

Inferring Templates from Spreadsheets

by

Seyed Kamrooz Ghazinour Naini

Submitted in partial fulfilment of the requirements for the degree
of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

September 2011

© Copyright by Seyed Kamrooz Ghazinour Naini, 2011

ii

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “Inferring Templates from

Spreadsheets” by Seyed Kamrooz Ghazinour Naini in partial fulfilment of the

requirements for the degree of Master of Computer Science.

 Dated: September 15, 2011

Supervisor: _________________________________

Readers: _________________________________

iii

DALHOUSIE UNIVERSITY

 DATE: September 15, 2011

AUTHOR: Seyed Kamrooz Ghazinour Naini

TITLE: Inferring Templates from Spreadsheets

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: MCSc CONVOCATION: May YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available to
the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than the brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

iv

Table of Content

List of Tables.………………………………………….……………………...………………..vi

List of Figures………………………………………………………….......………………….vii

Abstract...ix

List of Abbreviations and Symbols Used...x

Acknowledgment ……………………………………..……………...xi

Chapter 1: Introduction……...1

1.1 History of Spreadsheets..1

1.2 Errors in Spreadsheets…..3

Chapter 2: Detection and Prevention of Errors in Spreadsheets.....................................6

2.1 Auditing Tools…………………………………………………...……………………6

2.2 Testing Tools………………………………………………...………………..………8

2.2.1 “What You See Is What You Test” (WYSIWYT).......................................9

2.2.2 Goal-Directed Debugging...10

2.2.3 AutoTest..12

2.2.4 Test-Driven Goal-Directed Debugging…….……………………………….12

2.3 Error-detecting Algorithms...13

2.3.1 UCheck...13

2.3.2 XeLda………………………….………….……………………………………16

2.3.3 SLATE………………………….……………………………………………..17

2.3.4 Automatic Detection of Dimension Errors...18

2.4 Templates…………………………………………………………………………….19

2.4.1 Inferring ViTSL Templates..20

2.4.2 ClassSheets….……………..…………………………………………………23

Chapter 3: Inferring Templates from Spreadsheet..26

3.1 L-sheets…...………….………...26

3.2 Representing a Spreadsheet...29

v

3.3 Finding Patterns in a Spreadsheet...31

3.4 Representing the Structure of a Repeat…......…….…………….………………39

3.5 Generating an L-sheets Program……………......….……………………………45

Chapter 4: Conclusion………………….…….………………………….….…………............55

4.1 Evaluation…….………...55

Bibliography.……….……..………..………………………………....…………..……............57

Appendix A : Generating L-sheets Parameters Algorithm..……………..…………… 63

vi

List of Tables

Table 4-1t,l,b,r,h,w functions for each group or heads and tails of groups.........................46

Table 4-2 Necessary functions for creating L-sheets programs………..…...……………...47

Table 4-3 Comparing the textual parameters computed in different L-sheets programs..54

vii

List of Figures

Figure 1-1 VisiCalc environments from [19]…………..………………………………….…2

Figure 1-2 Excel 1.0 for Apple Macintosh from [20]…….…….……………………….…..3

Figure 2-1 Microsoft Excel 2007 built-in auditing tool………….………………………….7

Figure 2-2 Student grades spreadsheet [31]……………………………..……………...........9

Figure 2-3 Store students’ grades spreadsheet [33]…………........…....…………………..11

Figure 2-4 The user suggests a value [32]………………...………………………………...11

Figure 2-5 Correct the value of the cell H2 [32]………........……………………………...11

Figure 2-6 Testing with AutoTest [34]…………………………………………………….. 12

Figure 2-7 Extracting information from labels and headers[8]……...…………….………14

Figure 2-8 Wrong range for B6 formula cell [8]…………………………………………...15

Figure 2-9 XeLda example [2] ………………………………………………………………16

Figure 2-10 An example for SLATE result [2]…………………………………………..…17

Figure 2-11 An example for automatic detection [2]………………….……………….…..19

Figure 2-12 ViTSL/Gencel architecture [13]………..……..………………………….……20

Figure 2-13 A template created in the ViTSL editor [13]………………………………….21

Figure 2-14 Gencel spreadsheet [13]………………………………………………….............21

Figure 2-15 Grade sheet example [36]………..……….……………………………………...21

Figure 2-16 cp-similar regions in grade sheet [36]……………....………………………… 22

Figure 2-17 a spreadsheet for sales records [38]….…………..……………………………. 23

viii

Figure 2-18 Sets and attributes of the sale system [38]………….…………..……………..24

Figure 2-19 Directed graph for the sale system [38]………..………….…………… ….… 24

Figure 2-20 General structures of ClassSheets [38]….………….……….………………….25

Figure 2-21 A ClassSheets structure for the sale system [38]…………...…………………25

Figure 3-1 Program sheet for Budget example [41]………..…………….………………….27

Figure 3-2 An example of a spreadsheet………………...……………………………………30

Figure 3-3 Tree structure for figure 4.2…………..….………………………………..……...40

Figure 3-4 L-sheets program for figure 4.2…………...…………………………………….51

ix

Abstract

Spreadsheets for critical applications, such as financial reporting, are widely created

and used by many people with no expertise in programming or software development. It

is well known, however, that creating spreadsheets is an error-prone process. Several

methodologies have been designed to reduce these errors. In this thesis we characterise

the patterns and functional relationships among the formula cells and the corresponding

data cells that commonly occur in spreadsheets, and show how the patterns occurring in a

given sheet can be generalised to produce a template structure representing the family of

spreadsheets of which the given sheet is a member. Finally, we show how this

generalisation can be translated into an L-sheets program from which instances of this

family can be generated.

x

List of Abbreviations and Symbols Used

LANPAR LANguage for Programming Arrays at Random

VisiCalc Visible Calculator

WYSIWYT What You See Is What You Test

ViTSL Visual Template Specification Language

xi

Acknowledgement

My utmost gratitude goes to my supervisor, Dr. Phil Cox who has the attitude and

substance of a genius. I would like to thank him for his expertise, kindness, patience and

precision with me in all those long discussions that we had in his office about the

technical issues of my thesis. Also I would like to thank him for teaching me how to

convey my ideas in writing.

I would like to thank Dr.Vlado Keselj and Dr.Karen Jin for being members of the

examining committee.

Finally, I would like to thank my mother who encouraged and supported me

throughout my studies.

1

Chapter 1 Introduction

Spreadsheets are mathematical software systems, used in many areas such as finance,

education and science. Nowadays, many people use spreadsheets as necessary tools for

doing their tasks. For example, employees use them to manage their work and give

reports to their bosses and managers, use them to evaluate their companies’ performance.

There are many reasons that spreadsheet applications are popular. They are relatively

easy to understand and have flexible and user-friendly environments. Spreadsheets are

capable of a wide range of tasks from simple household budgets to complex financial

forecasting and modeling of complex engineering systems.

1.1 History of Spreadsheets

In 1961, Mattessich proposed and developed a computerized spreadsheet system,

which he successfully applied to accounting and budgeting computations. Like

spreadsheets, Mattessich's system arranged formulae and data in arrays; however, these

arrays were not interactive, but processed in batch mode by a FORTRAN program [1].

After Mattessich’s attempt, Pardo and Landau co-invented LANPAR (LANguage for

Programming Arrays at Random) in 1969. Like Mattessich's system, LANPAR was a

batch processing program for arrays of formulae and data, but because it was customized

for business applications, achieved greater commercial success, and was used for

budgeting at companies such as Bell Canada, AT&T, and General Motors. The main

contribution of LANPAR was an algorithm for compiling grid-based computations,

which received a US patent (no. 4,398,249) in August 1982 [2].

Although Mattessich, Pardo and Landau were the forefathers of spreadsheets

systems, none of them influenced spreadsheet concepts and popularity more than Bricklin

2

and Frankston, the inventors of VisiCalc. Dan Bricklin, who was a Harvard Business

School student, thinking about automation of the kinds of grid-based presentation of

calculations which he was required to do as a business student, created the first prototype

of his spreadsheet system in 1978. The program let the users input and edit data in a

matrix, composed of five columns and twenty rows [3]. Bricklin then partnered with Bob

Frankston whose programming expertise significantly improved the efficiency of

Bricklin's implementation, leading to a viable PC-based implementation of Bricklin's

original concept.

Following the addition of Daniel Fylstra, a third partner with marketing expertise, the

team established Software Arts Corporation in 1979 and implemented a commercial

version, called VisiCalc (“visible calculator”), released for the Apple II personal

computer in 1979 [4]. VisiCalc enjoyed considerable commercial success, selling close to

one million copies [3]. Figure 1.1, illustrates the VisiCalc environment.

Figure 1.1 VisiCalc environments from [5]

In 1980, Kapor and Sachs developed Lotus 1-2-3 spreadsheet system. Although they

added more tools and facilities such as cell ranging and macro definition, Lotus 1-2-3 did

not add any special innovative feature to the core concept of VisiCalc [3].

3

After Lotus 1-2-3, Microsoft was the next to produce a spreadsheet system,

introducing Excel 1.0 for the Apple Macintosh in 1984, the first spreadsheet system for a

graphical operating system. With the release of the Windows operating system in 1987,

Excel, which was prepared for Windows, took over Lotus 1-2-3’s place as number one in

the market. Figure 1.2 illustrates the first version of Excel.

Figure 1.2 Excel 1.0 for Apple Macintosh from [6]

1.2 Errors in Spreadsheets

According to a census conducted by the U.S Bureau of Labor statistics in 2005, 11

million people used spreadsheets in the US while there were only 2.75 million computer

programmers [7]. Researchers have estimated that each year, millions of new users from

a wide range of age groups and education levels become spreadsheet users. Therefore, a

rising area of research is focused on giving facilities to the end-users of spreadsheets

systems, in order to make spreadsheets more powerful and more accurate to less prone to

errors.

The majority of research in this area has been focused on creating new methods or

algorithms in order to optimize or enhance spreadsheet environments. However,

4

researchers must be aware that the majority of spreadsheets users are end-users (which

novices or expert for working with spreadsheets), not software engineers [8]. Software

engineering practices are pivotal in ensuring correct spreadsheets, as they enforce design,

development, and rigorous testing phases. End-users, on the other hand, tend to ignore

the design and testing phases. Empirical studies have repeatedly shown that end-users are

reluctant to use, or outright reject, software engineering methods for spreadsheet

development [8], one of the main reasons for the high incidence of errors in spreadsheets.

Error-proneness of spreadsheets can cause catastrophic effects. For example a simple

error in value conversion in the $320M Mars Climate Orbiter, caused one software

component to send data to the thrusters in pounds whereas the Orbiter was expecting it in

newtons, resulting in huge financial damage. Similarly, in another project, misplaced

parentheses in a formula caused a profit of $200M to be computed, when the profit was

actually only $25M [9].

