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Abstract 
 

Spreadsheets for critical applications, such as financial reporting, are widely created 

and used by many people with no expertise in programming or software development. It 

is well known, however, that creating spreadsheets is an error-prone process. Several 

methodologies have been designed to reduce these errors. In this thesis we characterise 

the patterns and functional relationships among the formula cells and the corresponding 

data cells that commonly occur in spreadsheets, and show how the patterns occurring in a 

given sheet can be generalised to produce a template structure representing the family of 

spreadsheets of which the given sheet is a member. Finally, we show how this 

generalisation can be translated into an L-sheets program from which instances of this 

family can be generated. 
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Chapter 1 Introduction 
 
 

Spreadsheets are mathematical software systems, used in many areas such as finance, 

education and science. Nowadays, many people use spreadsheets as necessary tools for 

doing their tasks. For example, employees use them to manage their work and give 

reports to their bosses and managers, use them to evaluate their companies’ performance. 

There are many reasons that spreadsheet applications are popular. They are relatively 

easy to understand and have flexible and user-friendly environments. Spreadsheets are 

capable of a wide range of tasks from simple household budgets to complex financial 

forecasting and modeling of complex engineering systems. 

1.1   History of Spreadsheets 
 

In 1961, Mattessich proposed and developed a computerized spreadsheet system, 

which he successfully applied to accounting and budgeting computations. Like 

spreadsheets, Mattessich's system arranged formulae and data in arrays; however, these 

arrays were not interactive, but processed in batch mode by a FORTRAN program [1]. 
 

After Mattessich’s attempt, Pardo and Landau co-invented LANPAR (LANguage for 

Programming Arrays at Random) in 1969. Like Mattessich's system, LANPAR was a 

batch processing program for arrays of formulae and data, but because it was customized 

for business applications, achieved greater commercial success, and was used for 

budgeting at companies such as Bell Canada, AT&T, and General Motors. The main 

contribution of LANPAR was an algorithm for compiling grid-based computations, 

which received a US patent (no. 4,398,249) in August 1982 [2]. 

Although Mattessich, Pardo and Landau were the forefathers of spreadsheets 

systems, none of them influenced spreadsheet concepts and popularity more than Bricklin 
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and Frankston, the inventors of VisiCalc. Dan Bricklin, who was a Harvard Business 

School student, thinking about automation of the kinds of grid-based presentation of 

calculations which he was required to do as a business student, created the first prototype 

of his spreadsheet system in 1978. The program let the users input and edit data in a 

matrix, composed of five columns and twenty rows [3]. Bricklin then partnered with Bob 

Frankston whose programming expertise significantly improved the efficiency of 

Bricklin's implementation, leading to a viable PC-based implementation of Bricklin's 

original concept. 

Following the addition of Daniel Fylstra, a third partner with marketing expertise, the 

team established Software Arts Corporation in 1979 and implemented a commercial 

version, called VisiCalc (“visible calculator”), released for the Apple II personal 

computer in 1979 [4]. VisiCalc enjoyed considerable commercial success, selling close to 

one million copies [3]. Figure 1.1, illustrates the VisiCalc environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.1 VisiCalc environments from [5] 

In 1980, Kapor and Sachs developed Lotus 1-2-3 spreadsheet system. Although they 

added more tools and facilities such as cell ranging and macro definition, Lotus 1-2-3 did 

not add any special innovative feature to the core concept of VisiCalc [3].  
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After Lotus 1-2-3, Microsoft was the next to produce a spreadsheet system, 

introducing Excel 1.0 for the Apple Macintosh in 1984, the first spreadsheet system for a 

graphical operating system. With the release of the Windows operating system in 1987, 

Excel, which was prepared for Windows, took over Lotus 1-2-3’s place as number one in 

the market. Figure 1.2 illustrates the first version of Excel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.2 Excel 1.0 for Apple Macintosh from [6] 

1.2   Errors in Spreadsheets 

According to a census conducted by the U.S Bureau of Labor statistics in 2005, 11 

million people used spreadsheets in the US while there were only 2.75 million computer 

programmers [7]. Researchers have estimated that each year, millions of new users from 

a wide range of age groups and education levels become spreadsheet users. Therefore, a 

rising area of research is focused on giving facilities to the end-users of spreadsheets 

systems, in order to make spreadsheets more powerful and more accurate to less prone to 

errors. 
 

The majority of research in this area has been focused on creating new methods or 

algorithms in order to optimize or enhance spreadsheet environments. However, 
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researchers must be aware that the majority of spreadsheets users are end-users (which 

novices or expert for working with spreadsheets), not software engineers [8]. Software 

engineering practices are pivotal in ensuring correct spreadsheets, as they enforce design, 

development, and rigorous testing phases. End-users, on the other hand, tend to ignore 

the design and testing phases. Empirical studies have repeatedly shown that end-users are 

reluctant to use, or outright reject, software engineering methods for spreadsheet 

development [8], one of the main reasons for the high incidence of errors in spreadsheets. 

Error-proneness of spreadsheets can cause catastrophic effects. For example a simple 

error in value conversion in the $320M Mars Climate Orbiter, caused one software 

component to send data to the thrusters in pounds whereas the Orbiter was expecting it in 

newtons, resulting in huge financial damage. Similarly, in another project, misplaced 

parentheses in a formula caused a profit of $200M to be computed, when the profit was 

actually only $25M [9]. 
 

Consequently, a major focus of research is reducing the error-proneness of 

spreadsheets. One of the approaches has been to develop algorithms or tools in 

spreadsheets [10,11,12,13,14]. These algorithms or tools have different strategies for 

dealing with errors, ranging from automatically correcting them, providing the user with 

suggestions for how to fix the errors, to simply alerting the user to the problems 

[15,16,17,18,19,20]. 
 

Another popular approach is to extract the underlying structure of a spreadsheet in 

order to helps the users to : 
 

 Detect irregularities, which may signify errors.  
 

 Help users to more easily understand the structure and purpose of the spreadsheet.  
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 Adopt a more object-oriented approach to spreadsheets.  

Many errors in spreadsheet formulae might be avoided if spreadsheets are created 

from correct structures (templates). That is, if the user first designs the relations between 

formulae and data cells and then creates spreadsheets from such templates, the resulting 

sheets may be less likely to include errors. While such a template can be manually 

extracted from an existing spreadsheet, spreadsheet end-users are likely to be reluctant to 

do so, for two reasons: 
 

 Extracting templates from spreadsheets is time-consuming especially for large 

spreadsheets. 
 

 Although an end-user may be familiar with the application domain, he or she is 

unlikely to understand the software engineering principles required to create a 

template. 

There are several algorithms for detecting errors in and inferring templates from 

spreadsheets. We will review some of the error-detection algorithms and two 

methodologies of inferring templates from spreadsheets in chapter 2. Chapter 3 presents 

the main body of our work. We propose a novel methodology to infer templates from 

existing spreadsheets. Chapter 4 compares our methodology with the related work and 

suggests some possible future work. 
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Chapter 2  Detection and Prevention of Errors in Spreadsheets 
 
 

As discussed in the first chapter, spreadsheets are user-friendly applications for end-

users, ranging in experience from novice to expert. These end-users are not necessarily 

computer scientists and most of them are not familiar with programming languages or 

software engineering principles such as testing. Therefore, existing spreadsheets contain 

many errors [13,21,22,23,24]. Some auditing papers report that 90% or more of 

spreadsheets contain errors [25]. Some of the consequences, as reported in [14], include 

financial damages, loss of share value, career damages, and loss of shareholder 

confidence. 

Consequently, tools have been developed to help the user input the correct data and 

formulae into the correct cells. Likewise, algorithms have been created to help the user 

detect errors in spreadsheets. 

These algorithms and tools can be classified into three categories, which we will 

discuss in the next three subsections: 

 Auditing tools [18, 26, 27, 28]: these help the user input the data and formulae 

into the correct cells. 

 Testing tools and testing strategies [21,29,30,31]: used for debugging. 

Error detection algorithms [8,13,16]: these either detect errors, or help the user to 

detect them. 

2.1 Auditing Tools 

Auditing tools can help users find dependencies among cells.  For example, in Figure 

2.1, the box around cells BR5 to BR25 together with the arrow pointing to cell BR26 
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show that BR26 contains a formula that refers to the cells in the box. Similarly, cell 

BW13, refers to cells BQ13 to BW13, and cell BW13 is used in BW26. These auditing 

tools make visible the dependencies between cells, which would otherwise be hidden. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Microsoft Excel 2007 built-in auditing tool 

Although there are many features in the auditing tools built into some spreadsheet 

systems (such as Microsoft Excel), many third parties provide add-ons to these auditing 

tools to make them more powerful. 

As discussed, auditing tools just act as a guide for the spreadsheet user and cannot 

detect or correct errors themselves. Some auditing tools available for Microsoft Excel 

2007 are: 

 ExcelSmartTools [27] Using the auditing tools provided with Excel, the user 

selects one cell at a time and requests that its dependencies be displayed. 
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ExcelSmartTool improves this feature by allowing the user to select several cells 

and have their dependencies displayed.  

 ExcelSpreadsheet Auditor 2 [31] compares formula cells of a worksheet and 

highlights in the same colour cells which have similar formulae.  

2.2 Testing Tools    

Most expert programmers claim that the testing and debugging of code takes the 

majority of their time. A study conducted in the US by the National Institute of Standards 

and Technology shows that software engineers usually spend 70-80% of their time testing 

and debugging code, and on average, it takes 17.4 hours to find and fix an error [29]. 

