introduced in [16] with an emphasis on

HDM. The work presented in that paper is an explanation of how objects and robots are

designed in HDM by working through an extended examplewhich gives the flavour of how

HDM should work. However, it does not describe in detail how the generated models are

used in SDM to create a control system. The work described in [16] very briefly outlines the

use of FSMs for implementing the behaviours of a robot with an example, but does not

address the remainder of the subsumption model. The design environment suggested in [16]

is a 2D environment but could easily apply to 3D given appropriate 3D rendering and

manipulation technology.

Since the purpose of this work is to introduce a mechanism by which a control system is cre-

ated in SDM, we will not discuss HDM in detail; however, we will briefly introduce the func-

tions that HDM must perform in order to support SDM. Where we feel there is a need for

minor modification in the HDM in [16] because of the 3D nature of this work, we will

explain the modification. We invite the reader to consult [16] for a discussion of HDM.
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4.2.1 Requirements

As we mentioned in Chapter 3, a robot consists of sensors, actuators and body. Sensors gather

information from the environment; actuators transform the environment in some way, and

the body provides the connecting structure but is logically is insignificant for programming

purposes.

4.2.1.1 Objects

The most trivial component created in HDM is an object. The model for an object consists of

some geometrical information and a set of properties.

4.2.1.2 Properties

Each object in the operating environment of a robot may have a set of properties. Properties

are physical attributes of objects that can effect the sensors of a robot if the sensors are defined

to be sensitive to those properties. Some properties can be effected by the actuators if those

properties are not defined as static properties. A static property is one that is defined once and

will be fixed in SDM. A dynamic property is one that can be manipulated by actuators. Since

properties will be implemented as variables we need to define their types.

4.2.1.3 Types

As in most programming systems, we require the notion of type in both HDM and SDM.

variables used as object properties must have types; so must sensor inputs and actuator out-

puts. In both HDM and SDM we need access to a set of standard types such as integer, float,

character, string, and boolean. A programmer should also be able to create types. Thisrequires

a type editor with which a programmer can create new types that are a subset of standard types,
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or create symbolic types, such as those we used in Chapter 3 in our Car example. The icons

for a symbolic type might be created in a drawing window or pasted from elsewhere.

Clearly the exact nature of the facilities provided by such a type editoe will varydepending on

the characteristics of the type being defined, for example, whether it is finite, countable, not

countable, or consists of typeable characters.

4.2.1.4 Sensors

The model for a sensor must contain an external function for reading the values from the

actual hardware. It must also include a mechanism by which the input values can be rerouted

from the actual hardware to the values generated in the simulated environment. A sensor is a

physical entity, therefore we need a model for its physical structure. In the SDM we will use

different appearances of a sensor for programming purposes, therefore, HDM must provide a

mechanism by which the appearance of a sensor changes to reflect the changes in the read

value from the hardware or the simulated environment. In one extreme, a sensor can have as

many appearances as the range of its input value where the input is a countable type.

4.2.1.5 Actuators

The model for an actuator, similar to that for sensors, must contain an external function for

writing values to the actual hardware. Since SDM relies on providing accurate simulation of

the robot, there is a need in HDM for a mechanism for defining the way the simulation envi-

ronment is transformed in response to values fed to simulated actuator . Similar to sensors,

actuators are physical entities and therefore we need a geometrical model for simulating their

mechanics. Since most actuators can be categorized as mechanical actuators, the geometrical

model for an actuator is expected to be more complex than those of sensors. For example, cre-

ating an articulated arm for a robot requires generating dynamic structural dependencies
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between components to reflect the physical characteristics of the real arm. Bilateral attach-

ments, parent-child relationships and creating joints are some of the required structural

dependencies that enable us to create complex actuators.

4.2.1.6 Attachment

Once we have built the required sensors, actuators and the body, we need to attach these com-

ponents to create a robot as a single unit. The attachment process should closely investigate

the mechanical effects of the actuators on the robot itself as a single unit. For instance, in our

previous car example we specify the effects of the right and left motors on their geometrical

models, however, when we attach the components together the combined effect of the motors

on the geometrical model of the robot must follow the rules of mechanics.
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5Software Definition Module

The Software Definition Module (SDM) is a simulation environment in which control pro-

grams are created by directly manipulating the models generated in HDM for a robot and its

environment. In SDM the subsumption model developed in Chapter 3 is adopted as the con-

trol system. 

To show how a complete control system is created in SDM, we use our previous car example

to demonstrate the programming steps. When SDM is started a menu bar containing File,

Edit, View, Behaviour, Simulation and Library menus appear. To create a new file, the New

item from the File menu is selected. A normal open file dialogue box appears from which the

desired HDM library file can be selected. In this example, the Car.lib Library file is selected.