Consequently, a major focus of research is reducing the error-proneness of

spreadsheets. One of the approaches has been to develop algorithms or tools in

spreadsheets [10,11,12,13,14]. These algorithms or tools have different strategies for

dealing with errors, ranging from automatically correcting them, providing the user with

suggestions for how to fix the errors, to simply alerting the user to the problems

[15,16,17,18,19,20].

Another popular approach is to extract the underlying structure of a spreadsheet in

order to helps the users to :

 Detect irregularities, which may signify errors.

 Help users to more easily understand the structure and purpose of the spreadsheet.

5

 Adopt a more object-oriented approach to spreadsheets.

Many errors in spreadsheet formulae might be avoided if spreadsheets are created

from correct structures (templates). That is, if the user first designs the relations between

formulae and data cells and then creates spreadsheets from such templates, the resulting

sheets may be less likely to include errors. While such a template can be manually

extracted from an existing spreadsheet, spreadsheet end-users are likely to be reluctant to

do so, for two reasons:

 Extracting templates from spreadsheets is time-consuming especially for large

spreadsheets.

 Although an end-user may be familiar with the application domain, he or she is

unlikely to understand the software engineering principles required to create a

template.

There are several algorithms for detecting errors in and inferring templates from

spreadsheets. We will review some of the error-detection algorithms and two

methodologies of inferring templates from spreadsheets in chapter 2. Chapter 3 presents

the main body of our work. We propose a novel methodology to infer templates from

existing spreadsheets. Chapter 4 compares our methodology with the related work and

suggests some possible future work.

6

Chapter 2 Detection and Prevention of Errors in Spreadsheets

As discussed in the first chapter, spreadsheets are user-friendly applications for end-

users, ranging in experience from novice to expert. These end-users are not necessarily

computer scientists and most of them are not familiar with programming languages or

software engineering principles such as testing. Therefore, existing spreadsheets contain

many errors [13,21,22,23,24]. Some auditing papers report that 90% or more of

spreadsheets contain errors [25]. Some of the consequences, as reported in [14], include

financial damages, loss of share value, career damages, and loss of shareholder

confidence.

Consequently, tools have been developed to help the user input the correct data and

formulae into the correct cells. Likewise, algorithms have been created to help the user

detect errors in spreadsheets.

These algorithms and tools can be classified into three categories, which we will

discuss in the next three subsections:

 Auditing tools [18, 26, 27, 28]: these help the user input the data and formulae

into the correct cells.

 Testing tools and testing strategies [21,29,30,31]: used for debugging.

Error detection algorithms [8,13,16]: these either detect errors, or help the user to

detect them.

2.1 Auditing Tools

Auditing tools can help users find dependencies among cells. For example, in Figure

2.1, the box around cells BR5 to BR25 together with the arrow pointing to cell BR26

7

show that BR26 contains a formula that refers to the cells in the box. Similarly, cell

BW13, refers to cells BQ13 to BW13, and cell BW13 is used in BW26. These auditing

tools make visible the dependencies between cells, which would otherwise be hidden.

Figure 2.1 Microsoft Excel 2007 built-in auditing tool

Although there are many features in the auditing tools built into some spreadsheet

systems (such as Microsoft Excel), many third parties provide add-ons to these auditing

tools to make them more powerful.

As discussed, auditing tools just act as a guide for the spreadsheet user and cannot

detect or correct errors themselves. Some auditing tools available for Microsoft Excel

2007 are:

 ExcelSmartTools [27] Using the auditing tools provided with Excel, the user

selects one cell at a time and requests that its dependencies be displayed.

8

ExcelSmartTool improves this feature by allowing the user to select several cells

and have their dependencies displayed.

 ExcelSpreadsheet Auditor 2 [31] compares formula cells of a worksheet and

highlights in the same colour cells which have similar formulae.

2.2 Testing Tools

Most expert programmers claim that the testing and debugging of code takes the

majority of their time. A study conducted in the US by the National Institute of Standards

and Technology shows that software engineers usually spend 70-80% of their time testing

and debugging code, and on average, it takes 17.4 hours to find and fix an error [29].

Clearly, testing and debugging are significant and time-consuming tasks for

programmers, and are likely to be equally so for spreadsheet users. Spreadsheet users,

however, are not programmers or software engineers, so have little understanding of the

importance of these aspects of software development. Furthermore, their focus is on the

details of their problem domain (e.g. accounting), not programming details: they just

want to compute the numbers they need as quickly as possible. So if spreadsheet testing

tools are to be effective, these tools must make the process as simple and intuitive as

possible.

There are three main questions that spreadsheet testing must address:

 Does the spreadsheet contain errors?

 In which cells are the errors located?

 How can the errors be corrected?

In the following subsections, we will introduce some popular methodologies for testing

9

spreadsheets.

2.2.1 “What You See Is What You Test” (WYSIWYT)

The WYSIWYT methodology [21] helps the user to keep track of the extent to which

each cell in a spreadsheet has been tested. When the user observes that a correct value has

been computed in a cell, he or she can validate it. When a cell is validated, the definition-

use test adequacy criterion [29] is used to determine the degree of testedness of related

cells, which is indicated by colouring cell borders in shades ranging from red to blue.

Figure 2.2 Student grades spreadsheet (From [28] page 54)

For example consider Figure 2.2 which is a student grades spreadsheet. The values

displayed in the cells with checkmarks have been validated for the current inputs. If a

cell's checkbox is empty or contains a question mark, its value has not been validated for

the current inputs. From the border colors, the user is kept informed of which areas of the

spreadsheet are tested and to what extent. Thus, in Figure 2.2, the "Letter" cell of row 4 is

partially blue (purple), because some of the dependencies ending at that cell have now

been tested, but the "Final" cell of row 7 is blue which means it is fully tested.

Testing a program “perfectly” (well enough to guarantee detecting all faults)

generally requires many test cases, which the user may be unable to generate manually.

10

Therefore, several mechanisms have been proposed to generate test cases. “Help me

Test”, for example, first constructs a chain of dependencies for a specific cell, then

iteratively explores portions of these chains, applying constrained linear searches over the

spreadsheet’s input space and data gathered through iterative executions [29]. With this

process “Help me test” derives test input values and suggests them to the user. Another

mechanism for automatically generating test cases will be described in detail in

subsection 2.2.3.

2.2.2 Goal-Directed Debugging

Goal-directed debugging is a spreadsheet debugging methodology [32]. In this

technique, if the user sees an incorrect value for a cell, he or she provides the correct

value, or range of values, for the cell. Then the system uses this information to deduce

possible values or formula changes to cells that directly influence the value of the

erroneous cell and to achieve the correct value in the target cell [32]. After that the

system uses heuristics to rank the change suggestions from most likely to least likely. For

example consider Figure 2.3, which shows a spreadsheet used to store the grades of

students in a course. A value of 1 in column H indicates that a student’s mark is above

the class average for the course in cell G7. The user, seeing that the value for H2 is

incorrect, right-clicks on the cell and chooses “value expectation” from the pop-up menu

that appears. This produces the dialogue in Figure 2.4, in which the user enters the value

that he or she thinks the cell should have. The system generates change suggestions based

on this value, and displays them in a pop-up menu if the cell is again right-clicked, as

shown in Figure 2.5. The user can choose an appropriate item, ask for more suggestions

or ignore the suggestion values.

11

This methodology works well for the spreadsheets that have one error, but its

effectiveness decreases as the number of errors increases. Also, since change suggestions

are based on values provided by the user, their usefulness is limited if the user makes

mistakes. On the other hand, the users claim that most of the time the correct suggestion

is ranked within the top two [33].

Figure 2.3 Store students’ grades spreadsheet (from [32] page 2)

Figure 2.4 The user suggests a value (from [33] page 132)

Figure 2.5 Change suggestion based on H2 value (from [33] page 132)

12

2.2.3 AutoTest

AutoTest is a system for generating a test case automatically [34]. When the user

selects a cell to be tested, the system generates test values for input cells on which the

selected cell depends, and displays the value that the selected cell would have if these

input values were imposed. The user marks the generated test case as valid or invalid, to

indicate that the displayed value does or does not match the expected value, and in the

latter case, modifies the formula. If the user cannot decide whether the displayed value is

correct or not, he or she ignores the test case. As testing proceeds, the system displays a

progress bar as shown in Figure 2.6 to indicate the degree to which the spreadsheet is

tested.

Figure 2.6 Testing with AutoTest (from [34] page.133)

2.2.4 Test-Driven Goal-Directed Debugging

This approach, a combination of Goal-Directed debugging and AutoTest algorithms

[33], automatically generates test cases for a spreadsheet cell, and depending on feedback

from the user, suggests a new set of test cases for another cell, or proposes changes for

the tested cell. As discussed in previous subsections (2.2.2 and 2.2.3) both AutoTest and

13

Goal-Directed debugging have some problems, which the other addresses.

The Test-Driven Goal-Directed debugging method applies these two methods as

follows [33]:

 AutoTest creates values for input cells to test a particular formula cell.

 The user confirms or rejects the value for the formula cell that results from the

test values.

 If the user rejects the formula cell value, Goal-Directed debugging generates

change suggestions for related cells.

 All the test cases and change suggestions are stored for the user to

view.

Experiments with this method indicate that it is a more efficient and effective

approach than either of the two methods alone. For more information, the reader is

encouraged to review [33].

2.3 Error-detecting Algorithms

As discussed above auditing tools simply show the hidden dependencies between

cells and testing tools help the user to make sure a spreadsheet is thoroughly tested, and

guide the user in his or her search for errors. In the following subsections, we discuss

algorithms for automatically detecting errors.

2.3.1 UCheck

UCheck [13] is an algorithm for automatically detecting errors in spreadsheets. It is

based on unit reasoning, extracting information from labels and headers to check the

consistency of cells [15,20].

14

As Figure 2.7 shows, cell D4 contains a number which counts plums harvested in

June, information which can be inferred from the labels in cells D2 and A4.

UCheck classifies spreadsheet cells into the following groups [13]:

 Header: those cells that contain strings which describe the other cells.

 Footer: usually cells at the end of rows or bottoms of columns containing some

sort of aggregation formulae.

 Core: the data cells.

 Filler: empty cells that separate regions in a spreadsheet.

Figure 2.7 Extracting information from labels and headers (From [13] page 72)

UCheck provides a header inference framework to extract headers from

spreadsheets. Since the layout of spreadsheets varies widely, it is impossible for a single

algorithm to work equally well in all cases. Therefore, the framework consists of four

algorithms which detect special arrangements of cells to classify them, and infer the

headers to be used in the following operations:

15

Figure 2.8 Wrong range for B6 formula cell (From [13] page 87)

Fence identification: detects blank cells (soft fence) in the data regions. Also this

algorithm has the ability to detect hard fences, those columns that are repeated with their

headers.