Clearly, testing and debugging are significant and time-consuming tasks for 

programmers, and are likely to be equally so for spreadsheet users. Spreadsheet users, 

however, are not programmers or software engineers, so have little understanding of the 

importance of these aspects of software development. Furthermore, their focus is on the 

details of their problem domain (e.g. accounting), not programming details: they just 

want to compute the numbers they need as quickly as possible. So if spreadsheet testing 

tools are to be effective, these tools must make the process as simple and intuitive as 

possible. 

There are three main questions that spreadsheet testing must address: 

 Does the spreadsheet contain errors? 
 

 In which cells are the errors located? 
 

 How can the errors be corrected? 
 
In the following subsections, we will introduce some popular methodologies for testing 
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spreadsheets. 

2.2.1 “What You See Is What You Test” (WYSIWYT) 
 

The WYSIWYT methodology [21] helps the user to keep track of the extent to which 

each cell in a spreadsheet has been tested. When the user observes that a correct value has 

been computed in a cell, he or she can validate it. When a cell is validated, the definition-

use test adequacy criterion [29] is used to determine the degree of testedness of related 

cells, which is indicated by colouring cell borders in shades ranging from red to blue.  

 

 

 
 
 
 
 
 
 

Figure 2.2 Student grades spreadsheet (From [28] page 54) 

For example consider Figure 2.2 which is a student grades spreadsheet. The values 

displayed in the cells with checkmarks have been validated for the current inputs. If a 

cell's checkbox is empty or contains a question mark, its value has not been validated for 

the current inputs. From the border colors, the user is kept informed of which areas of the 

spreadsheet are tested and to what extent. Thus, in Figure 2.2, the "Letter" cell of row 4 is 

partially blue (purple), because some of the dependencies ending at that cell have now 

been tested, but the "Final" cell of row 7 is blue which means it is fully tested. 

Testing a program “perfectly” (well enough to guarantee detecting all faults) 

generally requires many test cases, which the user may be unable to generate manually. 
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Therefore, several mechanisms have been proposed to generate test cases. “Help me 

Test”, for example, first constructs a chain of dependencies for a specific cell, then  

iteratively explores portions of these chains, applying constrained linear searches over the 

spreadsheet’s input space and data gathered through iterative executions [29]. With this 

process “Help me test” derives test input values and suggests them to the user. Another 

mechanism for automatically generating test cases will be described in detail in 

subsection 2.2.3. 

2.2.2    Goal-Directed Debugging 

Goal-directed debugging is a spreadsheet debugging methodology [32]. In this 

technique, if the user sees an incorrect value for a cell, he or she provides the correct 

value, or range of values, for the cell. Then the system uses this information to deduce 

possible values or formula changes to cells that directly influence the value of the 

erroneous cell and to achieve the correct value in the target cell [32]. After that the 

system uses heuristics to rank the change suggestions from most likely to least likely. For 

example consider Figure 2.3, which shows a spreadsheet used to store the grades of 

students in a course. A value of 1 in column H indicates that a student’s mark is above 

the class average for the course in cell G7. The user, seeing that the value for H2 is 

incorrect, right-clicks on the cell and chooses “value expectation” from the pop-up menu 

that appears. This produces the dialogue in Figure 2.4, in which the user enters the value 

that he or she thinks the cell should have. The system generates change suggestions based 

on this value, and displays them in a pop-up menu if the cell is again right-clicked, as 

shown in Figure 2.5. The user can choose an appropriate item, ask for more suggestions 

or ignore the suggestion values.   
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This methodology works well for the spreadsheets that have one error, but its 

effectiveness decreases as the number of errors increases. Also, since change suggestions 

are based on values provided by the user, their usefulness is limited if the user makes 

mistakes. On the other hand, the users claim that most of the time the correct suggestion 

is ranked within the top two [33].  

Figure 2.3 Store students’ grades spreadsheet (from [32] page 2) 
 

 
 
 
 
 
 
 
 
 
 

Figure 2.4 The user suggests a value (from [33] page 132) 
 
 

 

 

 

 

 

 

Figure 2.5 Change suggestion based on H2 value (from [33] page 132) 
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2.2.3  AutoTest 
 

AutoTest is a system for generating a test case automatically [34]. When the user 

selects a cell to be tested, the system generates test values for input cells on which the 

selected cell depends, and displays the value that the selected cell would have if these 

input values were imposed. The user marks the generated test case as valid or invalid, to 

indicate that the displayed value does or does not match the expected value, and in the 

latter case, modifies the formula. If the user cannot decide whether the displayed value is 

correct or not, he or she ignores the test case. As testing proceeds, the system displays a 

progress bar as shown in Figure 2.6 to indicate the degree to which the spreadsheet is 

tested. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6   Testing with AutoTest (from [34] page.133) 
 

2.2.4 Test-Driven Goal-Directed Debugging 
 

This approach, a combination of Goal-Directed debugging and AutoTest algorithms 

[33], automatically generates test cases for a spreadsheet cell, and depending on feedback 

from the user, suggests a new set of test cases for another cell, or proposes changes for 

the tested cell. As discussed in previous subsections (2.2.2 and 2.2.3) both AutoTest and 
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Goal-Directed debugging have some problems, which the other addresses.  

The Test-Driven Goal-Directed debugging method applies these two methods as 

follows [33]: 
 

 AutoTest creates values for input cells to test a particular formula cell.  
 

 The user confirms or rejects the value for the formula cell that results from the 

test values. 

 
 If the user rejects the formula cell value, Goal-Directed debugging generates 

change suggestions for related cells. 

 All  the  test  cases  and  change  suggestions  are  stored  for  the  user  to     

view. 

Experiments with this method indicate that it is a more efficient and effective 

approach than either of the two methods alone. For more information, the reader is 

encouraged to review [33]. 

2.3   Error-detecting Algorithms 
 

As discussed above auditing tools simply show the hidden dependencies between 

cells and testing tools help the user to make sure a spreadsheet is thoroughly tested, and 

guide the user in his or her search for errors. In the following subsections, we discuss 

algorithms for automatically detecting errors. 
 
2.3.1 UCheck 
 

UCheck [13] is an algorithm for automatically detecting errors in spreadsheets. It is 

based on unit reasoning, extracting information from labels and headers to check the 

consistency of cells [15,20]. 
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As Figure 2.7 shows, cell D4 contains a number which counts plums harvested in 

June, information which can be inferred from the labels in cells D2 and A4. 

UCheck classifies spreadsheet cells into the following groups [13]: 
 

 Header:  those cells that contain strings which describe the other cells. 
 

 Footer: usually cells at the end of rows or bottoms of columns containing some 

sort of aggregation formulae.  
 

 Core: the data cells.  
 

 Filler: empty cells that separate regions in a spreadsheet. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 Extracting information from labels and headers (From [13] page 72) 
 

UCheck provides a header inference framework to extract headers from 

spreadsheets. Since the layout of spreadsheets varies widely, it is impossible for a single 

algorithm to work equally well in all cases. Therefore, the framework consists of four 

algorithms which detect special arrangements of cells to classify them, and infer the 

headers to be used in the following operations: 
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Figure 2.8 Wrong range for B6 formula cell  (From [13] page 87) 

Fence identification: detects blank cells (soft fence) in the data regions. Also this 

algorithm has the ability to detect hard fences, those columns that are repeated with their 

headers. 

Content-Based cell classification: classifies cells according to their values. For example if 

a cell contains a number, it is considered as a core cell; if it contains a string it is 

considered to be a header. For example, in Figure 2.7, cells D3, D4, D5 are core cells. 
 
Region-based cell classification: infers the types of cells according to their positions. For 

example if a cell is located in the leftmost column of a spreadsheet and has a string value, 

it is classified as a header. For example, in Figure 2.7, cells A2-A6 are header cells. 
 
Footer to core expansion: detects aggregation formulae, then classifies all data cells 

which are used in formula cells as core cells. For example, in Figure 2.7, cell B6 is a 

footer cell and cells B3, B4 and B5 are core cells. 
 

Once header cells have been identified, UCheck uses them to infer the units of the 

formula cells. If a formula cell does not have a well formed unit, there is an error with 
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several possible causes, such as an incorrect reference to another cell or an incorrect 

range. For example, in Figure 2.8, the headers of B2, B3 and B4 are Fruit, 

Month[May]&Fruit[Apple] and Month[June]&Fruit[Apple] respectively. Since the 

formula in B6 is SUM(B2:B4), UCheck infers for B6 the header Fruit | 

Month[May]&Fruit[Apple] | Month[June]&Fruit[Apple] which is not well-formed since 

the last two alternatives are compatible with each other but not with the first. This error 

results from the incorrect range B2:B4 in the formula of B6.  
  
2.3.2  XeLda 

XeLda [26] checks the dimensions of formula cells for any inconsistencies. 

Dimensions are units of measurement expressed as types familiar to end users [8]. For 

example, for a dimension such as length, there are several units of measurement such as 

cm, metre and ft. XeLda requires users to annotate all cells with units, including formula 

cells. For example in Figure 2.9, the cells B2 and B3 and B4 are annotated (Miles,1)  

 

 

 

 

 

Figure 2.9  XeLda example (from [8] page 280) 

meaning that the dimension is “Mile” with exponent 1. Suppose, the user decides to 

annotate D4 (Mile,1)(Gallon,-1) because the column’s header  is MPG (Mile per 

Gallon). Since the formula in D4 is B4 + C4 and B4 and C4 are annotated (Mile, 1) and 

(Gallons, 1), XeLda infers for D4 the dimension (Mile, 1) (Gallon,1) contradicting the 
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user's annotation. 