This opens a Library Palette named Car Library containing names and miniaturised pictures

of the Car, Tile and Obstacle previously defined in HDM. A workspace window consisting of

four views, similar to those in HDM, named SDM:Car.sdm that contains one instance of the

car is also opened. The four views are called Plan, Front, Left and Camera that provide the top,

front, left and camera views of the simulation environment, respectively. There is also an empty

pane for defining input and output registers at the top of the workspace window, called the

register pane, that contains Add Reg. and Delete Reg. buttons for adding and deleting registers.
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The Camera view is undefined at the beginning a camera can be added to the scene by selecting

New Camera from the View menu. A camera provides a user-defined view of the design scene

in which the programmer can move around, assemble the simulation environment, and manip-

ulate objects freely. Since in the car example only 2 dimensions are significant, the Plan view is

expanded to occupy the entire workspace window by selecting the Plan item from the View

menu. To create a simulated environment, a set of tiles and obstacles are copied from the Car

Library Palette by dragging and dropping them into the workspace window. Figure 5-1 illus-

trates the Car library palette, the SDM workspace and Menu bar after a set of obstacles and

tiles are copied into the workspace.

Figure 5-1. SDM workspace and the Car Library Palette. 

Once a simulated environment is created in the workspace by arranging the objects and robot,

the programming can be started by defining the most trivial behaviour of the robot. To define

this first behaviour, we select the New Behaviour item from the Behaviour menu. An empty

floating palette named Layer-0 appears, and will be used to define the inputs, outputs and the
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states of the Extended Moore machine (EMM) realising layer-0 behaviour. The Layer-0 palette

contains an editable text box at the top that can be used to name the behaviour. The name

entered in this box can be edited at any time if the user wishes to rename the behaviour. The

name of the behaviour has no significance from the programming point of view, although an

intuitive name can effectively add to the clarity of the program. We name the first behaviour

Command as in section 3.3.8. Figure 5-2 illustrates a workspace created by arranging objects

defined in HDM and an instance of the robot along with the Layer-0 floating palette.

Figure 5-2. SDM workspace and the Layer-0 floating palette.

Although the aim of the programming process is to generate EMMs, the philosophy of SDM

is to focus the programmer’s attention on making the simulated robot behave properly rather

than on the underlying abstractions.
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The first step in programming the layer-0, Command, behaviour is to define the initial state.

The default name for the initial state is Initial, however it can be changed by the user. As figure

5-3 illustrates, we rename the initial state in this example to Idle. The Character  before the

name indicates that this is the initial state of the behaviour. This character can not be deleted

from the initial state’s name and every behaviour can have only one state the name of which

starts with this character; that is each behaviour can have only one initial state. The next step

in defining the initial state of the Command behaviour is to define and set the output(s) of the

initial state. 

The Command behaviour must generate appropriate outputs for both the left and right motors

to move the car one cell forward or backward, or turn the car  clockwise or counterclock-

wise. To define an output we click the Add Output button. A new output is added to the

Layer-0 floating palette. An output is represented by a panel containing the output name in an

editable text box called Name, initially containing “untitled”; a Function pop-up that speci-

fies how the output value is computed and initially set to Constant; a Value pop-up and box

for setting the output value; and a terminal represented by a small circle attached to the right

of the panel. The value pop-up and box are enabled and disabled depending on the item

selected in the Function pop-up and the type of the connection made to the terminal. Since

initially, the Function pop-up contains Constant and there is no connection made to the ter-

minal, so the Value box is uneditable and set to  and the pop-up is disabled. When the item

selected from the Function pop-up is not Constant, the Value box is uneditable and the pop-

up is disabled indicating that the output is computed by a function. Where the Function pop-

up is set to Constant and the output type is textual such as standard types or textual user

defined types, the Value box is set to editable and the pop-up is disabled. The Value pop-up

is enabled only when the Function pop-up is set to Constant and the output has a user defined

iconic type. In this case the Value box is set to uneditable and the output value can be selected

from the Value pop-up.

90°

η
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Like the behaviour name, the name of an output has no logical significance but can be chosen

to improve the readability of the program. A new output is named “Untitled” by default. The

name can be edited at any time. In our example, we rename the output Lm as figure 5-3 shows

.

Figure 5-3. Defining an output.

The Lm output will generate values for the left motor of the car, so we need to connect it to

the left motor. Connecting the Lm output to the left motor is accomplished by clicking on the

terminal and dragging, while the mouse button is depressed a rubber band connects the termi-

nal and the cursor, and as the cursor passes over any item in the simulated environment to

which the terminal can be connected, the item is highlighted. In our example, we choose the

left motor of the car. When the mouse button is released, the terminal and left motor are con-

nected as shown in figure 5-4. Note that a connection can be built in either direction. For

example, we could have clicked down on the left motor and dragged a rubber band to the ter-

minal.

Current:

Next:

States

Idle

Layer-0

Command

Function:

Value: Name:

OutputsInputs

Constant

Lmη

Show State Diagram

Start

Simulation

Add Input Add Output Delete Don’t care



49

Figure 5-4. Connecting an output to an actuator.

Once the Lm output is connected to left motor, the type of the left motor is assigned to the

Lm output. Since the left motor has a user-defined iconic type and the Function pop-up con-

tains Constant, the Value box is set to uneditable and the Value pop-up is enabled. We can

change the output value by selecting a value from the pop-up. In our example we want the car

to stay still in the Idle state, so we leave  as the output.

Where the output should be presupplied or user defined function, the desired function can be

selected from the Function pop-up. The Function pop-up has also an Add new function

option. When this option is selected, a dialogue appears in which the function is named. On

closing the dialogue, the name of the new function is added to the Function pop-up, and a

programming environment is opened in which to build the function. This programming envi-
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ronment can be a programming window of the underlying language, for example a Prograph

method window where the underlying language is Prograph.