Content-Based cell classification: classifies cells according to their values. For example if

a cell contains a number, it is considered as a core cell; if it contains a string it is

considered to be a header. For example, in Figure 2.7, cells D3, D4, D5 are core cells.

Region-based cell classification: infers the types of cells according to their positions. For

example if a cell is located in the leftmost column of a spreadsheet and has a string value,

it is classified as a header. For example, in Figure 2.7, cells A2-A6 are header cells.

Footer to core expansion: detects aggregation formulae, then classifies all data cells

which are used in formula cells as core cells. For example, in Figure 2.7, cell B6 is a

footer cell and cells B3, B4 and B5 are core cells.

Once header cells have been identified, UCheck uses them to infer the units of the

formula cells. If a formula cell does not have a well formed unit, there is an error with

16

several possible causes, such as an incorrect reference to another cell or an incorrect

range. For example, in Figure 2.8, the headers of B2, B3 and B4 are Fruit,

Month[May]&Fruit[Apple] and Month[June]&Fruit[Apple] respectively. Since the

formula in B6 is SUM(B2:B4), UCheck infers for B6 the header Fruit |

Month[May]&Fruit[Apple] | Month[June]&Fruit[Apple] which is not well-formed since

the last two alternatives are compatible with each other but not with the first. This error

results from the incorrect range B2:B4 in the formula of B6.

2.3.2 XeLda

XeLda [26] checks the dimensions of formula cells for any inconsistencies.

Dimensions are units of measurement expressed as types familiar to end users [8]. For

example, for a dimension such as length, there are several units of measurement such as

cm, metre and ft. XeLda requires users to annotate all cells with units, including formula

cells. For example in Figure 2.9, the cells B2 and B3 and B4 are annotated (Miles,1)

Figure 2.9 XeLda example (from [8] page 280)

meaning that the dimension is “Mile” with exponent 1. Suppose, the user decides to

annotate D4 (Mile,1)(Gallon,-1) because the column’s header is MPG (Mile per

Gallon). Since the formula in D4 is B4 + C4 and B4 and C4 are annotated (Mile, 1) and

(Gallons, 1), XeLda infers for D4 the dimension (Mile, 1) (Gallon,1) contradicting the

17

user's annotation.

Since XeLda does not rely on any automatic processes such as header inference. its

performance cannot be impaired by faults in such processes. On the other hand, it incurs

a heavy overhead for the user, who must annotate every cell.

2.3.3 SLATE

SLATE [35], like XeLda, requires the user to annotate each cell with a value,

dimension, and label, even those cells containing no references to other cells, before the

analysis can begin. For example a cell referring to 100 kilograms of oranges is annotated

as (100, Kg, apples). After the user annotates the cells, SLATE analyzes the cells with

formulae containing references and infers dimensions and labels for these cells from the

dimensions and labels of their data cells. SLATE does not show the errors explicitly. But

if the unit and label which the process determines for a cell are different from the user

annotation, the system replaces them with the new dimension and label. For example, in

Figure 2.10, first the user annotates the formula cell C4 as (A4+B4, Miles/Gallon,

BMW). But after the system determines the unit and label for C4, the annotation for cell

C4 will be (A4+B4, Miles, Gallons, BMW), which is different from the annotation that

user has written.

Figure 2.10 An example for SLATE result (from [8] page 280)

18

2.3.4 Automatic Detection of Dimension Errors

SLATE and XeLda, are examples of algorithms which detect errors using dimension

information supplied by the user. In this section, we describe a system that infers the

dimension information automatically, rather than requiring the user to annotate it [8].

This procedure is divided to the following steps:

 Header inference

 Label analysis

 Dimension inference

Header inference, which is discussed in 2.3.1, determines headers for each cell. For

example in Figure 2.11, the system determines that C1 and B4 are headers for cell C4. In

step 2 the algorithm tries to extract dimension from each header according to the

following process [8]: a) split headers into separate words. b) Extracting stems of the

words c) if the algorithm finds any appropriate stems, which are matched with any of the

dimensions, then combine them with each other. For example in Figure 2.11, C1 and B4

are headers for C4, therefore the label analysis determines that “hours” which is

converted to “hour” is a dimension for time.

The third step is automatic dimension inference. In this step the system infers the

dimensions of each formula cell according to some specific rules [8] and compares them

with the dimensions which are extracted from the headers of the formula cells. If these

dimensions are not the same, the system reports an error to the user. For example as

you can see in Figure 2.11, cell D4 has formula B4+C4; dimension inference

deduces from the formula, that the dimensions for D4 are “mile” and “hour” (which are

deduced from B4 and C4). But the dimensions which are deduced from header (D1) are

19

mile and hour -1 (-1 is derived from the “per” word in the header). Therefore when the

algorithm compares these two dimensions, it detects that they are not similar and it

reports an error to the user.

In this method, in contrast to XeLda and SLATE, the user does not annotate cells

with labels and dimensions, and the system extracts dimensions automatically from the

headers of the cells. Therefore it requires less workload for users to enter data in the

spreadsheets.

Figure 2.11 An example for automatic detection (from [8] page 271)

2.4 Templates

The methodologies discussed so far, are related to finding errors in spreadsheets.

However, an alternative approach to the problem of spreadsheet errors is to prevent them

from occurring in the first place.

A solution to this problem is provided by techniques for analysing existing

spreadsheets to extract their structure and automatically create templates. We will discuss

two such mechanisms. The first derives templates expressed in the ViTSL template

language [36], while the second produces representations of spreadsheet structure in the

ClassSheets language, from which a ViTSL representation can also be generated.

20

2.4.1 Inferring ViTSL Templates

ViTSL (an acronym for visual template specification language) is a visual language

for creating spreadsheet templates, which can then be applied within Excel to obtain

spreadsheets that conform to the templates using an Excel add-on called Gencel. The

architecture of ViTSL/Gencel is illustrated in Figure 2.12.

Figure 2.12 ViTSL/Gencel architecture (from [18] page 2)

There are two significant constructs in ViTSL. A vex group, represented by a vertical

line of dots, indicates that a group of consecutive rows can be repeated in the vertical

direction. Similarly a hex group, represented by horizontally arranged dots, indicates that

a group of consecutive columns can be repeated. For example as shown in Figure 3.13,

the vex group dots below row 3 indicate that this row can be repeated, and the hex group

dots to the right of column D indicate that columns B, C and D can also be repeated.

Figure 2.14 depicts a spreadsheet obtained by applying this template in Excel, using the

Gencel tool.

21

Figure 2.13 A template created in the ViTSL editor (from [18] page 3)

Figure 2.14 Gencel spreadsheet (from [18] page 3)

The vex and hex groups in a ViTSL template define rectangular tables, for example,

the rectangle from A1 to H5 in Figure 2.15. Hence, the first step in the method for

automatically creating ViTSL templates, reported in [36], detects such tables, using some

spatial analysis algorithms from UCheck [13].

Figure 2.15 Grade sheet example (from [36] page 184)

22

Once a table has been found, the next step is to find formulae in the table which are

"cp-similar", meaning that one formula would result from copying and pasting the other

[21]. As Figure 2.16 shows, there are two sets of cp-similar cells in the grade sheet

example in Figure 3.4, those outlined in columns 3, 5 and 7, and those outlined in column

8.

Figure 2.16 cp-similar regions in grade sheet (from [36] page 186)

After detecting rectangles of cp-similar cells in a table, the system tries to overlay

them, along with the rectangles of data cells they refer to, to find both horizontal and

vertical repetitions. For example, in Figure 2.16, the cp-similar cells in column 3 and

their referenced data cells in column 2 can be overlaid with the corresponding cells in

columns 5 and 4, and the corresponding cells in columns 7 and 6. This repetition of

columns provides the basis for creating a hex group. Similarly, the cells from column 2 to

column 8 in row 3 can be overlaid with the corresponding cells in rows 4 and 5, leading

to creation of a vex group.

The algorithm can ignore some of trivial errors during the overlay process. For

example, when two rows could be overlaid but do not have the same type of data cells in

specific locations, the system can carry out the overlaying (in the absence of better

options) and report the number of violations.

23

This method for inferring templates from spreadsheets has some shortcomings. For

example it cannot extract templates from those spreadsheets in which hex and vex groups

cannot be created.

2.4.2 ClassSheets

Like ViTSL, ClassSheets is a spreadsheet-like language with which a spreadsheet

developer can build templates from which spreadsheet applications can be generated [38].

Unlike a ViTSL template, which relies on vertical and horizontal repetition of related

rows and columns to express structure, a ClassSheets template captures structure using

object-oriented classes and database concepts [37]. In this section, we will describe the

structure of ClassSheets with the example in Figure 2.17, a spreadsheet of sales records.

Figure 2.17 a spreadsheet for sales records. (From [38] page 220)

The first step in the process of extracting a ClassSheet template is detecting

functional dependencies between attributes or sets of attributes in a spreadsheet, where an

attribute is a column label. For example in Figure 3.6, “upc”, “size”, “week” are the

attributes. Sets, which are defined by users, consist of one or many attributes. For

example Dish and StoreWeek can be considered as two sets, which Dish has “upc”,

“com_code”, “description”, “size” and “case” as attributes and StoreWeek consists of

“store” and “week”.

Functional dependencies are determined using standard rules, described in [38].

After determining the functional dependencies, the algorithm categorizes attributes

24

and according to standard relational database concepts, selects primary keys and foreign

keys for each of sets. For example, Figure 2.18 illustrates sets and attributes of the

spreadsheet of sales records. In Figure 2.18, attributes which specify with underline are

primary keys for the sets.

 StoreWeek(Store,Week)

 Dish(upc,com_code, description, size,case,nitem)

 Sale(upc,store,week,move,profit,price,onsale,qty,ok)

Figure 2.18 Sets and attributes of the sale system (from [38] page 5)

In the next step, a directed graph is constructed according to the relations among the

sets discussed above. Figure 2.19, depicts the directed graph for the sales records system.

Figure 2.19 Directed graph for the sale system. (From [38] page5)

In the next step the system translates directed graph nodes into a ClassSheets

structure as shown in Figure 2.20. In this Figure, R is the root of the directed graph, M

and N represent sets of nodes of the directed graph, M1,..,Mr represent primary keys of

M, N1,…,Nr represent primary keys of N, Mr+1,..,Mu and Nr+1,..,Nu represent the rest of

attributes in the sets M and N respectively. R1,…,Ry represent the attributes of set R and

dn1,..dnu, dm1,..dmu and dr1...dru are values of the corresponding attributes of sets N,M

and R respectively. Therefore, as Figure 2.21 shows, for the sales system, R, M and N are

equal to Sale, Dish and StoreWeek respectively. Figure 2.21 is the ClassSheets structure

for the sales system when the system puts primary keys and attributes of M, N and R in

25

the appropriate cells.

