
A General Model for Component-based Software

by

Baoming Song

A Thesis Submitted to the
Faculty of Computer Science

In Partial Fulfillment of the Requirements
for the Degree of

Master of Computer Science

Approved:

Dr. P. Cox, Supervisor

Dr. T. Smedley, Faculty of Computer Science

Dr. R. Giles, Acadia University

Dalhousie University – DalTech

Halifax, Nova Scotia 2000

ii

Dalhousie University – DalTech

“AUTHORITY TO DISTRIBUTE MANUSCRIPT THESIS”

TITLE: A General Model for Component-based Software

The above library may make available or authorize another library to make available
individual photo/microfilm copies of this thesis without restrictions.

Full Name of Author: Baoming Song

Signature of Author:

Date:

iii

Table of Contents
Table of Contents .. iii
List of Figures ..vi
List of Tables .. viii
List of Abbreviations..ix
Acknowledgments ..xi
Abstract...xii

Chapter 1 Introduction ...1

1.1 Issues of Software Reuse ..1

1.2 Why Move to Component-based Software Engineering? ..3

1.3 Objectives of This Research ...4

Chapter 2 Overview of Component-Based Software ...7

2.1 What Is a Component? ...7

2.2 CORBA, COM, and JavaBean..12

2.2.1 CORBA and CORBA components ...13

2.2.2 COM and Active X controls ...17

2.2.3 JavaBeans ..20

2.2.4 Relationships and Comparisons ..22

2.3 Characteristics of Component...24

2.4 Major Issues and Challenges ..28

2.5 Summary..29

Chapter 3 Component-based Software Development with Visual Programming30

3.1 Visual Programming...31

3.1.1 Features of Visual Programming ..31

3.1.2 Visual Programming Languages vs. Visual Programming Environments33

3.1.3 Prograph...34

3.2 Component-based Visual Programming Environment...37

iv

3.2.1 VisualAge for Java ...38

3.2.2 PARTS for Java Technology ..41

3.2.3 Java Studio...43

3.3 Summary..47

Chapter 4 Overview of Formal Models for Component-based Software Systems....49

4.1 Petri Nets ...49

4.2 Formalization of Component Model ...52

4.2.1 COMEL Language ...53

4.1.2 Another Formal Model for COM..54

4.3 Summary..54

Chapter 5 A General Model for Component-based Software56

5.1 Definitions ...57

5.2 Discussion with an Example...68

5.3 Comparison with Other Component Models ...71

5.4 Relation with Petri Nets..71

5.5 Summary..73

Chapter 6 A Prototype of Component-Based Visual Programming Environment...74

6.1 Overview of CSCK ..74

6.2 Work with the System ..76

Component ...79

Port and Trigger ..80

Connection..81

6.3 Summary..88

Chapter 7 Evaluation of the Prototype, CSCK ..88

7.1 Evaluation of CSCK According to Cognitive Framework88

v

7.2 Testing ..95

7.3 Extending the Prototype ...96

7.4 Comparisons with Other Techniques ..97

7.5 Summary..99

Chapter 8 Summary and Conclusions ..99

Reference ...101

Appendix A Design and Implementation of CSCK..106

A.1 Class Diagram of the implementation ..106

A.2 Implementation with Java ..113

A.2.1 Java Look & Feel and Swing ...113

A.2.2 Why Java?...114

A.2.3 Major Data Structure ...114

A.2.3 Data Structure and Algorithms for Builder and Interpreter116

vi

List of Figures
Figure 2.1 OMA Model ...14

Figure 2.2 CORBA Component...15

Figure 2.3 COM Component ...18

Figure 2.4 Event processing in JavaBeans ...21

Figure 2.5 Component Models and Their Relationship ..22

Figure 3.1 A Case in Prograph...36

Figure 3.2 Visual Composition Editor in VisualAge for Java ...39

Figure 3.3 Visual Designer in PARTS for Java ..42

Figure 3.4 JavaBeans Component for Java Studio..45

Figure 3.5 Design Window in Java Studio ...45

Figure 3.6 Package in Java Studio ...46

Figure 4.1 Petri Net ...51

Figure 5.1 A Visual Representation of a Source Component..58

Figure 5.2 A Visual Representation of a Sink Component ...59

Figure 5.3 A Visual Representation of a Simple Component..60

Figure 5.4 A Visual Representation of a Compound Component62

Figure 5.5 A Visual Representation of a Prototype ..64

Figure 5.6 An Example..67

Figure 5.10 The Component fact ...69

Figure 6.1 A Snapshot of CSCK Starting-up..78

Figure 6.2 Project Editor..79

Figure 6.3 Components..80

Figure 6.4 Port Editor ..82

Figure 6.5 Invocation of A Compound Component Editor ...83

vii

Figure 6.6 Compound Component Editor ..84

Figure 6.7 Trigger and Inport Editor ..85

Figure 6.8 Function Editor...86

Figure 6.9 Visual Beans Selection Editor...87

Figure 6.10 Interpreter...88

Figure A.1 Packages in Implementation of CSCK ...107

Figure A.2 Class Diagram in Package editors ..108

Figure A.3 Class Diagram in Package views ..109

Figure A.4 Class Diagram in Package system ..110

Figure A.5 Class Diagram in Package interpreter ..111

Figure A.6 Class Diagram in Package processing ..112

Figure A.7 Class Diagram in Package customizedComp ..112

Figure A.8 Major Data Structure in the Implementation...115

Figure A.9 Implementation of Class SimpleCompClass ...116

Figure A.10 A Sample Java Source Codes for Component Function Generated by Builder