We define a second output corresponding to the right motor of the car, name it Rm and con-

nect it to the right motor of the car in the same way. Figure 5-5 shows the simulated environ-

ment and the contents of the Rm Value pop-up.

Figure 5-5. Setting the output values.

In the Idle state of the Command behaviour we want the car to stay still waiting for a move or

turn command. We define an input for the Idle state by clicking the Add Input button which

adds a new input to the Layer-0 floating palette. An input is represented by a panel containing
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an uneditable Value box initially containing ; and a terminal as figure 5-6 shows. We

rename the input C.

Figure 5-6. Defining an input.

Like behaviour and output names, the names of the inputs are insignificant and can be changed

at any time. Appropriate names help programmers to differentiate between the inputs thereby

increasing the readability of the program. Names of the inputs and outputs are internal to the

behaviours and act like comments from the programmer’s point of view.

Since the C input must receive its values from a source that does

not correspond to a sensor on the car, we need to define a register

where we can set the value of the C input. To define a register we

Figure 5-7. A register pane.click the Add Reg. button at the top of the workspace window

which places a new register in the register pane. As figure 5-7 shows, each register is represented

by a panel containing an editable Name text box initially “Untitled”; a Type pop-up for defin-

ing the type of the register contained Undefined initially; a Value box and pop-up for setting

the value; and a terminal. The names of registers have no logical significance and can be
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changed at any time. The Type pop-up contains an Undefined option which is the default

type; a set of standard, built-in types; some user defined types imported from HDM, or already

defined in SDM; and a New type option. Selecting the New type... option opens a dialogue

in which the new type must be named. On dismissing the dialogue the name of the type is

added to the user defined types of the pop-up and a type editor similar to that used in HDM

for defining sensors’ and actuators’ types is opened. When the new type has been created and

the editor window is closed, the new type is assigned to the register.

The Value box and pop-up are very similar to an output Value box and pop-up. Initially, the

Value box is uneditable and contains , and the pop-up is disabled. When a standard type or

a textual user-defined type is selected from the Type pop-up, the Value box changes to edit-

able and the pop-up remains disabled. The pop-up is enabled when an iconic user defined type

is selected or created, in which case the Value box will be set uneditable.

In our example we have renamed the register Command and create a type that contains four

symbols representing move forward, reverse, turn right, and turn left commands as described

in section 3.3.8. We name the new type “Direction”. Since we have defined an iconic type, the

pop-up is enabled and the Value box remains uneditable.

Once the type of the Command register is defined, we connect the register to the C input of

the Layer-0 floating palette as previously described. This also assigns the type of the Command

register to the C input. Figure 5-8 illustrates the simulation environment after the Command

register is defined and connected to the C input.

η
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Figure 5-8. Defining a register.

In our example, after we created the Command register we immediately defined a type for the

register before we connected it to the C input, however, we could easily change the order of

the process by connecting the register to the C input and then defining a type for the register.

In either case, the type of the register will be assigned to the C input.

To finish the definition of the Idle state we press the Start button. The simulation is started,

the Start button changes to a disabled Resume button, the Stop button is enabled, and the

values of inputs and outputs are shown in the Layer-0 floating palette. Since in the Idle state

the outputs for both motors are set to  the car remains motionless and the simulation con-

tinues until we change the value of the Command register. To change the value of the Com-

mand register we select  from the register’s Value pop-up.  appears in the input C Value
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box and the simulation stops immediately because any change in the values of the significant

inputs of a state indicates a need to change state. When simulation is stopped both the Start

and Stop buttons are disabled. Figure 5-9 illustrates the environment after the simulation is

stopped.

Figure 5-9. Idle state when the simulation is stopped.

The input value that caused the termination is displayed, as are the current output values. In

our example, the output values are simply constant outputs defined for the Idle state. In gen-

eral, however, the output values are computed by functions, and may be important to the pro-

grammer as he or she decides what the next state should be.

Since we now want the car to move forward, we need a new state which will drive both motors

in the forward direction, so we choose to define a new state we choose the New state option
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from the Next pop-up. This creates a new state, transits the simulation to this new state and

enables the Resume button.

The default name for a new state is State-n where n is the number of previously defined states

for the current behaviour. However, we can rename them at any time. in our example, we

rename the state S-Forward.

We want the S-Forward state to generate outputs for the Lm and Rm outputs to move the car

forward until the UIS changes from  to  indicating that the car has moved off the centre

of the square. We set both the Lm and Rm outputs to  and define a new input for the state,

name it U, and connect it to the UIS sensor of the car as previously described.

As soon as the connection between the U input and the UIS sensor is established, the value of

the sensor appears in the Value box of the input U. When the Command behaviour receives

, it must not accept any other command until it finishes executing ; that is, the input C is

insignificant for the S-Forward state. To indicate this, we select the input C by clicking on it

and then click the Don’t Care button. This removes the input C pane from the inputs panel

of the Layer-0 floating palette and adds it to the Inputs pop-up. This will define the input C

as insignificant for the S-Forward state and from now on whenever this state is entered the

input C will automatically be removed from the inputs panel. Figure 5-9 shows the Layer-0

palette after defining the S-Forward state and before resuming the simulation.