Figure 2.20 General structures of ClassSheets (from [38] page 6)

Figure 2.21 A ClassSheets structure for the sale system (from [38] page 6)

26

Chapter 3 Inferring Templates from Spreadsheets

As discussed in chapter 2, extracting templates from spreadsheets is a difficult

process because spreadsheet design does not obey any specific rules. There are, however,

some methods for extracting templates from spreadsheets that we described in chapter 2

[36,38]. In this chapter we will introduce our technique for extracting templates from

spreadsheets and converting them into programs in L-sheets, which we will describe in

the next section. It is important to note that, our goal is to define the patterns that can be

used to build templates, not to provide algorithms to extract these patterns, but it should

be clear that such algorithms can be constructed.

Our method for extracting templates from spreadsheets focuses on formula cells and

the data cells they refer to, ignoring other features such as labels. We will discuss this

focus further in Chapter 5.

3.1 L-sheets

L-sheets is a spreadsheet extension that enhances the programmability of

spreadsheets with logic programming. An L-sheets application consists of worksheets

like those in Microsoft Excel, and program sheets. A program sheet consists of a set of

templates, each of which is a sequence of cases. For example, Figure 3.1 depicts two

templates, budget, consisting of one case, and years consisting of two cases. A case is

made up of a head and a body, which are respectively, a form and a sequence of forms. A

form has a name, and contains several parameters which are arrays. For example, in the

Figure, the body of the single case of the budget template has just one form, which is

named years and has two parameters. Head forms have a pale grey background while

body forms are lighter grey arrays in forms are depicted as rectangles divided by

27

horizontal and vertical lines. A vertical grey line indicates that an array represents a

rectangle of any width in a worksheet, and a horizontal grey line indicates that an array

represents a rectangle of any height in a worksheet.

Figure 3.1 Program sheet for Budget example (from [39] p.93)

Arrays in forms may be divided into subarrays, which may be named. For example, the

array in the head form of the single case of the budget definition includes embedded

subarrays named A and B. A subarray may contain a constant or a formula. In our

example, the bottom left and bottom right subarrays of the parameter array of the head of

the single case of the budget template contain, respectively, the constant Total, and the

formula SUM(B1,2:B↓,2).

Note that in this description of L-sheets, we have used the words “template” and

“form” rather than “definition” and “template” as in [39,40], so that, as in [36] we can

use “template” to mean a specification of spreadsheet structure.

28

The annotations F1, F2… are not part of the program, but have been added to

indicate cells which contain formulae. In a program sheet formula a reference consists of

a subarray name followed by a row and column of that subarray. For example, the

formula SUM(B1,2:B↓ ,2) refers to the rectangle consisting of all cells from the top to the

bottom of column 2 of subarray B.

L-sheets programs can be represented textually, which will be convenient later in this

chapter, using a Prolog-like notation in which each case is represented as a clause. Since

we ignore labels when extracting the structure from a spreadsheet, we omit them also

from this textual representation. To illustrate, the representation of the single case of the

budget template in Figure 3.1 is:

budget(X) :- years(Y,Z).

where X, Y and Z represent the parameters of the two forms. A parameter is represented

by a pair of lists; for example X is the following pair

(

((∅,1), ({A},*), ({B},1), ({=SUM(B1,2:B↓,2),B},1)),

(({A},1),({},1), ({B},*), ({=SUM(B1,2:B↓,2)},1)}

)

The first list represents the division of the array into vertical strips. In this example, the

first vertical strip, represented by the pair (∅,1), spans nothing significant and is one

column wide; the second strip, represented by ({A},*), spans subarray A, and is any

width; the third spans subarray B and is 1 column wide; and the last strip spans a formula

and the subarray B and is one column wide. In the same way, the second list represents

the division into horizontal strips.

29

3.2 Representing a Spreadsheet

As mentioned above, our method for extracting spreadsheet structure focuses on

formula cells and the cells they refer to. To expedite our analysis, we build a

representation of a spreadsheet as a set of characteristics, where a characteristic

corresponds either to a formula cell, or a cell referred to by a formula cell. Note that in

this representation, there may be several characteristics corresponding to one cell. For

example, if a cell contains a formula and is also referred to by two other formula cells,

there will be three characteristics corresponding to it.

If x is a cell containing a formula f, let f1,…, fn denote the cells referenced by f in the

order of their first occurrences in f, and let f’ denote the expression obtained by replacing

each occurrence of fi in f by <i> for each i (1≤i≤n).

Definition 1: If S is a spreadsheet, let x be a cell of S that either contains a formula f, or

is referenced by a formula f in a cell y, then a characteristic of S corresponding to

x is a 6-tuple of the form (t, l, b, r, ex, rel) where

• t = b = the index of the row of S in which x occurs,

• l = r = the index of the column of S in which x occurs,

• ex is the expression ≈(<0>,f’)

• rel is the sequence (c0, c1, …, cn) where ci is the characteristic of S corresponding

to fi for each i (1≤ i ≤ n), and c0 is the characteristic of S corresponding to the

cell containing f.

We will use names of the components of a characteristic as functions: for example, if

c is a characteristic, rel(c) will denote the sixth component of c. Also, we will denote by

30

31

rect(c) the tuple (t(c), l(c), b(c), r(c)). We will apply these conventions to other

entities later on.

Consider Figure 3.2, characteristics are shown for each formula cell and its data

cells. In this Figure, cells contain names that we will use to identify characteristics in our

discussion, as well as formulae, expressed in terms of these names. For example cell

R3C4 contains a formula which refers to R3C2, R3C3 and R11C2. The role of R3C4 as a

formula cell is represented by the characteristic c1, and the roles of R3C2, R3C3 and

R11C2 as data cells referred to by R3C4 are represented by the characteristics a1, b1 and

z11. The characteristics a1, b1, c1 and z11 are as follows:

a1=(3,2,3,2, ≈(<0>, (<1>*<2>+<3>)),(c1,a1,b1,z11))

b1=(3,3,3,3, ≈(<0>,<1>*<2>+<3>)),(c1,a1,b1,z11))

c1=(3,4,3,4, ≈(<0>,<1>*<2>+<3>)),(c1,a1,b1,z11))

z11=(11,2,11,2, ≈(<0>,<1>*<2>+<3>)),(c1,a1,b1,z11))

Note that if a cell is referenced by several different formula cells, there will be a

distinct characteristic corresponding to it for each reference. In addition, if the cell

contains a formula, there will a characteristic corresponding to it, representing its role as

a formula cell. For example, in addition to c1, discussed above, R3C4 has two

characteristics, v1 and cp1, corresponding to references from R7C4 and R3C9

respectively.

3.3 Finding Patterns in a Spreadsheet

From now on, we will use the word 'spreadsheet' to mean both the familiar

rectangular grid of cells, and the set of all characteristics derived from a spreadsheet.

32

The patterns of interest in a spreadsheet involve repetitions of groups of cells linked

by formulae, and regularly spaced either horizontally or vertically. Such repetitions are

frequently accompanied by cells containing formulae which compute summaries of the

values of repeated cells. In general, a summary formula can contain aggregator functions,

such as +, which can have any number of arguments. We start our analysis with some

technical definitions that we can use to organise the list of arguments of a function into

subsequences, then use these definitions to help characterise summaries.

Definition 2: If t, k and p are positive integers such that tk ≤ p, let K be a sequence of

length k+1 of sequences of integers between 1 and p, such that the elements of K

are mutually disjoint, |Kk+1| = p–tk, |Ki| = t for each i (1≤i≤k), and for each i

(1≤i≤k+1) the elements of Ki are distinct. K is called a ktp-division. Each element of

Kk+1 is called a remainder of K.

If X is any sequence of length p and K is a ktp-division, let Y be the sequence of

sequences of elements of X such that Yi,j = XKi,j for all i (1≤i≤k) and j (1≤j≤t), and

Yk+1,j = XKk+1,j for all j (1≤j≤p–tk). Y is called the kt-division of X induced by K, and

each element of Yk+1 is called a remainder of Y.

For example, ((12,5,8,2),(1,11,6,9),(15,13,10,4),(3,14,7)) is a 3-4-15 division and

induces the 3-4-division ((L, E, H, B), (A, K, F, I,), (O, M, J, D), (C, N, G)) of (A, B, C,

D, E, F, G, H, I, J, K, L, M, N, O).

Definition 3: A binary function f is called an aggregator iff for some a, called the

identity of f, f(a,x) = x for all x. If f is an aggregator with identity a, for each n≥0,

we define an n-ary function f n as follows:

33

 f 0 = a

f n(x1,…,xn) = f (f n–1(x1,…,xn–1),xn)

If f is a p-ary function and K is a ktp-division, then f is a repetition with respect to K

iff there exists a function g, and for some q ≥ 1 there exist functions e1,…, eq, and

aggregators h1,…, hq such that for all X

f(X) = g(h1
k(e1(Y1, Z1), …, e1(Yk, Z1)),

 …,

hq
k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0)

where Y is the kt-division of X induced by K, for each i, Zi is a sequence of distinct

elements of Yk+1, and Z0,…, Zq together include all elements of Yk+1.

Let c be a characteristic such that ex(c) = ≈(<0>,f) where f has arity p and is a

repetition with respect to some ktp-division K. Let Y be the kt-division of (rel(c)1,...,

rel(c)p) induced by K. Then c is called a summary of the sequence of characteristics

(Y1,i, …, Yk,i) for each i (1≤i≤t) , and each element of Yk+1 is called a peripheral of c.

For example in Figure 3.2, R3C9 is a summary of each of the sequences of

characteristics (cp1,fp1), (g1,h1) and (vp1,wp1). For this cell, SUM and COUNT are

aggregators and division (/) is the g function. Multiplication in (cp1 * g1) and (fp1 * h1)

are e1 and e2 functions and there are no arguments to the function other than the

characteristics in the summarised sequences.

The patterns we are looking for include repeated groups of functionally related cells.

The next definition requires the cells within one group in a repetition to have the same

relationships as the corresponding cells within another group.

34

Definition 4: Two disjoint sequences (c1,…,cn) and (d1,…,dn) of distinct characteristics

are i-compatible, where 1≤i≤n, iff

• ex(ci) = ex(di)

• for some k (1≤k≤n), rel(ci)0 = ck and rel(di)0 = dk

• ∀ j (1≤j≤|rel(ci)|) either rect(rel(ci)j) = rect(rel(di)j) or for some k (1≤k≤n), rel(ci)j

= ck and rel(di)j = dk

For example in Figure 3.2, the sequences (a1,b1,c1,v1,cp1,d1,e1,f1,w1,fp1) and

(a2,b2,c2,v2,cp2,d2,e2,f2,w2,fp2) are 1-compatible because :

 ex(a1) = ex(a2)

 rel(a1)0 = c1 and rel(a2)0 = c2, where c1 and c2 are the third elements of the

sequences

These sequences are also i-compatible for every value of i from 2 to 10. But the

sequences (a1,b1,c1,v1,cp1,d1,e1,f1,w1,fp1,p1) and (a1,b1,c1,v1,cp1,d1,e1,f1,w1,fp1,p2)

are not 11-compatible because the third condition of the compatibility definition is not

satisfied.