Since XeLda does not rely on any automatic processes such as header inference. its 

performance cannot be impaired by faults in such processes. On the other hand, it incurs 

a heavy overhead for the user, who must annotate every cell. 

2.3.3  SLATE 
 

SLATE [35], like XeLda, requires the user to annotate each cell with a value, 

dimension, and label, even those cells containing no references to other cells,  before the 

analysis can begin. For example a cell referring to 100 kilograms of oranges is annotated 

as (100, Kg, apples). After the user annotates the cells, SLATE analyzes the cells with 

formulae containing references and infers dimensions and labels for these cells from the 

dimensions and labels of their data cells. SLATE does not show the errors explicitly. But 

if the unit and label which the process determines for a cell are different from the user 

annotation, the system replaces them with the new dimension and label. For example, in 

Figure 2.10, first the user annotates the formula cell C4 as (A4+B4, Miles/Gallon, 

BMW). But after the system determines the unit and label for C4, the annotation for cell 

C4 will be (A4+B4, Miles, Gallons, BMW), which is different from the annotation that 

user has written.  

Figure 2.10 An example for SLATE result (from [8] page 280) 
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2.3.4  Automatic Detection of Dimension Errors 
 

SLATE and XeLda, are examples of algorithms which detect errors using dimension 

information supplied by the user. In this section, we describe a system that infers the 

dimension information automatically, rather than requiring the user to annotate it [8]. 

This procedure is divided to the following steps: 

 Header inference 
 

 Label analysis 
 

 Dimension inference 
 

Header inference, which is discussed in 2.3.1, determines headers for each cell. For 

example in Figure 2.11, the system determines that C1 and B4 are headers for cell C4. In 

step 2 the algorithm tries to extract dimension from each header according to the 

following process [8]: a) split headers into separate words. b) Extracting stems of the 

words c) if the algorithm finds any appropriate stems, which are matched with any of the 

dimensions, then combine them with each other. For example in Figure 2.11, C1 and B4  

are headers for C4, therefore the label analysis determines that “hours” which is 

converted to “hour” is a dimension for time. 

The third step is automatic dimension inference. In this step the system infers the 

dimensions of each formula cell according to some specific rules [8] and compares them 

with the dimensions which are extracted from the headers of the formula cells. If these 

dimensions are not the same, the system reports an error to the user. For  example  as  

you  can  see  in  Figure  2.11,  cell  D4  has formula B4+C4; dimension inference 

deduces from the formula, that the dimensions for D4 are “mile” and “hour” (which are 

deduced from B4 and C4). But the dimensions which are deduced from header (D1) are 
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mile and hour -1 (-1 is derived from the “per” word in the header). Therefore when the 

algorithm compares these two dimensions, it detects that they are not similar and it 

reports an error to the user.  

In this method, in contrast to XeLda and SLATE, the user does not annotate cells 

with labels and dimensions, and the system extracts dimensions automatically from the 

headers of the cells. Therefore it requires less workload for users to enter data in the 

spreadsheets. 

 
 
 
 
 
 
 
 
 
 

Figure 2.11 An example for automatic detection (from [8] page 271) 

2.4 Templates 
 

The methodologies discussed so far, are related to finding errors in spreadsheets. 

However, an alternative approach to the problem of spreadsheet errors is to prevent them 

from occurring in the first place.  

A solution to this problem is provided by techniques for analysing existing 

spreadsheets to extract their structure and automatically create templates. We will discuss 

two such mechanisms. The first derives templates expressed in the ViTSL template 

language [36], while the second produces representations of spreadsheet structure in the 

ClassSheets language, from which a ViTSL representation can also be generated. 
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2.4.1   Inferring ViTSL Templates      
 

ViTSL (an acronym for visual template specification language) is a visual language 

for creating spreadsheet templates, which can then be applied within Excel to obtain 

spreadsheets that conform to the templates using an Excel add-on called Gencel. The 

architecture of ViTSL/Gencel is illustrated in Figure 2.12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.12 ViTSL/Gencel architecture (from [18] page 2) 
 

There are two significant constructs in ViTSL. A vex group, represented by a vertical 

line of dots, indicates that a group of consecutive rows can be repeated in the vertical 

direction. Similarly a hex group, represented by horizontally arranged dots, indicates that 

a group of consecutive columns can be repeated. For example as shown in Figure 3.13, 

the vex group dots below row 3 indicate that this row can be repeated,  and the hex group 

dots to the right of column D indicate that columns B, C and D can also be repeated. 

Figure 2.14 depicts a spreadsheet obtained by applying this template in Excel, using the 

Gencel tool. 
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Figure 2.13 A template created in the ViTSL editor (from [18] page 3) 

 

 
 
 
 
 
 

 

Figure 2.14 Gencel spreadsheet (from [18] page 3) 

The vex and hex groups in a ViTSL template define rectangular tables, for example, 

the rectangle from A1 to H5 in Figure 2.15. Hence, the first step in the method for 

automatically creating ViTSL templates, reported in [36], detects such tables, using some 

spatial analysis algorithms from UCheck [13].  

 
 
 
 
 
 
 

 
 
 

Figure 2.15 Grade sheet example (from [36] page 184) 
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Once a table has been found, the next step is to find formulae in the table which are 

"cp-similar", meaning that one formula would result from copying and pasting the other 

[21]. As Figure 2.16 shows, there are two sets of cp-similar cells in the grade sheet 

example in Figure 3.4, those outlined in columns 3, 5 and 7, and those outlined in column 

8. 

Figure 2.16   cp-similar regions in grade sheet (from [36] page 186) 
 

After detecting rectangles of cp-similar cells in a table, the system tries to overlay 

them, along with the rectangles of data cells they refer to, to find both horizontal and 

vertical repetitions. For example, in Figure 2.16, the cp-similar cells in column 3 and 

their referenced data cells in column 2 can be overlaid with the corresponding cells in 

columns 5 and 4, and the corresponding cells in columns 7 and 6. This repetition of 

columns provides the basis for creating a hex group. Similarly, the cells from column 2 to 

column 8 in row 3 can be overlaid with the corresponding cells in rows 4 and 5, leading 

to creation of a vex group.  

The algorithm can ignore some of trivial errors during the overlay process. For 

example, when two rows could be overlaid but do not have the same type of data cells in 

specific locations, the system can carry out the overlaying (in the absence of better 

options) and report the number of violations.  
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This method for inferring templates from spreadsheets has some shortcomings. For 

example it cannot extract templates from those spreadsheets in which hex and vex groups 

cannot be created. 

2.4.2 ClassSheets 
 

Like ViTSL, ClassSheets is a spreadsheet-like language with which a spreadsheet 

developer can build templates from which spreadsheet applications can be generated [38]. 

Unlike a ViTSL template, which relies on vertical and horizontal repetition of related 

rows and columns to express structure, a ClassSheets template captures structure using 

object-oriented classes and database concepts [37]. In this section, we will describe the 

structure of ClassSheets with the example in Figure 2.17, a spreadsheet of sales records. 

 
 
 
 
 
 

 
Figure 2.17 a spreadsheet for sales records. (From [38] page 220) 

The first step in the process of extracting a ClassSheet template is detecting 

functional dependencies between attributes or sets of attributes in a spreadsheet, where an 

attribute is a column label. For example in Figure 3.6, “upc”, “size”, “week” are the 

attributes. Sets, which are defined by users, consist of one or many attributes. For 

example Dish and StoreWeek can be considered as two sets, which Dish has “upc”, 

“com_code”, “description”, “size” and “case” as attributes and StoreWeek consists of 

“store” and “week”.  
 

Functional dependencies are determined using standard rules, described in [38]. 

After determining the functional dependencies, the algorithm categorizes attributes 
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and according to standard relational database concepts, selects primary keys and foreign 

keys for each of sets. For example, Figure 2.18 illustrates sets and attributes of the 

spreadsheet of sales records. In Figure 2.18, attributes which specify with underline are 

primary keys for the sets. 

    StoreWeek(Store,Week) 

    Dish(upc,com_code, description, size,case,nitem) 

    Sale(upc,store,week,move,profit,price,onsale,qty,ok) 

Figure 2.18 Sets and attributes of the sale system (from [38] page 5) 

In the next step, a directed graph is constructed according to the relations among the 

sets discussed above. Figure 2.19, depicts the directed graph for the sales records system. 

 

 
 
 
 
 
 

Figure 2.19 Directed graph for the sale system. (From [38] page5) 
  

In the next step the system translates directed graph nodes into a ClassSheets 

structure as shown in Figure 2.20. In this Figure, R is the root of the directed graph, M 

and N represent sets of nodes of the directed graph, M1,..,Mr represent primary keys of 

M, N1,…,Nr represent primary keys of N, Mr+1,..,Mu and Nr+1,..,Nu represent the rest of 

attributes in the sets M and N respectively. R1,…,Ry represent  the attributes of set R and 

dn1,..dnu, dm1,..dmu and dr1...dru  are values of the corresponding attributes of sets N,M 

and R respectively.  Therefore, as Figure 2.21 shows, for the sales system, R, M and N are 

equal to Sale, Dish and StoreWeek respectively. Figure 2.21 is the ClassSheets structure 

for the sales system when the system puts primary keys and attributes of M, N and R in 
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the appropriate cells. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20 General structures of ClassSheets (from [38] page 6) 
 

Figure 2.21 A ClassSheets structure for the sale system (from [38] page 6) 
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Chapter 3   Inferring Templates from Spreadsheets 

As discussed in chapter 2, extracting templates from spreadsheets is a difficult 

process because spreadsheet design does not obey any specific rules. There are, however, 

some methods for extracting templates from spreadsheets that we described in chapter 2 

[36,38]. In this chapter we will introduce our technique for extracting templates from 

spreadsheets and converting them into programs in L-sheets, which we will describe in 

the next section. It is important to note that, our goal is to define the patterns that can be 

used to build templates, not to provide algorithms to extract these patterns, but it should 

be clear that such algorithms can be constructed. 