Note that before we resume the simulation, we can undo the performed actions one step at a

time by selecting the Undo option of the Edit menu or undo the whole process by selecting

the Undo all. This will take us back to the point where the simulation stopped for the last time.
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Figure 5-10. setting an input to don’t care.

When we resume the simulation by clicking the Resume button,

this button is disabled, the Stop button is enabled and the car

starts moving forward. As soon as the UIS changes from  to ,

as figure 5.11 shows, the simulation stops and the Stop 

Figure 5-11. S-Forward state button is disabled. Since the task of moving the car to the next

grid is not complete, we create a new state, name it Forward, and set both the Lm and Rm

output to .

When we resume the simulation the car moves forward until the UIS changes from  to 

where the simulation stops. At this point the task of moving the car to the next grid is complete
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and the simulation should transit back to the Idle state. In the Idle state the value of the Com-

mand register will be monitored, so before we set the Idle state as the next state we set the Com-

mand register to  to ensure that the simulation will stay in the Idle state after we set it as the

next state. To set the next state, we choose Idle from the Next pop-up indicating that when

simulating is resumed, a transition back to the Idle state will be created and followed. Since the

output values for the Idle state have already been defined, both Lm and Rm outputs are set to

 by the system. Figure 5-12 illustrates the workspace window during the definition of this

transition from the Forward state to the Idle state.

Figure 5-12. A transition back to the initial state.

After we choose Idle in the Next pop-up the Idle state is entered, the U input is removed from

the inputs panel and added to the Inputs pop-up and the input C is restored from the Inputs

pop-up to the inputs panel. Figure 5-13 shows the workspace after the Idle state is entered.
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Notice that if we had not changed the value of the Command register, the S-Forward state

would be immediately entered and the car would move to the next grid.

Figure 5-13. Restoring inputs from the Input pop-up.

When we click the Resume button the simulation starts and stays in the Idle state generating

 for both motors, causing the car to stay in the same position. At this moment we can change

the value of the Command register to start the definition of a new state of the Layer-0 behav-

iour. At any time we can also view the state diagram of the behaviour generated so far by click-

ing the Show State Diagram button. When we click this button a window containing the

partial state diagram generated is opened. Figure 5-14 illustrates the state diagram after the

Idle, S-Forward, and Forward states have been defined.
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Figure 5-14. Partial State Diagram.

We can define the remaining states of the Command behaviour in the same way. For example,

when we change the Command register to , the simulation stops. We define a new state and

name it S-Right. Similar to the move forward command, when the execution of the turn right

command starts there is no need to monitor the value of the input C. So we set the input C to
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don’t care and restore the input U by selecting it from the Inputs pop-up.We also set the Lm

and Rm outputs to  and , respectively. Figure 5-15 illustrates the simulation environ-

ment after the S-Right state is created and before the simulation is resumed.

Figure 5-15. Defining the Right state of the Command behaviour.

When we click the Resume button the simulation is resumed

and the car starts rotating to the right. As soon as the UIS

changes from  to , as figure 5-16 shows, the simulation

stops. We define a new state and name it Right. In the new state

Figure 5-16. Turn right command.we leave Rm and Lm outputs unchanged and resume the 

simulation. The car turns to the right until the UIS changes from  to . At this point we

select Idle from the Next pop-up to enter the Idle state.
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We generate the states Reverse and Left in a similar way. After all the required states are defined

the definition of the layer-0 behaviour is complete. At this time when the simulation is

resumed, changing the value of the Command register to  and  will make the car to move

one cell forward or backward, respectively. Setting the Command register to  will make the

car turn to the right and setting it to  will make it turn  to the left.

The layer-0 behaviour implements the level-0 control system. To add a new behaviour to level-

0 to obtain level-1, we select the New Behaviour item from the Behaviour menu. This shrinks

the Layer-0 palette into a small box labeled Level-0 with input and output terminals corre-

sponding to the input and out put terminals of the Layer-0 palette. All the connections are

redrawn as they were established in layer-0. An empty Layer-1 floating palette similar to the

Layer-0 palette is also opened. We name the new behaviour Forward. Figure 5-14 illustrates

the workspace at this point.

By shrinking the previous level into a box connected by wires to the robot, we encourage the

programmer to view the box as a small computer or controlleradded to the basic robot, the two

components together making up a more complex and competent robot.

90° 90°
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Figure 5-17. Creating the Forward behaviour

The first step in programming the Forward behaviour is to define the initial state. We start by

renaming this state Straight. The Forward behaviour is intended to generate appropriate com-

mands for the C input of the Command behaviour in response to changes in the values of the

Front and Right Infrared Sensors. It also must monitor the outputs of the Command behav-

iour to decide when to generate a new command. That is, the Forward behaviour will not gen-

erate a new command until it makes sure that the Command behaviour has finished executing

the previous command. To accomplish this we need to define one output for the Straight state

and four inputs. We will use the output of the new behaviour to subsume the values generated

by the Command register. Two of the inputs correspond to the Lm and Rm outputs of the
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Command behaviour, the other two corresponds to the Front Infrared Sensor, and the Left

Infrared Sensor. 