Compatibility deals with the functional similarity between repeating groups of

characteristics, an important property of the patterns we are interested in. These patterns,

however, also require repeated cells to satisfy certain geometrical requirements, in

particular, vertical or horizontal alignment, and even spacing, which are dealt with in the

following definitions.

Definition 5: A nonempty sequence of distinct characteristics (c1, c2, …, cn) is called a

horizontal match iff t(ci) = t(cj) and ex(ci) = ex(cj) for all i, j (1≤i≤j≤n); and there

35

exists d≥1 such that for all i (1≤i<n), l(ci+1)-r(ci) = d. The constant d is called the

gap of the match.

We define vertical match similarly. A match is either a horizontal match or a

vertical match.

A nonempty set C of matches is said to be acceptable if all the matches in C are the

same length, and no characteristic occurs more than once in C.

In Figure 3.2, each of M1 = (a1, b1, d1) and M2 = (r1, r2, r3) is a horizontal match

and each of M3 = (p1, p2, p3), M4 = (a1, a2, a3) and M5 = (b2, b3) is a vertical match. C

= {M1, M2, M3} is an acceptable set. M1 and M4 cannot be in the same acceptable set

since they overlap, and M5 cannot be an acceptable set with any of the others since it is

shorter.

Now we define patterns consisting of sequences of repeated items.

Definition 6: If C = {C1, …, Cm} is an acceptable set of matches, then for each i

(1≤i≤|C1|), the sequence of characteristics (C1,i, …, Cm,i) is called a slice of C.

A linear repeat is a set R of acceptable matches such that for each i (1≤i≤|R|) and

for any two slices d and e of R, either d and e are i-compatible or there is a

characteristic which is a summary of Ri.

The length of a linear repeat R is the length of its matches.

In Figure 3.2, let Q be the set of matches {(a1,a2,a3), (b1,b2,b3), (c1,c2,c3),

(v1,v2,v3), (cp1,cp2,cp3), (d1,d2,d3), (e1,e2,e3), (f1,f2,f3), (w1,w2,w3), (fp1,fp2,fp3),

(p1,p2,p3), (p1q,p2q,p3q), (p1r,p2r,p3r), (r1,r2,r3)}, then Q is acceptable since the

matches in Q are disjoint and the same length, any two slices of Q are i-compatible for i =

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13 and 14, and there is a summary for Q4 and a summary for

36

Q9. Note that any subset of Q is a linear repeat, as is the set of matches we get by

removing the first (or second or third) characteristic from each match in Q. Note also that

a linear repeat may include both horizontal and vertical matches; for example, all matches

in Q are horizontal except the last.

The rectangle of cells from a1 to g3 contains a horizontal repeating pattern and a

vertical repeating pattern, so the next three definitions complete the definition of repeats

to account for such rectangles of two-dimensional patterns.

Definition 7: If H is a set of horizontal matches and V is a set of vertical matches, or vice

versa, such that the set of characteristics in H is equal to the set of characteristics in

V, then a match of H is said to be major with respect to V iff it contains a

characteristic that occurs in the first slice of V.

 For example in Figure 3.2, H = {(a1,b1,c1,d1,e1,f1), (a2,b2,c2,d2,e2,f2),

(a3,b3,c3,d3,e3,f3)} is a set of horizontal matches and V = {(a1,a2,a3), (b1,b2,b3),

(c1,c2,c3), (d1,d2,d3), (e1,e2,e3), (f1,f2,f3)} is a set of vertical matches then the first

element of H is the major with respect to V because characteristics in the first element of

H are in the first slice of the V.

Definition 8: A set of matches is consistent if they are either all vertical or all horizontal

and have the same gap.

For example in Figure 3.2, H = {(a1,d1),(a2,d2),(a3,d3)} is consistent because all of

its elements are horizontal matches and the gap is 3 cells but H = {(a1,a2), (b1,b3),

(c1,c3)} is not consistent because its elements have different gaps.

Definition 9: A candidate is a pair (P,Q) of linear repeats such that at least one of P and

Q is of length ≥ θ, and there exist partitions {P1, …, Pn, Pn+1, …, Pt} and {Q1, …,

37

Qn, Qn+1, …, Qs}, of P and Q, which are the coarsest partitions of P and Q into

consistent sets such that

• for each i (1≤i≤n), the set of characteristics in Pi is equal to the set of

characteristics in Qi, and either the matches in Pi are vertical and those in Qi are

horizontal, or vice versa. (Pi,Qi) is called a 1,2-block of (P,Q).

• if n<i≤t, then Pi consists of a single match and either

• Pi,1,1 is a summary of some matches, each of which is either major with

respect to Qj for some j (1≤j≤n), or contained in Qj for some j (n<j≤s)

• rel(Pi,1,1)0 ≠ Pi,1,1; or

• each x in rel(Pi,1,1) either does not occur in (P,Q), or occurs in the first

slice of Qj for some j (1<j≤n), or in Pj for some j (n<j≤t).

• if n<i≤s, then Qi consists of a single match and either

• Qi,1,1 is a summary of some matches, each of which is either major with

respect to Pj for some j (1≤j≤n) or contained in Pj for some j (n<j≤t)

• rel(Qi,1,1)0 ≠ Qi,1,1; or

• each x in rel(Qi,1,1) either does not occur in (P,Q), or occurs in the first

slice of Pj for some j (1<j≤n), or in Qj for some j (n<j≤s).

The constant θ ≥2 is called the repeat threshold. For each i, where n<i≤t, Pi is

called a 1-block of (P,Q). For each i, where n<i≤s, Qi is called a 2-block of (P,Q).

A candidate (P,Q) is a repeat iff

• there is no candidate (R,Q) such that either P ⊂ R, or |P|=|R| and Pi is a

subsequence of Ri for each i (1≤i≤|P|); and

38

• there is no candidate (P,R) such that either Q ⊂ R, or |Q|=|R| and Qi is a

subsequence of Ri for each i (1≤i≤|Q|).

In Figure 3.2, let P and Q be the following sets of matches

P = {(a1,d1), (b1,e1), (c1,f1), (v1,w1), (cp1,fp1), (a2,d2), (b2,e2), (c2,f2), (v2,w2),

(cp2,fp2), (a3,d3), (b3,e3), (c3,f3), (v3,w3), (cp3,fp3), (v,w), (vx,wx),

(vp1,wp1), (vp2,wp2), (vp3,wp3), (g1,h1), (g2,h2), (g3, h3)}.

Q = {(a1,a2,a3), (b1,b2,b3), (c1,c2,c3), (v1,v2,v3), (cp1,cp2,cp3), (d1,d2,d3),

(e1,e2,e3), (f1,f2,f3), (w1,w2,w3), (fp1,fp2,fp3), (p1,p2,p3), (p1q,p2q,p3q),

(p1r,p2r,p3r), (r1,r2,r3)}.

As discussed above, Q is a linear repeat. We leave it to the reader to establish that P

is also a linear repeat.

Now let P and Q be partitions of P and Q, as follows:

P = {{P1, …, P20}, {P21}, …, {P23}}

Q = {{Q1, …, Q10}, {Q11}, …, {Q14}}

The sets of characteristics in P1 and Q1 are the same, the matches in P1 are

horizontal, the matches in Q1 are vertical, each of the other sets in P and Q consists of a

single match, and all the sets in P and Q are consistent.

To verify that (P,Q) is a candidate, we need to check that each of P2, P3, P4, Q2, Q3,

Q4 and Q5 satisfy the conditions. For example, rel(P2,1,1)0 = rel(P21,1)0 = rel(g1) ≠ g1;

hence P2 satisfies the conditions. Now Q2,1,1 = Q11,1 = p1, which is a summary of P21, P5

and P18. The first of these is contained in one of the singleton sets in P, while each of the

other two is major wrt Q1. Hence Q2 satisfies the conditions. Lastly, considering Q5, we

39

see that rel(Q5,1,1) = rel(Q14,1) = rel(r1) =(p1r), so since p1r occurs in the singleton set Q13

of Q, Q5 satisfies the conditions. We leave it to the reader to verify that remaining four

singleton sets conform to the definition.

It is easy to see that there are no coarser partitions of P and Q that satisfy these

conditions, since the set of characteristics occurring in {P21}, …, {P23} is disjoint from

the set of characteristics occurring in {Q11}, …, {Q14}. It is also clear that the candidate

(P,Q) is a repeat, since P and Q contain all characteristics representing repeated items.

3.4 Representing the Structure of a Repeat

Once a repeat has been identified, we want to build a structure that represents a

generalisation of it. For this purpose we define groups of characteristics according to the

roles they play in the repeat. These groups contain references to other groups,

corresponding to functional relationships, and groups that have a geometrical relationship

are combined. The groups and the relationships between them can be represented as a

tree, like that in Figure 3.3, which corresponds to the repeat in Figure 3.2, discussed in

the last example. We suggest that the reader identify in it examples of each of the

definitions that follow. We will describe the conventions used in drawing the tree during

the presentation of the definitions.

Definition 10: A group of a repeat is either an rr, r1s, r2s, r1, r2, s1, s2, a, b, r1a, r2a, or

e- group.

If c is a characteristic such that c does not occur in repeat (P,Q), and either rel(c)0

occurs in (P,Q), or rel(c)0 is a summary of some matches in the 1-blocks of (P,Q),

or rel(c)0 is a summary of some matches in the 2-blocks of (P,Q), then the e-group

40

41

of (P,Q) corresponding to c is the set of characteristics {d | rect(d)=rect(c) and d

satisfies the same conditions as c with respect to (P,Q)}.

Figure 3.3, has an e-group corresponding to {z11,z12,z21,z22,z31,z32}.

In Figure 3.3, each group is drawn as a grey rectangle annotated with the group type.

The dotted lines below groups indicate the sets of characteristics that they encompass,

represented by the boxes, while the characteristics that comprise these sets are

represented by the diamonds inside the boxes.

Definition 11: Let c be a characteristic that does not occur in repeat (P,Q), and is a

summary of some matches in the 1-blocks of P, and ex(c) = ≈(<0>, g(h1
k(e1(Y1, Z1),

…, e1(Yk, Z1)),…, hq
k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then for 1≤i≤q, the ith s1a-group

of (P,Q) corresponding to c is the triple A = (ex, id, cont), where

• cont = {c}

• id is the identity of the aggregator function hi

• ex = hi(n(A), ei(n(y1),…, n(y|Y1|), n(z1), …, n(z|zi|))

where for 1≤j≤|Y1|, yj is the significant subarray (see below) of (P,Q) such that

rel(c)Y1,j ∈ cont(yj); and for 1≤j≤|Zi|, zj is the significant subarray of (P,Q) such that

rel(c)Zi,j ∈ cont(zj).