Our method for extracting templates from spreadsheets focuses on formula cells and 

the data cells they refer to, ignoring other features such as labels. We will discuss this 

focus further in Chapter 5. 

3.1 L-sheets  

L-sheets is a spreadsheet extension that enhances the programmability of 

spreadsheets with logic programming. An L-sheets application consists of worksheets 

like those in Microsoft Excel, and program sheets. A program sheet consists of a set of 

templates, each of which is a sequence of cases. For example, Figure 3.1 depicts two 

templates, budget, consisting of one case, and years consisting of two cases. A case is 

made up of a head and a body, which are respectively, a form and a sequence of forms. A 

form has a name, and contains several parameters which are arrays. For example, in the 

Figure, the body of the single case of the budget template has just one form, which is 

named years and has two parameters. Head forms have a pale grey background while 

body forms are lighter grey arrays in forms are depicted as rectangles divided by 
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horizontal and vertical lines. A vertical grey line indicates that an array represents a 

rectangle of any width in a worksheet, and a horizontal grey line indicates that an array 

represents a rectangle of any height in a worksheet. 

 

 

 

 

 

 

 

 

Figure 3.1 Program sheet for Budget example (from [39] p.93) 

Arrays in forms may be divided into subarrays, which may be named. For example, the 

array in the head form of the single case of the budget definition includes embedded 

subarrays named A and B. A subarray may contain a constant or a formula. In our 

example, the bottom left and bottom right subarrays of the parameter array of the head of 

the single case of the budget template contain, respectively, the constant Total, and the 

formula SUM(B1,2:B↓,2). 

Note that in this description of L-sheets, we have used the words “template” and 

“form” rather than “definition” and  “template” as in [39,40], so that, as in [36] we can 

use “template” to mean a specification of spreadsheet structure. 
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The annotations F1, F2… are not part of the program, but have been added to 

indicate cells which contain formulae. In a program sheet formula a reference consists of 

a subarray name followed by a row and column of that subarray. For example, the 

formula SUM(B1,2:B↓ ,2) refers to the rectangle consisting of all cells from the top to the 

bottom of column 2 of subarray B.  

L-sheets programs can be represented textually, which will be convenient later in this 

chapter, using a Prolog-like notation in which each case is represented as a clause. Since 

we ignore labels when extracting the structure from a spreadsheet, we omit them also 

from this textual representation. To illustrate, the representation of the single case of the 

budget template in Figure 3.1 is: 

budget(X) :- years(Y,Z). 

where X, Y and Z represent the parameters of the two forms. A parameter is represented 

by a pair of lists; for example X is the following pair 

( 

((∅,1), ({A},*), ({B},1), ({=SUM(B1,2:B↓,2),B},1)), 

(({A},1),({},1), ({B},*), ({=SUM(B1,2:B↓,2)},1)} 

) 

The first list represents the division of the array into vertical strips. In this example, the 

first vertical strip, represented by the pair (∅,1), spans nothing significant and is one 

column wide; the second strip, represented by ({A},*), spans subarray A, and is any 

width; the third spans subarray B and is 1 column wide; and the last strip spans a formula 

and the subarray B and is one column wide. In the same way, the second list represents 

the division into horizontal strips. 
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3.2 Representing a Spreadsheet 
 

As mentioned above, our method for extracting spreadsheet structure focuses on 

formula cells and the cells they refer to. To expedite our analysis, we build a 

representation of a spreadsheet as a set of characteristics, where a characteristic 

corresponds either to a formula cell, or a cell referred to by a formula cell. Note that in 

this representation, there may be several characteristics corresponding to one cell. For 

example, if a cell contains a formula and is also referred to by two other formula cells, 

there will be three characteristics corresponding to it. 

If x is a cell containing a formula f, let f1,…, fn denote the cells referenced by f in the 

order of their first occurrences in f, and let f’ denote the expression obtained by replacing 

each occurrence of fi in f by <i> for each i (1≤i≤n). 

Definition 1: If S is a spreadsheet, let x be a cell of S that either contains a formula f, or 

is referenced by a formula f  in a cell y, then a characteristic of  S corresponding to 

x is a 6-tuple of the form (t, l, b, r, ex, rel) where 

•   t = b = the index of the row of S in which x occurs, 

•   l = r = the index of the column of S in which x occurs, 

•   ex is the expression ≈(<0>,f’)  

•  rel is the sequence (c0, c1, …, cn) where ci is the characteristic of S corresponding 

to fi for each i (1≤ i ≤ n), and c0 is the characteristic of S corresponding to the 

cell containing f. 

We will use names of the components of a characteristic as functions: for example, if 

c is a characteristic, rel(c) will denote the sixth component of c. Also, we will denote by  
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rect(c) the tuple (t(c), l(c), b(c), r(c)). We will apply these conventions to other 

entities later on. 

Consider Figure 3.2, characteristics are shown for each formula cell and its data 

cells. In this Figure, cells contain names that we will use to identify characteristics in our 

discussion, as well as formulae, expressed in terms of these names. For example cell 

R3C4 contains a formula which refers to R3C2, R3C3 and R11C2. The role of R3C4 as a 

formula cell is represented by the characteristic c1, and the roles of R3C2, R3C3 and 

R11C2 as data cells referred to by R3C4 are represented by the characteristics a1, b1 and 

z11. The characteristics a1, b1, c1 and z11 are as follows:  

a1=(3,2,3,2, ≈(<0>, (<1>*<2>+<3>)),(c1,a1,b1,z11))                          

b1=(3,3,3,3, ≈(<0>,<1>*<2>+<3>)),(c1,a1,b1,z11)) 

c1=(3,4,3,4, ≈(<0>,<1>*<2>+<3>)),(c1,a1,b1,z11))          

z11=(11,2,11,2, ≈(<0>,<1>*<2>+<3>)),(c1,a1,b1,z11))        

Note that if a cell is referenced by several different formula cells, there will be a 

distinct characteristic corresponding to it for each reference. In addition, if the cell 

contains a formula, there will a characteristic corresponding to it, representing its role as 

a formula cell. For example, in addition to c1, discussed above, R3C4 has two 

characteristics, v1 and cp1, corresponding to references from R7C4 and R3C9 

respectively. 

3.3 Finding Patterns in a Spreadsheet 

From now on, we will use the word 'spreadsheet' to mean both the familiar 

rectangular grid of cells, and the set of all characteristics derived from a spreadsheet. 
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The patterns of interest in a spreadsheet involve repetitions of groups of cells linked 

by formulae, and regularly spaced either horizontally or vertically. Such repetitions are 

frequently accompanied by cells containing formulae which compute summaries of the 

values of repeated cells. In general, a summary formula can contain aggregator functions, 

such as +, which can have any number of arguments. We start our analysis with some 

technical definitions that we can use to organise the list of arguments of a function into 

subsequences, then use these definitions to help characterise summaries. 

Definition 2: If t, k and p are positive integers such that tk ≤ p, let K be a sequence of 

length k+1 of sequences of integers between 1 and p, such that the elements of K 

are mutually disjoint, |Kk+1| = p–tk, |Ki| = t for each i (1≤i≤k), and for each i 

(1≤i≤k+1) the elements of Ki are distinct. K is called a ktp-division. Each element of 

Kk+1 is called a remainder of K. 

If X is any sequence of length p and K is a ktp-division, let Y be the sequence of 

sequences of elements of X such that Yi,j = XKi,j for all i (1≤i≤k) and j (1≤j≤t), and 

Yk+1,j = XKk+1,j for all j (1≤j≤p–tk). Y is called the kt-division of X induced by K, and 

each element of Yk+1 is called a remainder of Y. 

For example, ((12,5,8,2),(1,11,6,9),(15,13,10,4),(3,14,7))  is a 3-4-15 division and 

induces the 3-4-division ((L, E, H, B), (A, K, F, I,), (O, M, J, D), (C, N, G)) of (A, B, C, 

D, E, F, G, H, I, J, K, L, M, N, O). 

Definition 3: A binary function f is called an aggregator iff for some a, called the 

identity of f, f(a,x) = x for all x. If f is an aggregator with identity a, for each n≥0, 

we define an n-ary function f n as follows: 
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 f 0 = a 

f n(x1,…,xn) = f (f n–1(x1,…,xn–1),xn) 

If f is a p-ary function and K is a ktp-division, then f is a repetition with respect to K 

iff there exists a function g, and for some q ≥ 1 there exist functions e1,…, eq, and 

aggregators h1,…, hq such that for all X 

f(X) = g(h1
k(e1(Y1, Z1), …, e1(Yk, Z1)), 

  …,  

hq
k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0)  

where Y is the kt-division of X induced by K, for each i, Zi  is a sequence of distinct 

elements of Yk+1, and Z0,…, Zq together include all elements of Yk+1. 