We create an output for the Straight state and name it CF. The CF output of the Forward

behaviour will generate values for the C input of the Command behaviour, so we need to con-

nect them. Connecting the output CF to the input C is accomplished by clicking on the CF

terminal and dragging, when the cursor passes over the Level-0 box, the Level-0 box is

expanded into the Layer-0 floating palette and the Layer-1 palette disappears. The source of

the current rubber band changes to  indicating that the source of the wire is in a higher

layer. Figure 5-18 illustrates the workspace at this point.

Figure 5-18. Expanding a level to make a connection.

When we move the cursor over the C input terminal, the terminal is highlighted indicating a

valid connection. We release the mouse button to complete the connection, at which point the
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Layer-0 floating palette shrinks back into the Level-0 box, all the connecting wires are redrawn

and the Layer-1 palette reappears. Since the C input was already connected to the Command

register a conflict is detected and to resolve it a small junction node appears.

Each junction node can be set to be a suppressor or inhibitor. However,

by default the node is an inhibitor. A junction node has three termi-

nals as shown in figure 5-19; An empty triangle terminal for the

normal input, a solid triangle terminal for the controlling input and a 

Figure 5-19. An inhibitor.circle terminal for the output. These terminals are drawn optimally

on the boundary of the node; that is at the point closest to the other end of the attached wire.

A junction can be toggled between suppressor and inhibitor by clicking the node with the

option key pressed (option-click).

Since the Forward behaviour needs to subsume the value of the Command register in order to

control layer-0, we toggle the junction node to a suppressor.

Normally, when one value is used to subsume another a check for type compatibility is per-

formed. In our example, since CF had no type before the connection was made, it is assigned

the type of the destination, the input C of layer-0.

In the Straight state we want to generate  indicating that the car must move forward. To

accomplish this, we leave the Function pop-up unchanged and set the output to  by selecting

it from the Value pop-up.

Figure 5-20 illustrates the workspace after the output CF of the Layer-1 is connected to the

input C of the Layer-0 and the output of the state is set to .

I
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Figure 5-20. A suppressor node.

We add two inputs to layer-1, name them RSF and FSF, and connect them to the Right and

Left Infrared Sensors of the car, respectively. We define another input, name it LMF and con-

nect it to the output Lm of layer-0 in the same way that we connected the output CF to the

input C of layer-0. The only difference is that when layer-0 is expanded, the rubber band is

connected to  to indicate that the destination of this connection will be an input to a

higher layer. Figure 5-21 illustrates the workspace just before we complete the connection to

the output Lm.
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Figure 5-21. Using an output of the Command behaviour as an input to the Forward behaviour.

We add a forth input to layer-1, name it RMF and connect it to the output Rm of layer-1 in

the same way. Figure 5-22 shows the workspace window after both LMF and RMF are defined

and connected to Lm and Rm, respectively.
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Figure 5-22. Forward behaviour

Now the definition of the Straight state is complete and we start the simulation.  output is

generated subsuming the value of the Command register. The Forward state from the Com-

mand behaviour is entered, generating  for both Lm and Rm. The inputs LMF and RMF

of the Forward behaviour are consequently changed causing the simulation to halt. Since the

move to the next grid is not complete, we select Straight from the Next pop-up to be the next

state, and resume the simulation.
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The car moves forward until the Right Infrared Sensor changes

from  to  as in figure 5-23. At this point since the move to the

next grid is still not complete, we again select Straight from the

Next pop-up and resume the simulation. The car moves forward

until it is in the middle of the next grid at which point 

Figure 5-23. Passing an obstacle.the Command behaviour finishes executing the  command. 

The Command behaviour enters the Idle state and both Lm and Rm outputs of the Command

behaviour and consequently LMF and RMF are set to . This causes the simulation to stop.

Since there is an opening to the right of the car, we need to create a new state in which the car

turns to the right. When there is an opening to the right of the car, it must turn to the right

no matter if there is an obstacle in front of the car or not; that is, the value of the Front Infrared

Sensor is insignificant when deciding whether to turn to the right. So, we select FSF and click

the Don’t Care button. Now we define a new state and rename it Turn Right. The Turn Right

state must generate the output . To accomplish this, we select  from the CF Value pop-

up. When the decision for turning to the right is made, the Right Infrared Sensor of the car is

insignificant until the turn is complete; that is, the Right infrared sensor is insignificant while

in state Turn Right. So, we set RSF to Don’t care before we resume the simulation. This means

that in the Turn Right state only LMF and RMF are the significant inputs. Figure 5-24 shows

the state of the environment after the Turn Right state is created and before the simulation is

resumed

η
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Figure 5-24. Creating the Turn Right state.

When we resume the simulation, the output value of the Command register is subsumed. The

Right state from the Command behaviour is entered, generating  and  for the Lm and

Rm outputs, respectively. The LMF and RMF inputs of the Forward behaviour are conse-

quently changed causing the simulation to halt. 

Since the turn to the right is not complete, we define Turn Right to be the next state and

resume the simulation. The car starts turning to the right and continues until the Right state

of the Command behaviour finishes executing the  command. At this point the Idle state

of the Command behaviour is entered causing the Lm and Rm outputs of the Command

behaviour to both change to  and consequently both LMF and RMF become  causing the

simulation to halt. Now since the turn to the right is complete we set the next state to Straight.
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When we resume the simulation, the Straight state is entered,

both RSF and FSF are restored from the Inputs pop-up, and

the car moves forward until it reaches the middle of the next

grid at which point the Forward state of the Command behav-

iour finishes executing the  command. The state Idle of the

Command behaviour is entered, generating  for both Lm

and

Figure 5-25. Start turn leftRm outputs. As a result both LMF and RMF are changed to 

and because of the position of the car in the environment FSF and RSF both generate  caus-

ing the simulation to halt.Figure 5-25 shows this situation.