We define s2a-group analogously.

The function n in this definition associates names with certain subarrays, and,

together with another naming function n1, will be defined later.

Definition 12: Let c be a characteristic that does not occur in repeat (P,Q), and is a

summary of some matches in the 1-blocks of (P,Q), and ex(c) = ≈(<0>, g(h1
k(e1(Y1,

42

Z1), …, e1(Yk, Z1)),…, hq
k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then the s1-group of (P,Q)

corresponding to c is the pair (ex, cont) such that

 cont = {c}

 ex = g(n(A1), …, n(Aq), n(s1), …, n(s|Z0|))

where for 1≤j≤|Z0|, sj is the significant subarray (see below) of (P,Q) such that

rel(c)Z0,j ∈ cont(sj)

We define s2-group analogously.

For example, in Figure 3.3, s1-group corresponds to x and s1a-group is associated

with the s1-group via the ex component. Because the aggregator in s1a refers to vx, a

dotted arrow from s1a to head of r1s-group shows this dependency.

Definition 13: If C is a 1-block of (P,Q) and C1,1 is not a summary, the r1-group of (P,Q)

corresponding to C is the triple (ex, head, tail) such that

 tail is the set of all characteristics in C1 except the first

 head = {C1,1}

 ex = f(n(s1),…, n(sm)) if C1,1 =rel(C1,1)0, ex(C1,1) = ≈(<0>, f(<1>,…,<m>), and

for 1≤j≤m, sj is the significant subarray (see below) of (P,Q) such that rel(C1,1)j ∈cont(sj), and ex = nil otherwise.

We define r2-group analogously.

For example, in Figure 3.3, the head and the tail of the r1-group corresponding to

{g1,g2,g3} and {h1,h2,h3} respectively.

Definition 14: Let C be a 1-block of (P,Q), C1,1 is a summary, and ex(C1,1) = ≈(<0>,

g(h1
k(e1(Y1, Z1), …, e1(Yk, Z1)),…, hq

k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then for 1≤i≤q,

43

the ith r1a-group of (P,Q) derived from C is the 4-tuple A = (ex, id, head, tail),

where

 tail is the set of all characteristics in C1 except the first

 head = {C1,1}

 id is the identity of the aggregator function hi

• ex = hi(n(head(A)), ei(n(y1),…, n(y|Y1|), n(z1), …, n(z|zi|))

where for 1≤j≤|Y1|, yj is the significant subarray (see below) of (P,Q) such that

rel(C1,1)Y1,j ∈ cont(yj); and for 1≤j≤|Zi|, zj is the significant subarray of (P,Q) such

that rel(C1,1)Zi,j ∈ cont(zj).

We define r2a-group similarly.

Definition 15: If C is a 1-block of (P,Q), C1,1 is a summary, and ex(C1,1) = ≈(<0>,

g(h1
k(e1(Y1, Z1), …, e1(Yk, Z1)),…, hq

k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then the r1s

group of (P,Q) corresponding to C is the 3-tuple (ex, head, tail) such that

 tail is the set of all characteristics in C1 except the first

 head = {C1,1}

 ex = g(n(head(A1)), …, n(head(Aq)), n(s1), …, n(sk))

where for each i (1≤i≤q), Ai is the ith r1a-group corresponding to C, and for

1≤j≤|Zi|, sj is the significant subarray (see below) of (P,Q) such that rel(C1,1)Zi,j ∈
cont(sj).

We define r2s-group similarly.

For example, in Figure 3.3 the head and tail of the r1s-group correspond to

{v,vx,vp1,vp2,vp3} and {w,wx,wp1,wp2,wp3} respectively. The r1a-groups are

44

associated with the r1s-group via the ex components. The dotted lines from r1a-groups to

the other groups show that these aggregators are dependent on the other groups.

Definition 16: If (R,S) is a 1,2-block of (P,Q), a b-group of (R,S) is a pair of the form

(ex, cont) such that, for some y in the first slice of R and the first slice of S:

 cont = { x | rect(x)=rect(y) and x occurs in the first slice of R and the first slice

of S}

 ex = f(n(s1),…, n(sm)) if for some x ∈ cont, x=rel(x)0, ex(x) = ≈(<0>,

f(<1>,…,<m>), and for 1≤j≤m, sj is the significant subarray (see below) of (P,Q)

such that rel(x)j ∈cont(sj). ex = nil otherwise.

Definition 17: If (R,S) is a 1,2-block of (P,Q), the rr-group of (P,Q) corresponding to

(R,S) is the pair (head, tail), where :

 tail = { x | characteristic x occurs in some slice of R other than the first }

 head is a pair of the form (head, tail) where

 tail = { x | characteristic x occurs in the first slice of R, and some slice of

S other than the first }

 head is the set of all b-groups of (R,S).

For example in Figure 3.3, the head of rr-group consists of three b-groups which are

{a1},{b1},{c1,v1,cp1} and the tail of the head of the rr-group corresponds to {a2, b2,

c2, v2, cp2, a3, b3, c3, v3, cp3}. Also the tail of the rr-group corresponds to {d1, e1, f1,

w1, fp1, d2, e2, f2, w2, fp2, d3, e3, f3, w3, fp3}.

Definition 18: A significant subarray of a repeat (P,Q) is either an e-group, a,b-group, or

the head of an r1, r2, r1s, r2s, r1a or r2a-group. A named subarray is either a

45

significant subarray, a group, the head or tail of a group, or the tail of the head of an

rr-group.

The functions n and n1 are one-to-one functions from the named subarrays of (P,Q)

to two disjoint sets of symbols .

Definition 19: If A and B are groups of a repeat (P,Q), then A and B are consistent iff

either A and B both correspond to 1-blocks, the matches of which are consistent;

or A and B both correspond to 2-blocks, the matches of which are consistent;

or A corresponds to a 1-block X, B to a 1,2-block (R,S), or vice versa, and X∪R is

consistent;

or A corresponds to a 2-block X, B to a 1,2-block (R,S), or vice versa, and X∪S is

consistent;

or there is a group X such that A and X are consistent, and B and X are consistent.

Consistency is an equivalence relation on the set of all rr, r1s, r2s, r1 and r2-

groups. A cluster of (P,Q) is an equivalence class under this relation.

Definition 20: The model for a repeat is the set of all groups and clusters of the repeat.

3.5 Generating an L-sheets Program

The model of a repeat captures the essential elements of the repeat. In this section,

we show how to generate an L-sheets program from it. We start by defining various

functions that operate on the model. These functions are used to generate sets of tuples

that are processed by an algorithm called parameter, listed in Appendix A, that

generates the parameters of the forms that make up the L-sheets program.

The input to this algorithm is a set of 7-tuples of the form (c,t,l,b,r,h,w), where the

first component is a set of strings, which is either empty or contains name or content of a

46

named subarray of the model. The remaining components provide geometrical

information about the named subarray. The algorithm incrementally builds two lists

representing an L-sheets parameter as described in section 3.1, by selecting an element

from the input set and adding corresponding elements to each output list. If the selected

input element overlaps with an element of one of the current output lists, the overlapped

output list element is removed and new elements added corresponding to the overlapped

and non-overlapped parts of the input tuple and the overlapped output list element.

 Table 3.1 defines functions that return the geometrical properties of an entity. For

example, consider the r2-group C in Figure 3.3. To compute h(C), we note that

l(head(C)) = l(Ch) = min{ l(r1) } = 7, and l(tail(C)) = l(Ct) = min{ l(r2), l(r3) } = 8.

Hence l(head(C)) ≠ l(tail(C)), so that h(C) = 1. Similarly, to compute w(C), we note that

t(head(C)) = t(Ch) = min { t(r1) } = 9, and t(tail(C)) = t(Ct) = min { t(r2), t(r3) } = 9, so

since these values are equal, w(C) = *, indicating that C represents a group of

horizontally repeating items.

x is s1,
s2,
s1a, or
s2a

x
head(head(y))
where y is rr

x is e
or b

x=head(y)
where y is r1,
r2, r1s, r2s, r1a,
or r2a

x=tail(y)
where y is r1,
r2, r1s, r2s,
r1a, r2a or rr

x=
tail(head(y))
where y is rr

x=
head(head(y))
where y is rr

t(x) t(cont(x)) min { t(z) | z x }
l(x) l(cont(x)) min { l(z) | z x }
b(x) b(cont(x)) max { b(z) | z x }
r(x) r(cont(x)) max { r(z) | z x }
h(x) 1 h(y) h(head(y)) b(x)–t(x)+1
w(x) 1 w(y) w(head(y)) r(x)–l(x)+1

47

 x=head(y) where y is rr x is r1, r2, r1s, r2s, r1a, or r2a x is rr

t(x) t(head(x)) t(head(x))
l(x) l(head(x)) l(head(x))

b(x) b(tail(x)) b(tail(x))

r(x) r(tail(x)) r(tail(x))

h(x) * if l(head(x)) = l(tail(x))
b(x)–t(x)+1 otherwise

* if l(head(x)) = l(tail(x))
1 otherwise

*

w(x) * if t(head(x)) = t(tail(x))
r(x)–l(x)+1 otherwise

* if t(head(x)) = t(tail(x))
1 otherwise

*

Table 3.1 t,l,b,r,h,w functions for each group or the head and tail of the groups

The remaining functions, defined in Table 3.2, compute the sets of tuples that are

provided as input to the parameter function. To simplify the presentation, we use

geom(x) as an abbreviation for t(x),l(x),b(x),r(x),h(x),w(x).

x name(x) name1(x)
named subarray {({n(x)}, geom(x))} {({n1(x)}, geom(x))}

 x a(x) c(x) b(x)

rr {({n(x)},
geom(head(head(x)))},
({n(x),geom(tail(x)))})

–

r1a – {({ex(x)}, geom(head(x)))} {({id(x)}, geom(head(x)))}

r1, r2, r1s, r2s,
r2a

{({n(x)},
geom(head((x)))},
({n(x),geom(tail(x)))})

{({ex(x)}, geom(head(x)))}

e – {(, geom(x))} {(, geom(x))}

b, s1, s2 – {({ex(x)}, geom(x))} if ex(x)≠nil
{(, geom(x))} otherwise

–

s1a, s2a – {({ex(x)}, geom(x))} {({id(x)}, geom(x))}

48

x m(x)
parameter { z | z a(y) for some y x }

s1, s2 c(x)
rr,r1,r2,r1s,r2s,r2a a(x)
any other group name(x)

 x f(x) f1(x)
r2, r2s c(x) ∪ name(head(x)) ∪ name(tail(x)) name(tail(x))

r2a name(head(x)) ∪ name(tail(x)) name(tail(x))

s2a c(x) name(x)

e name(x) name(x)

x p(x) p1(x) p2(x) p3(x)
rr name(head(x)) ∪

name(tail(x))
name(tail(x)) name(head(x)) b(x)

r1, r1s c(x) ∪ name(head(x)) ∪
name(tail(x))

name(tail(x)) – b(x)

r2a name(x) name1(x) name2(x) {({id(x)},geom(x))}
s1a c(x) name(x) – b(x)
e name(x) name(x) name(x) b(x)
r1a – – name(x) b(x)

x q(x) q1(x) q2(x) q3(x)

rr { c(y) | y head(head(x))}
{ name(y) | y head(head(x))}
name(tail(head(x)))

- name(tail(head(x))) -

r1a c(x) - name(head(x)) -

r2a c(x) name1(tail(x)) name(head(x))
name(head(x))

name1(tail(x)) name(tail(x))

r1,r1s name(head(x)) - name(head(x)) -

e name(x) n(x) name(x) -
Table 3.2 Necessary functions for creating L-sheets programs.