Let c be a characteristic such that ex(c) = ≈(<0>,f) where f has arity p and is a 

repetition with respect to some ktp-division K. Let Y be the kt-division of (rel(c)1,..., 

rel(c)p) induced by K. Then c is called a summary of the sequence of characteristics 

(Y1,i, …, Yk,i) for each i (1≤i≤t) , and each element of Yk+1 is called a peripheral of c. 

For example in Figure 3.2, R3C9 is a summary of each of the sequences of 

characteristics (cp1,fp1), (g1,h1) and (vp1,wp1). For this cell, SUM and COUNT are 

aggregators and division (/) is the g function. Multiplication in (cp1 * g1) and (fp1 * h1) 

are e1 and e2 functions and there are no arguments to the function other than the 

characteristics in the summarised sequences. 

The patterns we are looking for include repeated groups of functionally related cells. 

The next definition requires the cells within one group in a repetition to have the same 

relationships as the corresponding cells within another group. 
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Definition 4: Two disjoint sequences (c1,…,cn) and (d1,…,dn) of distinct characteristics 

are i-compatible, where 1≤i≤n, iff 

•   ex(ci) = ex(di) 

•   for some k (1≤k≤n), rel(ci)0 = ck and rel(di)0 = dk 

•  ∀ j (1≤j≤|rel(ci)|) either rect(rel(ci)j) = rect(rel(di)j) or for some k (1≤k≤n), rel(ci)j 

= ck and rel(di)j = dk 

For example in Figure 3.2, the sequences (a1,b1,c1,v1,cp1,d1,e1,f1,w1,fp1)  and 

(a2,b2,c2,v2,cp2,d2,e2,f2,w2,fp2)  are 1-compatible because : 

   ex(a1) = ex(a2) 

   rel(a1)0 = c1 and rel(a2)0 = c2, where c1 and c2 are the third elements of the 

sequences 

These sequences are also i-compatible for every value of i from 2 to 10. But the 

sequences (a1,b1,c1,v1,cp1,d1,e1,f1,w1,fp1,p1) and (a1,b1,c1,v1,cp1,d1,e1,f1,w1,fp1,p2) 

are not 11-compatible because the third condition of the compatibility definition is not 

satisfied.  

Compatibility deals with the functional similarity between repeating groups of 

characteristics, an important property of the patterns we are interested in. These patterns, 

however, also require repeated cells to satisfy certain geometrical requirements, in 

particular, vertical or horizontal alignment, and even spacing, which are dealt with in the 

following definitions. 

Definition 5: A nonempty sequence of distinct characteristics (c1, c2, …, cn) is called a 

horizontal match iff t(ci) = t(cj) and ex(ci) = ex(cj) for all i, j (1≤i≤j≤n); and there 
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exists d≥1 such that for all i (1≤i<n), l(ci+1)-r(ci) = d. The constant d is called the 

gap of the match.  

We define vertical match similarly. A match is either a horizontal match or a 

vertical match. 

A nonempty set C of matches is said to be acceptable if all the matches in C are the 

same length, and no characteristic occurs more than once in C. 

In Figure 3.2, each of M1 = (a1, b1, d1) and M2 = (r1, r2, r3) is a horizontal match 

and each of M3 = (p1, p2, p3), M4 = (a1, a2, a3) and M5 = (b2, b3) is a vertical match. C 

= {M1, M2, M3} is an acceptable set. M1 and M4 cannot be in the same acceptable set 

since they overlap, and M5 cannot be an acceptable set with any of the others since it is 

shorter. 

Now we define patterns consisting of sequences of repeated items. 

Definition 6: If C = {C1, …, Cm} is an acceptable set of matches, then for each i 

(1≤i≤|C1|), the sequence of characteristics (C1,i, …, Cm,i) is called a slice of C. 

A linear repeat is a set R of acceptable matches such that for each i (1≤i≤|R|) and 

for any two slices d and e of R, either d and e are i-compatible or there is a 

characteristic which is a summary of Ri.  

The length of a linear repeat R is the length of its matches. 

In Figure 3.2, let Q be the set of matches {(a1,a2,a3), (b1,b2,b3), (c1,c2,c3), 

(v1,v2,v3), (cp1,cp2,cp3), (d1,d2,d3), (e1,e2,e3), (f1,f2,f3), (w1,w2,w3), (fp1,fp2,fp3), 

(p1,p2,p3), (p1q,p2q,p3q), (p1r,p2r,p3r), (r1,r2,r3)}, then Q is acceptable since the 

matches in Q are disjoint and the same length, any two slices of Q are i-compatible for i = 

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13 and 14, and there is a summary for Q4 and a summary for 
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Q9. Note that any subset of Q is a linear repeat, as is the set of matches we get by 

removing the first (or second or third) characteristic from each match in Q. Note also that 

a linear repeat may include both horizontal and vertical matches; for example, all matches 

in Q are horizontal except the last. 

The rectangle of cells from a1 to g3 contains a horizontal repeating pattern and a 

vertical repeating pattern, so the next three definitions complete the definition of repeats 

to account for such rectangles of two-dimensional patterns. 

Definition 7: If H is a set of horizontal matches and V is a set of vertical matches, or vice 

versa, such that the set of characteristics in H is equal to the set of characteristics in 

V, then a match of H is said to be major with respect to V iff it contains a 

characteristic that occurs in the first slice of V. 

 For example in Figure 3.2, H = {(a1,b1,c1,d1,e1,f1), (a2,b2,c2,d2,e2,f2), 

(a3,b3,c3,d3,e3,f3)} is a set of horizontal matches and V = {(a1,a2,a3), (b1,b2,b3), 

(c1,c2,c3), (d1,d2,d3), (e1,e2,e3), (f1,f2,f3)} is a set of vertical matches then the first 

element of H is the major with respect to V because characteristics in the first element of 

H are in the first slice of the V. 

Definition 8: A set of matches is consistent if they are either all vertical or all horizontal 

and have the same gap. 

For example in Figure 3.2, H = {(a1,d1),(a2,d2),(a3,d3)} is consistent because all of 

its elements are horizontal matches and the gap is 3 cells but H = {(a1,a2), (b1,b3), 

(c1,c3)} is not consistent because its elements have different gaps.  

Definition 9: A candidate is a pair (P,Q) of linear repeats such that at least one of P and 

Q is of length ≥ θ, and there exist partitions {P1, …, Pn, Pn+1, …, Pt} and {Q1, …, 
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Qn, Qn+1, …, Qs}, of P and Q, which are the coarsest partitions of P and Q into 

consistent sets such that 

• for each i (1≤i≤n), the set of characteristics in Pi is equal to the set of 

characteristics in Qi, and either the matches in Pi are vertical and those in Qi are 

horizontal, or vice versa. (Pi,Qi) is called a 1,2-block of (P,Q).  

• if n<i≤t, then Pi  consists of a single match and either  

• Pi,1,1 is a summary of some matches, each of which is either major with 

respect to Qj for some j (1≤j≤n), or contained in Qj for some j (n<j≤s)  

• rel(Pi,1,1)0  ≠ Pi,1,1; or  

• each x in rel(Pi,1,1) either does not occur in (P,Q), or occurs in the first 

slice of Qj for some j (1<j≤n), or in Pj for some j (n<j≤t). 

• if n<i≤s, then Qi  consists of a single match and either  

• Qi,1,1 is a summary of some matches, each of which is either major with 

respect to Pj for some j (1≤j≤n) or contained in Pj for some j (n<j≤t)  

• rel(Qi,1,1)0  ≠ Qi,1,1; or  

• each x in rel(Qi,1,1) either does not occur in (P,Q), or occurs in the first 

slice of Pj for some j (1<j≤n), or in Qj for some j (n<j≤s). 

The constant θ ≥2 is called the repeat threshold. For each i, where n<i≤t, Pi is 

called a 1-block of (P,Q). For each i, where n<i≤s, Qi is called a 2-block of (P,Q). 

A candidate (P,Q) is a repeat iff 

•   there is no candidate (R,Q) such that either P ⊂ R, or |P|=|R| and Pi is a   

subsequence of Ri for each i (1≤i≤|P|); and 
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•   there is no candidate (P,R) such that either Q ⊂ R, or |Q|=|R| and Qi is a 

subsequence of Ri for each i (1≤i≤|Q|).  

In Figure 3.2, let P and Q be the following sets of matches 

P = {(a1,d1), (b1,e1), (c1,f1), (v1,w1), (cp1,fp1), (a2,d2), (b2,e2), (c2,f2), (v2,w2), 

(cp2,fp2), (a3,d3), (b3,e3), (c3,f3), (v3,w3), (cp3,fp3), (v,w), (vx,wx), 

(vp1,wp1), (vp2,wp2), (vp3,wp3), (g1,h1), (g2,h2), (g3, h3)}. 

Q = {(a1,a2,a3), (b1,b2,b3), (c1,c2,c3), (v1,v2,v3), (cp1,cp2,cp3), (d1,d2,d3), 

(e1,e2,e3), (f1,f2,f3), (w1,w2,w3), (fp1,fp2,fp3), (p1,p2,p3), (p1q,p2q,p3q), 

(p1r,p2r,p3r), (r1,r2,r3)}. 

As discussed above, Q is a linear repeat. We leave it to the reader to establish that P 

is also a linear repeat. 

Now let P and Q be partitions of P and Q, as follows: 

P = {{P1, …, P20}, {P21}, …, {P23}} 

Q = {{Q1, …, Q10}, {Q11}, …, {Q14}} 

The sets of characteristics in P1 and Q1 are the same, the matches in P1 are 

horizontal, the matches in Q1 are vertical, each of the other sets in P and Q consists of a 

single match, and all the sets in P and Q are consistent. 