Now since there are obstacles in the front and to the right of

the car we create a new state that generates a left turn com-

mand, name it Turn Left, set the output to , and resume the

simulation. The car starts turning to the left and as soon as the

values of LMF and RMF are changed the simulation stops. 

Figure 5-26. Turning to the leftFigure 5-26 shows this situation. We select Turn Left from the 

the Next pop-up and resume the simulation. 

The car turns to the left until the left turn is complete. When

the Left state of the Command behaviour finishes executing

the  command it enters the Idle state and both LMF and

RMF are set to  causing simulation to stop. Since the turn

to the left is complete and there is no obstacle in front of the 

Figure 5-27. Completing left turn.car, as figure 5-27 shows, we select Straight from the Next

pop-up and resume the simulation.
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The Straight state is entered and the car moves to the next grid. When the car is in the middle

of the next grid since there is an opening to the right, the Turn Right state is entered and the

car starts turning to the right.

The simulation continues until the car faces an obstacle after finishing a turn to the left; that

is, the car is in a dead end as in figure 5-28.

Figure 5-28. A dead end.

At this point, since the car faces an obstacle it must take another left turn to keep the wall

(obstacle) to its right. To accomplish this, we select Turn Left from the pop-up as the next state

and resume the simulation. The car starts turning to the left and when the left turn is complete

since there is an opening in front of the car, the Straight state is entered and the simulation

continues uninterrupted and the car traverses the maze. 

We can view the state diagram generated for the Forward behaviour so far by clicking the

Show State Diagram button. Figure 5-29 illustrates the state diagram window for the For-

ward behavior at this point.
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Figure 5-29. Forward State Diagram.

Notice that not all the possible transitions out of the states have been defined completely, for

example there is no transition in this state diagram from the Straight state to itself when the

inputs are . When the system wraps the Forward behaviour along with the Level-0 box

to create the Level-1 box as a result of adding a new Backup behaviour (explained shortly), all

the possible undefined transitions will be interpreted as transitions to the same state. 

Now we place the car in the start cell and add a new behaviour to the control system to imple-

ment the Backup behaviour as described in section 3.3.8. When we select the New Behaviour

from the Behaviour menu the Layer-1 floating palette and the Level-0 box are merged together

in a box labeled Level-1 and an empty Layer-2 floating palette appears in the workspace. We

name the new behaviour Backup.
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We name the initial state of the backup behaviour Idle and add an output named CB. Figure

5-30 shows the state of the environment after the CB output is defined.

Figure 5-30. Creating Backup behaviour.

The Backup behaviour is to monitor the values of the horizontal sensors and generate a backup

command when it detects a dead end. This will relieve the car from taking unnecessary left

turns on dead ends. The Backup behaviour must stay in its initial state generating  as long

as the car is not in a dead end cell. This implies that the output of the Idle state must be .

The Backup behaviour generates values that have the same effect as the output of the Forward

behaviour, so we connect the CB output of layer-2 to the CF output of layer-1. This connec-

tion is established in the same way that we connected the CF output of layer-1 to the C input
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of layer-0.Figure 5-31 shows the state of the environment before we make the connection to

CF.

Figure 5-31. Expanding Level-1 to Layer-1 and Level-0.

When we make the connection to the CF output, the Layer-1 floating palette and the Level-0

box are shrunk back into the Level-1 box and the Layer-2 palette reappears along with an inhi-

bition node. Since the Backup behaviour generates values that replaces the output of the For-

ward behaviour, we toggle the inhibitor node to a suppressor as previously described. This

assigns the type of CB to CF and the inputs and outputs of the Level-1 box are rerouted accord-

ingly. Figure 5-32 illustrates the workspace window at this point.
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.

Figure 5-32. Rerouting of the inputs and outputs of Level-1 box.

The Idle state of the Backup behaviour monitors the values of the Left, Front, Right and Back

Infrared Sensors in addition to the Lm and Rm outputs of the layer-0. we define FSB, RSB,

LSB, and BSB inputs and connect them to FIS, RIS, LIS, and BIS sensors of the car, respec-

tively. We also define RMB and LMB inputs and connect them to Lm and Rm outputs of

layer-0.

We resume the simulation and whenever it is stopped because of a change in the horizontal

sensors or the Lm and Rm outputs, we select Idle from the Next pop-up as the next state and

resume the simulation until it stops when the car is in a dead end cell. At this point we define

a new state, name it Reverse, set the output to  and resume the simulation
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The car starts reversing and as soon as the value of one of the horizontal sensors is changed (for

example the front sensor is changed from  to ) the simulation stops. Since execution of the

reverse command is not complete, we select Reverse from the Next pop-up and resume the

simulation. Figure 5-33 shows the state of the environment before the simulation is resumed.

Figure 5-33. Reverse state.
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When we resume the simulation, the car reverses to the previous grid and as it comes to the

middle of the grid the simulation stops. At this point since there is an opening behind the car

and an obstacle to the left, it must take a right turn. We create a new state, name it Turn Right,

set the output to , and resume the simulation. When the turn to the right is complete the

simulation stops because of the changes in the input values.