We now show how the L-sheets schema for a repeat can be constructed from the

model. We assume an arbitrary but fixed ordering of the clusters and groups of the model,

and that the following sets which occur in the schema presented below are ordered

49

accordingly.

P = the set of all clusters, s1, s2, and e-groups.

Y = the set of all rr, r1, r1s, s1a and e-groups.

Z = the set of all r2, r2s, s2a and e-groups.

W = the set of all rr, r1, r1s, r1a and e-groups.

V = the set of all r2a-groups.

Other conventions used in the presentation of this L-sheets schema are as follows.

First, a term consisting of a function applied to one the above sets of groups and clusters

produces the list obtained by applying the function to each element of the set, ordered as

noted above. Second, although each of the functions defined in the tables produces a set

to be processed by the parameter algorithm, for simplicity, we use it in the L-sheets

schema to denote the output of the parameter algorithm applied to the set produced by

the function. Finally, concatenation of lists is denoted by •. The L-sheets schema for a

model is as follows.

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)).

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)).

F(b(Z)•b(V)).

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)).

T1(b(Y)•p3(V)).

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)).

T2(b(W)•b(V)•b(V)).

Figure 3.4 depicts the L-sheets program obtained from the spreadsheet in Figure 3.2.

Each array in this program is labelled with the type of entity in the model in Figure 3.3

50

from which it was generated. These labels are not part of the program.

To conclude, we note that some spreadsheets may include only linear repeats, rather

than the more general two-dimensional ones, and show how to derive L-sheets schema

for such cases.

If (P,Q) is a repeat and Q is smaller than the threshold θ, then the following groups

will not occur: rr, r1s, r1a, r2, r2s, r2a, s2, s2a. The sets of items that occur in the

argument lists of the forms of the L-sheets schema are modified to take these changes

into account, as below.

P = the set of all clusters, s1, and e-groups.

Y = the set of all r1, s1a and e-groups.

Z = the set of all e-groups.

W = the set of all r1 and e-groups.

V = ∅.

Any term constructed from a set which is empty or includes only e-groups, can be

deleted, as can any form, all arguments of which are deleted. Hence, the resulting L-

sheets schema is as follows.

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)).

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)).

F(b(Z)•b(V)).

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)).

T1(b(Y)•p3(V)).

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)).

T2(b(W)•b(V)•b(V)).

51

Figure 3.4 L-sheets program for Figure 3.2

52

Any term constructed from a set which is empty or includes only e-groups, can be

deleted, as can any form, all arguments of which are deleted. Hence, the resulting L-

sheets schema is as follows.

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)).

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)).

F(b(Z)•b(V)).

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)).

T1(b(Y)•p3(V)).

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)).

T2(b(W)•b(V)•b(V)).

Finally, we note that the functions b and q do not insert any formulae into the arrays

they create from r1 and e-groups. Hence execution of T2 accomplishes nothing, so all

forms involving T2, and the templates for T2, can be deleted. Hence the schema reduces

to:

(1) T(m(P)) :- T1(m(Y)).

T1(p(Y)) :- T1(p1(Y)).

T1(p3(Y)).

Now consider the other case, when (P,Q) is a repeat and P is smaller than the

threshold. In this case the following groups will not occur: rr, r2s, r2a, r1, r1s, r1a, s1,

s1a. Modifying the sets of items argument lists of the forms of the L-sheets schema, we

obtain:

P = the set of all clusters, s2 and e-groups.

Y = the set of all e-groups.

53

Z = the set of all r2, s2a and e-groups.

W = the set of all e-groups.

V = ø.

Deleting terms and forms from the L-sheets schema, as described above, reduce it as

follows.

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)).

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)).

F(b(Z)•b(V)).

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)).

T1(b(Y)•p3(V)).

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)).

T2(b(W)•b(V)•b(V)).

This reduces to:

(2) T(m(P)) :- F(m(Z)).

F(f(Z)) :- F(f1(Z)).

F(b(Z)).

By comparing the textual parameters in (1) and (2), Table 3.3 is derived.

Hence, the templates T1 in (1) and F in (2) are equivalent, and therefore templates T

in (1) and T in (2) are also equivalent.

Finally, we note that each linear repeat is represented in the derived L-sheets

program by recursion. This is not necessary if every match in a linear repeat has a gap of

1. The parameters derived from the groups of such a linear repeat could be more simply

represented in the L-sheets program as arrays of variable height or width, removing the

54

need for one level of recursion.

(1) y Y (2) z Z

y = r1, z =
2

y = s1a, z = s2a y = e, z = e
m(y) a(y) name(y) name(y)
m(z) a(z) name(z) name(z)
p(y) c(y) name(head(y)) name(tail(y)) c(y) name(y)
f(z) c(z) name(head(z)) name(tail(z)) c(z) name(z)
p1(y) name(tail(y)) name(y) name(y)
f1(z) name(tail(z)) name(z) name(z)
p3(y) {({id(y)}, geom(y))} {(, geom(y))}
b(z) {({id(z)}, geom(z))} {(, geom(z))}

 Table 3.3 comparing the textual parameters computed in (1) and (2)

55

Chapter 4 Conclusion

4.1 Evaluation

In this chapter, we will compare our method for inferring templates with the process

for inferring ViTSL templates discussed in chapter 2 [36]. In this thesis we do not

compare our method for inferring templates with ClassSheets template extraction process

[38], discussed in chapter 2, because it deals not with formulae, but with data

dependencies, so it aims to discover relational tables in spreadsheets used as databases.

a) The ViTSL template language requires cells which are repeated together to be

aligned, either horizontally or vertically, as in the budget example shown in Figure

3.2. Hence it cannot represent repeats in which related repeated items are not

aligned, for example the sequences of cells R3C2, R3C6 and R10C6, 11C6 in

Figure 3.2. Note that this is a restriction imposed by the ViTSL template language,

rather than the associated process for inferring templates. Our definitions allow

related, repeated items not only to be unaligned, but also to be orthogonal.

b) Our methodology allows the inferring of templates from spreadsheets when

matches are overlapped. In other words, we can extract templates from those

spreadsheets when data or formula cells are referred from different formula cells

more than once. Templates from these kind of spreadsheets cannot be extracted by

inferring templates for ViTSL process. A good example could be a spreadsheet

which shows the Fibonacci numbers [41].

c) L-sheets can depict separate parameters, with no spatial relationship. For example

in Figure 3.2, cells R10C8, R10C9 and R10C10 refer to R3C9, R5C9 and R7C9

56

respectively but the corresponding cells do not have any spatial relationships. As

Figure 3.4 shows, two parameters which encompass these cells are not

geometrically related. But in ViTSL, regions with no spatial relationship should

be considered in one template which can mislead the user.

There are some directions for furthering this work, including the following items:

1- Devising and implementing the algorithms for extracting the structures defined in

chapter 3 from spreadsheets.

2- The process for extracting spreadsheet structure, inherent in our definitions, could

be augmented with algorithms that detect and semantically analyse headers, such

as those in UCheck, described in Chapter 2. These operations the system may

apply some error detection algorithms such as UCheck or automatic detection of

dimension errors (which are described in chapter 2).

57

Bibliography

[1] C. Marcel. Mattesich (R.) - simulation of the firm through a budget computer

program. Revue Économique 17(4), pp. 692-693.Jan 1966 Available:

http://ideas.repec.org/a/prs/reveco/reco_0035-

2764_1966_num_17_4_407724_t1_0692_0000_001.html.

[2] LANPAR information. Internet: www.renepardo.com/articles/spreadsheet.pdf [Nov,

24, 2010]

[3] Power D. J. A brief history of spreadsheets. Internet:

http://dssresources.com/history/sshistory.html [Dec, 12 , 2010]

[4] Bill Jelen. “25 Cool Excel Downloads”, Holy Macro, pp.52-70. May 2005

[5] VisiCalc picture. Internet : http://listverse.files.wordpress.com/2008/09/visicalc.png

[Nov. 23, 2010].

[6] Excel 1.0 picture. Internet: http://royal.pingdom.com/2009/06/17/first-version-of-

todays-most-popular-applications-a-visual-tour/ [June, 17, 2009]

[7] C. Scaffidi, M. Shaw and B. Myers. Estimating the numbers of end users and end user

programmers. Presented at Proceedings of the 2005 IEEE Symposium on Visual

Languages and Human-Centric Computing. Available:

http://portal.acm.org/citation.cfm?id=1092357.1092394.

[8] C. Chambers and M. Erwig. Automatic detection of dimension errors in spreadsheets.

J.Vis.Lang.Comput. 20(4), pp. 269-283, Aug 2009. Available:

http://portal.acm.org/citation.cfm?id=1568786.1568909.

[9] Mars climate orbiter team finds likely cause of loss. Internet:

http://mars.jpl.nasa.gov/msp98/news/mco990930.html [Dec, 12,2010].

58

 [10] J. R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E. Creswick and M.

Burnett. Interactive, visual fault localization support for end-user programmers.

J.Vis.Lang.Comput. 16(1-2), pp. 3-40. Feb 2005. Available:

http://dx.doi.org/10.1016/j.jvlc.2004.07.001.

[11] A. J. Ko and B. A. Myers. Development and evaluation of a model of programming

errors. Presented at Human Centric Computing Languages and Environments.

Proceedings IEEE Symposium on. pp 7-14, USA, Oct 2003

[12] A. J. Ko and B. A. Myers. Designing the whyline: A debugging interface for asking

questions about program behavior. Presented at CHI '04: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems.2004 Available:

http://www.cs.cmu.edu/\~{}ajko/papers/DesigningTheWhyline.pdf

[13] R. Abraham and M. Erwig. UCheck: A spreadsheet type checker for end users.