To verify that (P,Q) is a candidate, we need to check that each of P2, P3, P4, Q2, Q3, 

Q4 and Q5 satisfy the conditions. For example, rel(P2,1,1)0 = rel(P21,1)0 = rel(g1) ≠ g1; 

hence P2 satisfies the conditions. Now Q2,1,1 = Q11,1 = p1, which is a summary of P21, P5 

and P18. The first of these is contained in one of the singleton sets in P, while each of the 

other two is major wrt Q1. Hence Q2 satisfies the conditions. Lastly, considering Q5, we  
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see that rel(Q5,1,1) = rel(Q14,1) = rel(r1) =(p1r), so since p1r occurs in the singleton set Q13 

of Q, Q5 satisfies the conditions. We leave it to the reader to verify that remaining four 

singleton sets conform to the definition.  

It is easy to see that there are no coarser partitions of P and Q that satisfy these 

conditions, since the set of characteristics occurring in {P21}, …, {P23} is disjoint from 

the set of characteristics occurring in {Q11}, …, {Q14}. It is also clear that the candidate 

(P,Q) is a repeat, since P and Q contain all characteristics representing repeated items. 

3.4 Representing the Structure of a Repeat 

Once a repeat has been identified, we want to build a structure that represents a 

generalisation of it. For this purpose we define groups of characteristics according to the 

roles they play in the repeat. These groups contain references to other groups, 

corresponding to functional relationships, and groups that have a geometrical relationship 

are combined. The groups and the relationships between them can be represented as a 

tree, like that in Figure 3.3, which corresponds to the repeat in Figure 3.2, discussed in 

the last example. We suggest that the reader identify in it examples of each of the 

definitions that follow. We will describe the conventions used in drawing the tree during 

the presentation of the definitions. 

Definition 10: A group of a repeat is either an rr, r1s, r2s, r1, r2, s1, s2, a, b, r1a, r2a, or 

e- group.  

If c is a characteristic such that c does not occur in repeat (P,Q), and either rel(c)0 

occurs in (P,Q), or rel(c)0 is a summary of some matches in the 1-blocks of (P,Q), 

or rel(c)0 is a summary of some matches in the 2-blocks of (P,Q), then the e-group  
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of (P,Q) corresponding to c is the set of characteristics {d | rect(d)=rect(c) and d 

satisfies the same conditions as c with respect to (P,Q)}. 

Figure 3.3, has an e-group corresponding to {z11,z12,z21,z22,z31,z32}. 

In Figure 3.3, each group is drawn as a grey rectangle annotated with the group type. 

The dotted lines below groups indicate the sets of characteristics that they encompass, 

represented by the boxes, while the characteristics that comprise these sets are 

represented by the diamonds inside the boxes. 

Definition 11: Let c be a characteristic that does not occur in repeat (P,Q), and is a 

summary of some matches in the 1-blocks of P, and ex(c) = ≈(<0>, g(h1
k(e1(Y1, Z1), 

…, e1(Yk, Z1)),…, hq
k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then for 1≤i≤q, the ith s1a-group 

of (P,Q) corresponding to c is the triple A = (ex, id, cont), where 

•   cont = {c} 

•   id is the identity of the aggregator function hi 

•   ex = hi(n(A), ei(n(y1),…, n(y|Y1|), n(z1), …, n(z|zi|)) 

where for 1≤j≤|Y1|, yj is the significant subarray (see below) of (P,Q) such that 

rel(c)Y1,j ∈ cont(yj); and for 1≤j≤|Zi|, zj is the significant subarray of (P,Q) such that 

rel(c)Zi,j ∈ cont(zj). 

We define s2a-group analogously. 

The function n in this definition associates names with certain subarrays, and, 

together with another naming function n1, will be defined later. 

Definition 12: Let c be a characteristic that does not occur in repeat (P,Q), and is a 

summary of some matches in the 1-blocks of (P,Q), and ex(c) = ≈(<0>, g(h1
k(e1(Y1, 
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Z1), …, e1(Yk, Z1)),…, hq
k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then the s1-group of (P,Q) 

corresponding to c is the pair (ex, cont) such that 

   cont = {c} 

   ex = g(n(A1), …, n(Aq), n(s1), …, n(s|Z0|)) 

where for 1≤j≤|Z0|, sj is the significant subarray (see below) of (P,Q) such that 

rel(c)Z0,j ∈ cont(sj) 

We define s2-group analogously.  

For example, in Figure 3.3, s1-group corresponds to x and s1a-group is associated 

with the s1-group via the ex component.  Because the aggregator in s1a refers to vx, a 

dotted arrow from s1a to head of r1s-group shows this dependency. 

Definition 13: If C is a 1-block of (P,Q) and C1,1 is not a summary, the r1-group of (P,Q) 

corresponding to C is the triple (ex, head, tail) such that 

   tail is the set of  all characteristics in C1 except the first  

   head = {C1,1}  

   ex = f(n(s1),…, n(sm)) if C1,1 =rel(C1,1)0, ex(C1,1) = ≈(<0>, f(<1>,…,<m>), and 

for 1≤j≤m, sj is the significant subarray (see below) of (P,Q) such that rel(C1,1)j ∈cont(sj), and ex = nil otherwise. 

We define r2-group analogously. 

For example, in Figure 3.3, the head and the tail of the r1-group corresponding to 

{g1,g2,g3} and {h1,h2,h3} respectively.  

Definition 14: Let C be a 1-block of (P,Q), C1,1 is a summary, and ex(C1,1) = ≈(<0>, 

g(h1
k(e1(Y1, Z1), …, e1(Yk, Z1)),…, hq

k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then for 1≤i≤q, 
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the ith r1a-group of (P,Q) derived from C is the 4-tuple A = (ex, id, head, tail), 

where 

 tail is the set of all characteristics in C1 except the first  

 head = {C1,1}  

 id is the identity of the aggregator function hi  

•   ex = hi(n(head(A)), ei(n(y1),…, n(y|Y1|), n(z1), …, n(z|zi|)) 

where for 1≤j≤|Y1|, yj is the significant subarray (see below) of (P,Q) such that 

rel(C1,1)Y1,j ∈ cont(yj); and for 1≤j≤|Zi|, zj is the significant subarray of (P,Q) such 

that rel(C1,1)Zi,j ∈ cont(zj). 

We define r2a-group similarly. 

Definition 15: If C is a 1-block of (P,Q), C1,1 is a summary, and ex(C1,1) = ≈(<0>, 

g(h1
k(e1(Y1, Z1), …, e1(Yk, Z1)),…, hq

k(eq(Y1, Zq), …, eq(Yk, Zq)), Z0); then the r1s 

group of (P,Q) corresponding to C is the 3-tuple (ex, head, tail) such that 

    tail is the set of all characteristics in C1 except the first  

 head = {C1,1}  

 ex = g(n(head(A1)), …, n(head(Aq)), n(s1), …, n(sk))  

where for each i (1≤i≤q), Ai is the ith r1a-group corresponding to C, and for 

1≤j≤|Zi|, sj is the significant subarray (see below) of (P,Q) such that rel(C1,1)Zi,j ∈ 
cont(sj). 

We define r2s-group similarly. 

For example, in Figure 3.3 the head and tail of the r1s-group correspond to 

{v,vx,vp1,vp2,vp3} and {w,wx,wp1,wp2,wp3} respectively. The r1a-groups are 
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associated with the r1s-group via the ex components. The dotted lines from r1a-groups to 

the other groups show that these aggregators are dependent on the other groups. 

Definition 16: If (R,S) is a 1,2-block of (P,Q), a b-group of (R,S) is a pair of the form 

(ex, cont) such that, for some y in the first slice of R and the first slice of S: 

   cont = { x | rect(x)=rect(y) and x occurs in the first slice of R and the first slice 

of S}  

 ex = f(n(s1),…, n(sm)) if for some x ∈ cont, x=rel(x)0, ex(x) = ≈(<0>, 

f(<1>,…,<m>), and for 1≤j≤m, sj is the significant subarray (see below) of (P,Q) 

such that rel(x)j ∈cont(sj). ex = nil otherwise.  

Definition 17: If (R,S) is a 1,2-block of (P,Q), the rr-group of (P,Q) corresponding to 

(R,S) is the pair (head, tail), where : 

 tail = { x | characteristic x occurs in some slice of R other than the first }  

 head is a pair of the form (head, tail) where  

  tail = { x | characteristic x occurs in the first slice of R, and some slice of 

S other than the first } 

  head is the set of all b-groups of (R,S). 

For example in Figure 3.3, the head of rr-group consists of three b-groups which are 

{a1},{b1},{c1,v1,cp1} and the tail of the head of the rr-group corresponds to  {a2, b2, 

c2, v2, cp2, a3, b3, c3, v3, cp3}. Also the tail of the rr-group corresponds to {d1, e1, f1, 

w1, fp1, d2, e2, f2, w2, fp2, d3, e3, f3, w3, fp3}. 

Definition 18: A significant subarray of a repeat (P,Q) is either an e-group, a,b-group, or 

the head of an r1, r2, r1s, r2s, r1a or r2a-group. A named subarray is either a 
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significant subarray, a group, the head or tail of a group, or the tail of the head of an 

rr-group. 

The functions n and n1 are one-to-one functions from the named subarrays of (P,Q) 

to two disjoint sets of symbols . 