We continue defining the remaining states of the Backup behaviour in the same way.
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6 Evaluation of SDM

In this chapter we will use Green and Petre’s Cognitive Dimensions, as described briefly in

Chapter 2, as the criteria for evaluating our proposed SDM. Since the system is not yet imple-

mented, there can be no additional practical assessment via experiment at this point.

6.1 Abstraction Gradient
Abstraction gradient is the availability and scope of abstraction mechanism and there are two

parts to it; the amount of concepts that a programmer needs to master in order to get started;

and the amount of new abstraction that he or she has to build to do anything significant. In

the case of SDM, the initial level of abstraction is low. Programming concepts are few, i.e.

direct representation of domain entities plus notions such as behaviour, state, inputs, and out-

puts. A programmer can create simple behaviours fairly directly with no new abstractions. To

do anything more significant, requires building a sequence of abstractions (levels), each

dependent on the last. This suggests that we can classify SDM as “abstraction-hungry”. How-

ever, the usual criticism of abstraction-hungry systems does not seem to apply since each

abstraction is built on the last, and because the process is dynamic, the programmer gets con-
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tinues feedback on the success of failure of his or her program. In general, SDM scores well on

the abstraction gradient criterion.

6.2 Closeness of Mapping
We believe that our proposed visual language scores well in this dimension. The closeness of

mapping is achieved through two different aspects in this work; mapping the subjects (robot

and objects) into the language and mapping the control system into the language. The first

mapping is achieved by using models generated in HDM as programming constructs in

SDM. The second mapping is accomplished by reformulating the subsumption architecture

to provide a nested control system suitable for our visual language. Also, because of the inter-

active nature of the process, the semantics of EMMs is “brought to life”, i.e. the whole process

is a concrete demonstration of EMM semantics

6.3 Consistency
Consistency is achieved through simplicity. Once a programmer has created one behaviour

there are no more concepts that must be learnt in order to create complex control programs.

Similar concepts are expressed in similar syntactic forms which enables a programmer to pre-

dict the way that system works. For example, once a programmer has created a connection

from an output of a behaviour to an actuator, he or she can easily expect the same mechanism

be employed for connecting a sensor to an input of a behaviour.

6.4 Diffuseness
Diffuseness is the number of required “symbols” or “entities” to express a “single concept”. In

order to evaluate our visual language in this dimension we need to specify what an “entity”

and a “single concept” are. For example, using a single wire to express the concept of connec-

tion between an actuator and an output of a behaviour can be interpreted as a low diffuseness.

There are two kinds of symbols in SDM, those corresponding to objects and those represent-

ing concepts from the control model. Given that the former directly corresponds to the
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domain, the structures they are used to build probably strike the right balance between dif-

fuseness and terseness. Representation of the control model using elements of the second type

is probably more diffuse, but it’s hard to say whether it’s too far one way or the other. The

direct view of the EMM is pretty appropriate though.

6.5 Error-Proneness
Mistyping is one of the major sources of errors in programs. In our language since the name of

the inputs, outputs, registers, states and behaviours are logically insignificant, such typos will

not have logical effects on programs. On the other hand, since the connections in the program

are made through pointing and clicking, it can be a source of “slips” specially where the items

are very close to each other and not very visible. This can be avoided by changing the resolu-

tion of the screen and zooming in and out when user wishes to create such connections. In

general without an implementation it’s pretty difficult to assess the error-proneness of this

notation

6.6 Hard Mental Operations
The rating of a visual language in this dimension depends on the problem domain as well as

the syntax and semantics of the language itself. Although our intention has been to provide a

simple programming environment to facilitate the process of programming a robot, there is

no need to mention that the problem of programming autonomous robots is a complex activ-

ity. Evaluating our language in this dimension requires empirical study and a comparison with

other languages. 

One part of the language that might give rise to hard mental operations is the construction of

subsumption functions. The logic behind the connections in a network of inhibitors and sup-

pressors could get quite complex. Nevertheless, since subsumption architecture provides a

mechanism to solve a complex problem by breaking it into smaller and much simpler tasks,

we expect our proposed visual language to perform fairly well in this dimension.
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6.7 Hidden Dependencies
The dependencies between components at each level are depicted by using a concrete mecha-

nism, i.e. using wires. The dependencies between components at different levels are also

depicted by using wires but are not as obvious as the former ones, since the component of one

end of such a wire will be buried, possibly several levels deep. The dependencies between out-

puts and inputs of a behaviour are not visible explicitly, however, programmers can consult

the state diagrams at any time to understand the mapping from inputs to outputs.

6.8 Premature Commitment
Premature commitment occurs when the programmer must make a decision in advance of

having the necessary information to make it. We have tried to relieve programmers from

guessing ahead by postponing the definition of new concepts to the time that they are actually

needed. A good example of this is defining registers or inputs for the behaviours after the def-

inition of the behaviour has already been started.

6.9 Progressive Evaluation
This is the ability to execute the program partially before all of it is put together. In this case

the program is being created as it is being run. Once the level-0 control program is completed

it is treated as a complete control program and can easily be added to, in order to create more

complex programs, so at each level the programming process relies on the execution of the

level below. SDM therefore scores well in this dimension.