J.Vis.Lang.Comput. 18(1), pp. 71-95. Feb 2007. Available:

http://portal.acm.org/citation.cfm?id=1223500.1223552

[14] C. Chambers and M. Erwig. Combining Spatial and Semantic Label Analysis. IEEE

Symposium on VL/HCC, Presented at Visual Languages and Human-Centric

Computing, pp. 235-232.Oct 2009.

[15] R. Abraham and M. Erwig. Header and unit inference for spreadsheets through

spatial analyses. Presented at Visual Languages and Human Centric Computing,

IEEE Symposium on. pp165-172.2004

[16] R. Mittermeir and M. Clermont. Finding high-level structures in spreadsheet

programs. Presented at Proceedings of the Ninth Working Conference on Reverse

Engineering (WCRE'02). Pp 221-230.Washington, DC, USA 2002. Available:

http://portal.acm.org/citation.cfm?id=882506.885148

59

[17] R. R. Panko. Applying code inspection to spreadsheet testing. J. Manage. Inf. Syst.

16(2), pp. 159-176.Sept 1999. Available:

http://portal.acm.org/citation.cfm?id=1189438.1189448.

[18] R. Abraham, M. Erwig, S. Kollmansberger and E. Seifert. Visual specifications of

correct spreadsheets. Presented at Visual Languages and Human-Centric Computing,

2005 IEEE Symposium on.

[19] J. Sajaniemi. Modeling spreadsheet audit: A rigorous approach to automatic

visualization. 1998 Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.2163

[20] M. Erwig and M. M. Burnett. Adding apples and oranges. Presented at Proceedings

of the 4th International Symposium on Practical Aspects of Declarative Languages.

Available: http://portal.acm.org/citation.cfm?id=645772.667957.

[21] M. Burnett, A. Sheretov, B. Ren and G. Rothermel. Testing homogeneous

spreadsheet grids with the what you see is what you test methodology. IEEE

Trans.Softw.Eng. 28(6), pp. 576-594. June 2002. Available:

http://portal.acm.org/citation.cfm?id=570528.570531.

[22] T. SH Teo and M. Tan. Quantitative and qualitative errors in spreadsheet

development. Presented at Proceedings of the 30th Hawaii International Conference

on System Sciences: Information System Track-Organizational Systems and

Technology - Volume 3. pp149-150. USA 1997. Available:

http://portal.acm.org/citation.cfm?id=938435.938681.

[23] D. Chadwick, B. Knight and K. Rajalingham. Quality control in spreadsheets: A

visual approach using color codings to reduce errors in formulae. Software Quality

Control 9(2), pp. 133-143. June 2001. Available:

http://portal.acm.org/citation.cfm?id=599123.599202.

60

[24] M. Tukiainen. Uncovering effects of programming paradigms: Errors in two

spreadsheet systems. Presented at In 12th Workshop of the Psychology of

Programming Interest Group (PPIG).

[25] K. Rajalingham, D.R. Chadwick, B. Knight,(2001). Classification of spreadsheet

errors, in: Symposium of the European Spreadsheet Risks Interest Group (EuSpRIG)

[26] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth and M. Felleisen.

Validating the unit correctness of spreadsheet programs. Presented at Proceedings of

the 26th International Conference on Software Engineering.pp 439-448. USA 2004

Available: http://portal.acm.org/citation.cfm?id=998675.999448.

[27] Excel smart tools information. Internet:

http://www.ozgrid.com/Services/ExcelSmartTools.html [Nov, 24, 2010]

[28] M. Burnett, C. Cook and G. Rothermel. End-user software engineering. Commun

ACM 47(9), pp. 53-58.Sept 2004. Available:

http://doi.acm.org/10.1145/1015864.1015889.

[29] G. Rothermel, M. Burnett, L. Li, C. Dupuis and A. Sheretov. A methodology for

testing spreadsheets. ACM Trans.Softw.Eng.Methodol. 10(1), pp. 110-147.Jan 2001

Available: http://doi.acm.org/10.1145/366378.366385.

[30] R. Abraham and M. Erwig.(2007) GoalDebug: A spreadsheet debugger for end

users. Presented at Software Engineering 29th International Conference., pp 251-

260. USA ICSE 2007.

[31] Excel spreadsheet auditor components. Internet:

http://www.freedownloadscenter.com/Business/Finance/Excel_Spreadsheet_Auditor.

html [Nov, 24, 2010]

[32] R. Abraham and M. Erwig. Goal-directed debugging of spreadsheets. Presented at

Proceedings of the IEEE Symposium on Visual Languages and Human-Centric

61

Computing. pp 37-44. USA 2005 Available:

http://portal.acm.org/citation.cfm?id=1092357.1092375.

[33] R. Abraham and M. Erwig. Test-driven goal-directed debugging in spreadsheets.

Presented at Visual Languages and Human-Centric Computing VL/HCC. IEEE

Symposium on. pp.131-138, Sept. 2008

[34] R. Abraham and M. Erwig. AutoTest: A Tool for Automatic Test Case Generation in

Spreadsheets. Presented at Visual Languages and Human-Centric Computing IEEE

Symposium on. pp 33-50. USA 2006

[35] M. J. Coblenz, A. J. Ko and B. A. Myers. Using objects of measurement to detect

spreadsheet errors. Presented at Visual Languages and Human-Centric Computing,

IEEE Symposium on. pp 314-316. USA 2005

[36] R. Abraham and M. Erwig. Inferring templates from spreadsheets. Presented at

Proceedings of the 28th International Conference on Software Engineering. pp 182-

191. China 2006. Available: http://doi.acm.org/10.1145/1134285.1134312.

[37] G. Engels and M. Erwig. ClassSheets: Automatic generation of spreadsheet

applications from object-oriented specifications. Presented at Proceedings of the 20th

IEEE/ACM International Conference on Automated Software Engineering.pp.168-

174. Mar 1994. Available: http://doi.acm.org/10.1145/1101908.1101929.

[38] J. Cunha, M. Erwig and J. Saraiva. Automatically inferring ClassSheet models from

spreadsheets. Visual Languages and Human-Centric Computing, IEEE Symposium

on pp. 93-100.Sept 2010.

[39] P. T. Cox. Enhancing the programmability of spreadsheets with logic programming.

Presented at Proceedings of the IEEE Symposium on Visual Languages and Human-

Centric Computing. pp 87-94. 2007. Available:

http://dx.doi.org/10.1109/VLHCC.2007.18.

62

[40] P. Cox and P. Nicholson. Unification of arrays in spreadsheets with logic

programming. In Practical Aspects of Declarative Languages, pp 100-115. USA, Jan

2008 Available: http://dx.doi.org/10.1007/978-3-540-77442-6_8.

[41] How To Create Fibonacci Numbers in Excel. Internet:

http://spreadsheets.about.com/od/spreadsheetlessons/qt/Fibonacci_Numbe.htm

[Aug, 30,2011]

63

Appendix A : Generating L-sheets Parameters Algorithm

This Prolog program was provided by Dr.Phil Cox

/*-------- Make parameter from a set of rectangles ----------*/

parameter(Rects,(HP,VP)) :-
 build(h,Rects,[],H), quicksort(H,HS), compress(HS,HP),
 build(v,Rects,[],V), quicksort(V,VS), compress(VS,VP).

/*-------- Remove position information from rectangle -------*/

compress([],[]).
compress([(N,_,_,W)|R],[(N,W)|RC]) :-
 compress(R,RC).

/*-------- Build list of strips - first parameter indicates direction -
------*/

build(_,[],Strips,Strips).
build(D,[Rect|Rest],Strips,StripsOut) :-
 extract(D,Rect,N,Begin,End,Size),
 insert((N,Begin,End,Size),Strips,Strips1),
 build(D,Rest,Strips1,StripsOut).

/*-------- Gets the name and column or row range of rectangle -------*/

extract(h,(N,_,L,_,R,_,W),N,L,R,W).
extract(v,(N,T,_,B,_R,H,_),N,T,B,H).

/*-------- Incorporate a rectangle into a set of strips (columns or
rows) -------*/

insert(X,[],[X]).
insert((N,B,E,S),[(N1,B1,E1,S1)|Rest],[(N1,B1,E1,S1)|StripsOut]) :-
 (E < B1 ; B > E1), !,
 insert((N,B,E,S),Rest,StripsOut).
insert((N,B,E,S),[(N1,B1,E1,S1)|StripsIn],StripsOut) :-
 E > E1,
 split(S,S1,E1-B+1,E-E1,Sn1,Sn2), !,
 Bn is E1+1,
 insert((N,Bn,E,Sn2),StripsIn,Strips1), !,
 insert((N,B,E1,Sn1),[(N1,B1,E1,S1)|Strips1],StripsOut).
insert((N,B,E,S),[(N1,B1,E1,S1)|StripsIn],StripsOut) :-
 B < B1,
 split(S,S1, E-B1+1, B1-B, Sn2, Sn1), !,
 En is B1-1,
 insert((N,B,En,Sn1),StripsIn,Strips1), !,
 insert((N,B1,E,Sn2),[(N1,B1,E1,S1)|Strips1],StripsOut).
insert((N,B,E,S),[(N1,B1,E1,S1)|StripsIn],[(N1,Bn,E1,Sn2)|StripsOut])
:-
 E < E1,
 split(S,S1, E-B1+1, E1-E, Sn1, Sn2), !,

64

 Bn is E+1,
 insert((N,B,E,S),[(N1,B1,E,Sn1)|StripsIn], StripsOut).
insert((N,B,E,S),[(N1,B1,E,S1)|StripsIn],[(N1,B1,En,Sn1)|StripsOut]) :-
 B > B1,
 split(S,S1, E-B+1, B-B1, Sn2, Sn1), !,
 En is B-1,
 insert((N,B,E,S),[(N1,B,E,Sn2)|StripsIn],StripsOut).
insert((N,B,E,S),[(N1,B,E,S)|StripsIn],[(N2,B,E,S)|StripsIn]) :-
 concat(N,N1,N2).

/*-------- Computes sizes of parts of a split strip -------*/

split('*','*',_,R,'*',F) :- F is R, !.
split('*',_,L,_,F,'*') :- F is L, !.
split(_,_,L,R,S1,S2) :- S1 is L, S2 is R.

/*-------- Sorts strips from left to right (top to bottom) -------*/

quicksort([],[]).
quicksort([X|Y],Z) :-
 partition(X,Y,Y1,Y2),
 quicksort(Y1,Z1),
 quicksort(Y2,Z2),
 concat(Z1,[X|Z2],Z).

partition(_,[],[],[]).
partition((_,F1,_,_),[(N,F2,Y,S)|R],[(N,F2,Y,S)|R1],R2) :-
 F2 < F1, !, partition((_,F1,_,_),R,R1,R2).
partition(X,[F|R],R1,[F|R2]) :-
 partition(X,R,R1,R2).

concat([],X,X).
concat(X,[],X).
concat([X|R],Y,[X|Z]) :- concat(R,Y,Z).