Definition 19: If A and B are groups of a repeat (P,Q), then A and B are consistent iff 

either A and B both correspond to 1-blocks, the matches of which are consistent; 

or A and B both correspond to 2-blocks, the matches of which are consistent; 

or A corresponds to a 1-block X, B to a 1,2-block (R,S), or vice versa, and X∪R is 

consistent; 

or A corresponds to a 2-block X, B to a 1,2-block (R,S), or vice versa, and X∪S is 

consistent; 

or there is a group X such that A and X are consistent, and B and X are consistent.  

Consistency is an equivalence relation on the set of all rr, r1s, r2s, r1 and r2-

groups. A cluster of (P,Q) is an equivalence class under this relation.  

Definition 20: The model for a repeat is the set of all groups and clusters of the repeat. 

3.5 Generating an L-sheets Program 

The model of a repeat captures the essential elements of the repeat. In this section, 

we show how to generate an L-sheets program from it. We start by defining various 

functions that operate on the model. These functions are used to generate sets of tuples 

that are processed by an algorithm called parameter, listed in Appendix A, that 

generates the parameters of the forms that make up the L-sheets program.  

The input to this algorithm is a set of 7-tuples of the form (c,t,l,b,r,h,w), where the 

first component is a set of strings, which is either empty or contains name or content of a 
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named subarray of the model. The remaining components provide geometrical 

information about the named subarray. The algorithm incrementally builds two lists 

representing an L-sheets parameter as described in section 3.1, by selecting an element 

from the input set and adding corresponding elements to each output list. If the selected 

input element overlaps with an element of one of the current output lists, the overlapped 

output list element is removed and new elements added corresponding to the overlapped 

and non-overlapped parts of the input tuple and the overlapped output list element. 

 Table 3.1 defines functions that return the geometrical properties of an entity. For 

example, consider the r2-group C in Figure 3.3. To compute h(C), we note that 

l(head(C)) = l(Ch) = min{ l(r1) } = 7, and l(tail(C)) = l(Ct) = min{ l(r2),  l(r3) } = 8. 

Hence l(head(C)) ≠ l(tail(C)), so that h(C) = 1. Similarly, to compute w(C), we note that 

t(head(C)) = t(Ch) = min { t(r1) } = 9, and t(tail(C)) = t(Ct) = min { t(r2),  t(r3) } = 9, so 

since these values are equal, w(C) = *, indicating that C represents a group of 

horizontally repeating items.  

x is s1, 
s2, 
s1a, or 
s2a 

x
head(head(y)) 
where y is rr 

x is e 
or b  

x=head(y) 
where y is r1, 
r2, r1s, r2s, r1a, 
or r2a 

x=tail(y)  
where y is r1, 
r2, r1s, r2s, 
r1a, r2a or rr 

x= 
tail(head(y)) 
where y is rr 

x= 
head(head(y)) 
where y is rr 

t(x) t(cont(x)) min { t(z) | z x } 
l(x) l(cont(x))   min { l(z) | z x } 
b(x) b(cont(x))          max { b(z) | z x } 
r(x)   r(cont(x))       max { r(z) | z x } 
h(x) 1 h(y) h(head(y)) b(x)–t(x)+1 
w(x) 1     w(y) w(head(y)) r(x)–l(x)+1 
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 x=head(y) where y is rr x is r1, r2, r1s, r2s, r1a, or r2a x is rr 

t(x)  t(head(x)) t(head(x)) 
l(x)  l(head(x)) l(head(x)) 

b(x) b(tail(x)) b(tail(x)) 

r(x) r(tail(x)) r(tail(x)) 

h(x) * if l(head(x)) = l(tail(x)) 
b(x)–t(x)+1 otherwise 

* if l(head(x)) = l(tail(x)) 
1 otherwise 

* 

w(x) * if t(head(x)) = t(tail(x)) 
r(x)–l(x)+1 otherwise 

* if t(head(x)) = t(tail(x)) 
1 otherwise 

* 

Table 3.1 t,l,b,r,h,w functions for each group or the head and tail of the groups 

The remaining functions, defined in Table 3.2, compute the sets of tuples that are 

provided as input to the parameter function. To simplify the presentation, we use 

geom(x) as an abbreviation for t(x),l(x),b(x),r(x),h(x),w(x). 

x name(x) name1(x) 
named subarray {({n(x)}, geom(x))} {({n1(x)}, geom(x))} 

 

         x      a(x) c(x)  b(x) 

rr {({n(x)},      
geom(head(head(x)))}, 
({n(x),geom(tail(x)))}) 

–  

r1a – {({ex(x)}, geom(head(x)))} {({id(x)}, geom(head(x)))} 

r1, r2, r1s, r2s, 
r2a 

{({n(x)},             
geom(head( (x)))}, 
({n(x),geom(tail(x)))}) 

{({ex(x)}, geom(head(x)))}  

e – {( , geom(x))} {( , geom(x))} 

b, s1, s2 – {({ex(x)}, geom(x))} if ex(x)≠nil 
{( , geom(x))} otherwise 

– 

s1a, s2a – {({ex(x)}, geom(x))} {({id(x)}, geom(x))} 
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x m(x) 
parameter { z | z a(y) for some y x } 

s1, s2 c(x) 
rr,r1,r2,r1s,r2s,r2a a(x) 
any other group name(x) 

    
      x f(x) f1(x)  
r2, r2s c(x) ∪ name(head(x)) ∪ name(tail(x)) name(tail(x))  

r2a name(head(x)) ∪ name(tail(x)) name(tail(x)) 

s2a c(x)  name(x) 

e name(x) name(x) 
  
x   p(x)   p1(x)   p2(x)   p3(x) 
rr name(head(x)) ∪ 

name(tail(x)) 
name(tail(x)) name(head(x)) b(x) 

r1, r1s c(x) ∪ name(head(x)) ∪ 
name(tail(x)) 

name(tail(x)) – b(x) 

r2a name(x) name1(x) name2(x) {({id(x)},geom(x))} 
s1a c(x) name(x) – b(x) 
e name(x) name(x) name(x) b(x) 
r1a – – name(x) b(x) 

 
x q(x) q1(x) q2(x) q3(x) 

rr { c(y) | y head(head(x))} 
{ name(y) | y head(head(x))} 
name(tail(head(x))) 

- name(tail(head(x)))  - 

r1a c(x) - name(head(x)) - 

r2a c(x) name1(tail(x)) name(head(x)) 
name(head(x)) 

name1(tail(x)) name(tail(x)) 

r1,r1s name(head(x)) - name(head(x)) - 

e name(x) n(x) name(x) - 
Table 3.2 Necessary functions for creating L-sheets programs. 

We now show how the L-sheets schema for a repeat can be constructed from the 

model. We assume an arbitrary but fixed ordering of the clusters and groups of the model, 

and that the following sets which occur in the schema presented below are ordered 



 
 

49 
 
 

accordingly. 

P = the set of all clusters, s1, s2, and e-groups. 

Y = the set of all rr, r1, r1s, s1a and e-groups.  

Z = the set of all r2, r2s, s2a and e-groups. 

W = the set of all rr, r1, r1s, r1a and e-groups.  

V = the set of all r2a-groups. 

Other conventions used in the presentation of this L-sheets schema are as follows. 

First, a term consisting of a function applied to one the above sets of groups and clusters 

produces the list obtained by applying the function to each element of the set, ordered as 

noted above. Second, although each of the functions defined in the tables produces a set 

to be processed by the parameter algorithm, for simplicity, we use it in the L-sheets 

schema to denote the output of the parameter algorithm applied to the set produced by 

the function. Finally, concatenation of lists is denoted by •. The L-sheets schema for a 

model is as follows. 

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)). 

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)). 

F(b(Z)•b(V)). 

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)). 

T1(b(Y)•p3(V)). 

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)). 

T2(b(W)•b(V)•b(V)).  

Figure 3.4 depicts the L-sheets program obtained from the spreadsheet in Figure 3.2. 

Each array in this program is labelled with the type of entity in the model in Figure 3.3 



 
 

50 
 
 

from which it was generated. These labels are not part of the program. 

To conclude, we note that some spreadsheets may include only linear repeats, rather 

than the more general two-dimensional ones, and show how to derive L-sheets schema 

for such cases. 

If (P,Q) is a repeat and Q is smaller than the threshold θ, then the following groups 

will not occur: rr, r1s, r1a, r2, r2s, r2a, s2, s2a. The sets of items that occur in the 

argument lists of the forms of the L-sheets schema are modified to take these changes 

into account, as below. 

P = the set of all clusters, s1, and e-groups. 

Y = the set of all r1, s1a and e-groups. 

Z = the set of all e-groups. 

W = the set of all r1 and e-groups. 

V = ∅. 

Any term constructed from a set which is empty or includes only e-groups, can be  

deleted, as can any form, all arguments of which are deleted. Hence, the resulting L-

sheets schema is as follows. 

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)). 

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)). 

F(b(Z)•b(V)). 

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)). 

T1(b(Y)•p3(V)). 

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)). 

T2(b(W)•b(V)•b(V)). 
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Figure 3.4 L-sheets program for Figure 3.2 



 
 

52 
 
 

Any term constructed from a set which is empty or includes only e-groups, can be  

deleted, as can any form, all arguments of which are deleted. Hence, the resulting L-

sheets schema is as follows. 

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)). 

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)). 

F(b(Z)•b(V)). 

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)). 

T1(b(Y)•p3(V)). 

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)). 