6.10 Role-expressiveness
Role expressiveness is the degree to which if the purpose and role of each component can eas-

ily be inferred. Obviously the role of those parts that map directly to the physical domain is

clear. We have introduced a small number of components for programming purposes. For

example, representing a completed control level as a box with input and output terminals

together with the feedback wires suggests their function as controllers of some kind. This is
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further reinforced by the process which creates them. In general, concrete symbols are reason-

ably role-expressive; wires are pretty good too since they indicate the passage of some data; the

box is also role-expressive. other more abstract things are less expressive, although the labels

such as “name”, and “type” do give some hints about the functions of some of the smaller

pieces. On balance, though, role-expressiveness is fairly good in comparison with other lan-

guages.

6.11 Secondary Notation
Secondary notation refers to the use of extra information for conveying extra meaning outside

the formal syntax. The best example of secondary notations that can effectively help program-

mers to understand programs in our visual language is the use of names for registers, inputs,

outputs, states and behaviours. We feel that for complex programs the use of intuitive names

for these components will be critical. Another example of secondary notation in this work is

the use of two different shades of blue for active and inactive wires and junction nodes. When

a lower level control box is expanded all the wires coming from upper layers are drawn in a

paler shade of blue. Like any other programming language, this one could benefit from some

commenting mechanism.
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7 Summary & Future Research 

Directions

In this work we have proposed a visual language and environment for programming autono-

mous robots. This system allows a programmer to create a complex control system by imple-

menting a sequence of simple behaviours. As a basis for this language we also presented a

precise reformulation of the subsumption architecture for robot control due to Brooks. In our

model of the subsumption architecture a number of levels of competence are defined each

consisting of a behaviour implemented as an Extended Moore machine, where a higher level

of competence implies a higher degree of autonomy. Each level of competence is made up of a

series of control layers. A new control layer can simply be added to the existing level to obtain

the next level of overall competence. Once a control system is designed, it can be used as a

black box, however, a programmer can simply view the internal structure of the control pro-

gram at different levels to decide how to connect the new behaviour to the existing behaviours

to obtain a higher level control system. We described the requirements for a design environ-

ment, similar to those used in Computer Aided Design tools, in which a programmer creates
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models for a robot and environmental objects. We also proposed a user-interface for the pro-

gramming environment in which a programmer creates and modifies the control program by

direct manipulation of models previously generated in HDM for a robot and the objects in

the environment.

7.1 Future Work
This work presented the required ground work for implementing a visual language for robot

control and leads to many new topics for further exploration which we will briefly summarize.

7.1.1 Implementation for Empirical Studies
One important aspect of this work that remains outstanding is to implement both modules of

our proposed visual programming system. We have assumed that programs created in a visual

environment by direct manipulation of programming constructs representing the robot and

domain objects would be superior to textual languages for robot control because it increases

“closeness of mapping” which should enhance the programming process, according to Green

and Petre. This assumption can not be effectively be verified without empirical evidence.

7.1.2 Refinement of Hardware Definition Module
In this work we did not discuss HDM in detail. Our work mostly relied on the HDM pro-

posed in [16]. However, in order to employ the proposed HDM we need to make necessary

modifications to provide a design environment that supports three dimensions and as a conse-

quence there will be changes in the way sensors and actuators are modeled in this design envi-

ronment. There are also other issues that need to be resolved in the design of HDM, such as

the definition of types, specification of the function of sensors, and the effects of actuators.
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7.1.2.1 Sensors and Actuators
There are several different kinds of robots and although we have divided them into two major

categories, each can be subcategorized further. The most important factor for classifying

robots is the kinds of sensors and actuators they are equipped with. As a result, to provide a

design environment in which a programmer can create models for a variety of robots we need

a through investigation of different kinds of sensors and actuators presently used in robots.

This will enable us to implement a design environment that is appropriately general for mod-

eling components of a wide variety of robots.

7.1.3 Other Control Systems
We chose a reformulation of subsumption architecture as the basis for our control model

because of its nested, easy-to-understand and incremental nature. The nested nature of this

control system allows programmers to focus on one behaviour of the robot at a time rather

than interacting with the whole control system at once. The incremental nature of this model

enables programmers to build, execute, edit and refine programs in small steps.

There are many other control models for programming robots, such as hierarchical[3] and

logic-based control systems [5]. A possible extension to this work could be investigating the

feasibility of these control models as a basis for other visual languages for robot control. It

might also be worthwhile to attempt to combine different control models in one visual pro-

gramming system.

7.1.4 Planning and Problem Solving
Defining an autonomous robot’s interactions with its surrounding environment is the basis of

controlling the robot. There are many other problems that may arise during programming an

autonomous robot, such as planning and problem solving. There is no doubt that a visual lan-

guage cannot effectively be employed for the task of programming a robot until it addresses

these issues. In our work, we suggested that for these high level tasks a programmer will have

access to the underlying programming language; however, this means that the nature of the
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underlying language will bias the overall effectiveness of the system for the purpose of pro-

gramming a robot. An interesting extension to this work would be an investigation on the fea-

sibility of visual languages for solving such high level tasks especially logic-based languages

which also serve as the basis for many planning and problem-solving systems.
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