T2(b(W)•b(V)•b(V)). 

Finally, we note that the functions b and q do not insert any formulae into the arrays 

they create from r1 and e-groups. Hence execution of T2 accomplishes nothing, so all 

forms involving T2, and the templates for T2, can be deleted. Hence the schema reduces 

to: 

(1)  T(m(P)) :- T1(m(Y)). 

T1(p(Y)) :- T1(p1(Y)). 

T1(p3(Y)). 

Now consider the other case, when (P,Q) is a repeat and P is smaller than the 

threshold. In this case the following groups will not occur: rr, r2s, r2a, r1, r1s, r1a, s1, 

s1a. Modifying the sets of items argument lists of the forms of the L-sheets schema, we 

obtain: 

P = the set of all clusters, s2 and e-groups. 

Y = the set of all e-groups. 
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Z = the set of all r2, s2a and e-groups. 

W = the set of all e-groups. 

V = ø. 

Deleting terms and forms from the L-sheets schema, as described above, reduce it as 

follows. 

T(m(P)) :- T1(m(Y)•m(V)), F(m(Z)•m(V)). 

F(f(Z)•f(V)) :- F(f1(Z)• f1(V)). 

F(b(Z)•b(V)). 

T1(p(Y)•p(V)) :- T1(p1(Y)•p1(V)), T2(p2(W)•p(V)•p1(V)). 

T1(b(Y)•p3(V)). 

T2(q(W)•q(V)•q1(V)) :- T2(q2(W)•q2(V)•q3(V)). 

T2(b(W)•b(V)•b(V)). 

This reduces to: 

(2) T(m(P)) :- F(m(Z)). 

F(f(Z)) :- F(f1(Z)). 

F(b(Z)). 

By comparing the textual parameters in (1) and (2), Table 3.3 is derived. 

Hence, the templates T1 in (1) and F in (2) are equivalent, and therefore templates T 

in (1) and T in (2) are also equivalent. 

Finally, we note that each linear repeat is represented in the derived L-sheets 

program by recursion. This is not necessary if every match in a linear repeat has a gap of 

1. The parameters derived from the groups of such a linear repeat could be more simply 

represented in the L-sheets program as arrays of variable height or width, removing the 
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need for one level of recursion. 

(1) y Y (2) z Z 

y = r1, z = 
2

y = s1a, z = s2a y = e, z = e 
m(y) a(y) name(y) name(y) 
m(z)   a(z) name(z) name(z) 
p(y) c(y) name(head(y)) name(tail(y)) c(y) name(y) 
f(z) c(z) name(head(z)) name(tail(z)) c(z) name(z) 
p1(y) name(tail(y)) name(y) name(y) 
f1(z)    name(tail(z)) name(z) name(z) 
p3(y)  {({id(y)}, geom(y))} {( , geom(y))} 
b(z)  {({id(z)}, geom(z))} {( , geom(z))} 

   Table 3.3 comparing the textual parameters computed in (1) and (2) 
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Chapter 4           Conclusion 
 

4.1 Evaluation  

In this chapter, we will compare our method for inferring templates with the process 

for inferring ViTSL templates discussed in chapter 2 [36]. In this thesis we do not 

compare our method for inferring templates with ClassSheets template extraction process 

[38], discussed in chapter 2, because it deals not with formulae, but with data 

dependencies, so it aims to discover relational tables in spreadsheets used as databases. 

a) The ViTSL template language requires cells which are repeated together to be 

aligned, either horizontally or vertically, as in the budget example shown in Figure 

3.2. Hence it cannot represent repeats in which related repeated items are not 

aligned, for example the sequences of cells R3C2, R3C6 and R10C6, 11C6 in 

Figure 3.2. Note that this is a restriction imposed by the ViTSL template language, 

rather than the associated process for inferring templates. Our definitions allow 

related, repeated items not only to be unaligned, but also to be orthogonal.  

b) Our methodology allows the inferring of templates from spreadsheets when 

matches are overlapped. In other words, we can extract templates from those 

spreadsheets when data or formula cells are referred from different formula cells 

more than once. Templates from these kind of spreadsheets cannot be extracted by 

inferring templates for ViTSL process. A good example could be a spreadsheet 

which shows the Fibonacci numbers [41]. 

c) L-sheets can depict separate parameters, with no spatial relationship. For example 

in Figure 3.2, cells R10C8, R10C9 and R10C10 refer to R3C9, R5C9 and R7C9 
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respectively but the corresponding cells do not have any spatial relationships. As 

Figure 3.4 shows, two parameters which encompass these cells are not 

geometrically related. But in ViTSL, regions with no spatial relationship should 

be considered in one template which can mislead the user. 

There are some directions for furthering this work, including the following items: 

1- Devising and implementing the algorithms for extracting the structures defined in 

chapter 3 from spreadsheets. 

2- The process for extracting spreadsheet structure, inherent in our definitions, could 

be augmented with algorithms that detect and semantically analyse headers, such 

as those in UCheck, described in Chapter 2. These operations the system may 

apply some error detection algorithms such as UCheck or automatic detection of 

dimension errors (which are described in chapter 2). 
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Appendix A : Generating L-sheets Parameters Algorithm 

    
This Prolog program was provided by Dr.Phil Cox 

 
/*-------- Make parameter from a set of rectangles ----------*/ 
 
parameter(Rects,(HP,VP)) :- 
 build(h,Rects,[],H), quicksort(H,HS), compress(HS,HP), 
 build(v,Rects,[],V), quicksort(V,VS), compress(VS,VP). 
 
/*-------- Remove position information from rectangle -------*/ 
 
compress([],[]). 
compress([(N,_,_,W)|R],[(N,W)|RC]) :- 
 compress(R,RC). 
 
/*-------- Build list of strips - first parameter indicates direction -
------*/ 
 
build(_,[],Strips,Strips). 
build(D,[Rect|Rest],Strips,StripsOut) :- 
 extract(D,Rect,N,Begin,End,Size), 
 insert((N,Begin,End,Size),Strips,Strips1), 
 build(D,Rest,Strips1,StripsOut). 
 
/*-------- Gets the name and column or row range of rectangle -------*/ 
 
extract(h,(N,_,L,_,R,_,W),N,L,R,W). 
extract(v,(N,T,_,B,_R,H,_),N,T,B,H). 
 
/*-------- Incorporate a rectangle into a set of strips (columns or 
rows)  -------*/ 
 
insert(X,[],[X]). 
insert((N,B,E,S),[(N1,B1,E1,S1)|Rest],[(N1,B1,E1,S1)|StripsOut]) :- 
 ( E < B1 ; B > E1 ), !, 
 insert((N,B,E,S),Rest,StripsOut). 
insert((N,B,E,S),[(N1,B1,E1,S1)|StripsIn],StripsOut) :- 
 E > E1, 
 split(S,S1,E1-B+1,E-E1,Sn1,Sn2), !, 
 Bn is E1+1, 
 insert((N,Bn,E,Sn2),StripsIn,Strips1), !, 
 insert((N,B,E1,Sn1),[(N1,B1,E1,S1)|Strips1],StripsOut). 
insert((N,B,E,S),[(N1,B1,E1,S1)|StripsIn],StripsOut) :- 
 B < B1, 
 split(S,S1, E-B1+1, B1-B, Sn2, Sn1), !, 
 En is B1-1, 
 insert((N,B,En,Sn1),StripsIn,Strips1), !, 
 insert((N,B1,E,Sn2),[(N1,B1,E1,S1)|Strips1],StripsOut). 
insert((N,B,E,S),[(N1,B1,E1,S1)|StripsIn],[(N1,Bn,E1,Sn2)|StripsOut]) 
:- 
 E < E1, 
 split(S,S1, E-B1+1, E1-E, Sn1, Sn2), !, 



 
 

64 
 
 

 Bn is E+1, 
 insert((N,B,E,S),[(N1,B1,E,Sn1)|StripsIn], StripsOut). 
insert((N,B,E,S),[(N1,B1,E,S1)|StripsIn],[(N1,B1,En,Sn1)|StripsOut]) :- 
 B > B1, 
 split(S,S1, E-B+1, B-B1, Sn2, Sn1), !, 
 En is B-1, 
 insert((N,B,E,S),[(N1,B,E,Sn2)|StripsIn],StripsOut). 
insert((N,B,E,S),[(N1,B,E,S)|StripsIn],[(N2,B,E,S)|StripsIn]) :- 
 concat(N,N1,N2). 
 
/*-------- Computes sizes of parts of a split strip -------*/ 
 
split('*','*',_,R,'*',F) :- F is R, !. 
split('*',_,L,_,F,'*') :- F is L, !. 
split(_,_,L,R,S1,S2) :- S1 is L, S2 is R. 
 
/*-------- Sorts strips from left to right (top to bottom)  -------*/ 
 
quicksort([],[]). 
quicksort([X|Y],Z) :- 
 partition(X,Y,Y1,Y2), 
 quicksort(Y1,Z1), 
 quicksort(Y2,Z2), 
 concat(Z1,[X|Z2],Z). 
 
partition(_,[],[],[]). 
partition((_,F1,_,_),[(N,F2,Y,S)|R],[(N,F2,Y,S)|R1],R2) :- 
 F2 < F1, !, partition((_,F1,_,_),R,R1,R2). 
partition(X,[F|R],R1,[F|R2]) :- 
 partition(X,R,R1,R2). 
 
concat([],X,X). 
concat(X,[],X). 
concat([X|R],Y,[X|Z]) :- concat(R,Y,Z). 