...117

Figure A.11 Implementation of Class TriggerClass..118

Figure A.12 A Sample of Java Source Codes for Trigger Condition Generated by Builder

...118

Figure A.13 Pseudo Code for Algorithm used in Interpreter..119

Figure A.14 Pseudo Code for Evaluation ...120

Figure A.15 Pseudo Code for Propagation ...120

Figure A.16 Pseudo Code for Expansion ...121

viii

List of Tables

Table 2.1 Component Classification According to Shaw and Garlan (1996)8

Table 2.2 Interactions among Components According to Shaw and Garlan (1996)9

Table 2.3 Comparison of three component models...24

Table 2.4 Comparison between Component and Object ...27

Table 6.1 Menu Items for each Menu of Primary Window...77

Table 6.2 Icons of Inport and Trigger ..81

ix

List of Abbreviations
API Application Programming Interface

AWT Java Abstract Windows Toolkit

CBVPE Component-based Visual Programming Environment

COM Component Object Model from Microsoft

COMEL Component Object Model Exemplary Language

CORBA Common Object Request Broker Architecture

CSCK Component Software Construction Kit

CSP Communicating Sequential Processes

DCOM Distributed Component Object Model from
Microsoft

EJB Enterprise JavaBean from SUN

ECOOP the European Conference on Object-Oriented
Programming

HTML HyperText Markup Language

GIF Graphical Interchangeable Format

GUI Graphical User Interface

GUID Globally Unique Identifier

IDE Integrated Development Environment

IDL Interface Definition Language

I/O Input/output

JAR Java Archive File

JFC Java Foundation Class

MIDL Microsoft’s Interface Description Language

OLE Object Link and Embed

OMA Object Management Architecture

OMG Object Management Group

OOP Object-oriented Programming

ORB Object Request Broker

RAD Rapid Application Development

RFP Request For Proposal

x

RPC Remote Procedure Call

SOM IBM’s System Object Model

TCP/IP Transmission Control Protocol/Internet Protocol

UML Unified Modeling Language

VCE Visual Composition Editor in VisualAge for Java

VPE Visual Programming Environment

VPL Visual Programming Language

xi

Acknowledgments

I cannot thank enough my supervisor Dr. Phil Cox for his guidance and his long time

spent on revising my thesis. Without his brilliant ideas and his help, this thesis would not

be finished.

I would like to thank Dr. T. Smedley and Dr. R. Giles for their serving as members in my

examining committee. I sincerely appreciate their time, interest, and suggestions.

The financial support from the Faculty of Computer Science, Dalhousie University is

gratefully acknowledged.

Further, I would like to thank my wife Fei Tan for her incredible patience, her love, and

her strong support during my study at the Faculty of Computer Science.

xii

Abstract

Component technologies have become the buzzword in today’s software engineering

communities. Component technologies empower software engineers to produce a higher

quality, more reliable, and more maintainable software solutions in a shorter time and

within a limited budget.

This thesis presents a general model for component-based software. The model precisely

specifies component-based software with sound basis mathematics. It captures the

essence of currently most popular component technologies like JavaBean, COM, and

CORBA. It will help people understand concepts of component technologies more easily

and also it could be used as a standing point to develop a formal testing and verification

methodology for component technologies.

To verify the applicability of the general model, a prototype for the general model has

been presented in this thesis. The prototype is implemented as a visual programming

integrated development environment that takes full advantages of component-based

technology and visual programming concepts. The prototype has proved that the general

model for component-based software is applicable.

1

CHAPTER ONE

Introduction

1.1 Issues of Software Reuse

Software reuse has long been one of the major issues in the world of software

engineering. The reason is obvious. Software reuse can dramatically increase the

productivity of the software community, ease maintenance, and improve product

reliability. Although most people would agree upon the importance of reuse, it is only

today that it has become a main goal in software engineering. As a result, many software

reuse technologies have been developed over the past few years (Jacobson, 1997; Leach,

1997).

Software reuse was first realized in the late 50’s or early 60’s when the concept of

libraries was developed which allowed collections of pre-compiled, reusable subroutines

to be linked into a program for performing specialized tasks. The area in which libraries

have succeeded best is probably numerical analysis, where a large number of FORTRAN

libraries are available on various platforms and are used in many engineering projects.

But there are not many successful stories in other areas. The difficulty of encapsulating

high-level functionality in subroutines is responsible for the failure of library-based reuse.

The inception of object-oriented programming (OOP) languages has made software reuse

more feasible and practical. Its features include abstraction, polymorphism, delegation,

dynamic binding, encapsulation, and inheritance (Budd, 1997). At its first appearance,

people realized software reuse by inheritance. Now software reuse with OOP has shifted

to object composition and genericity. In OOP, object composition is dynamically defined

2

at runtime and achieves software reuse by defining new classes of objects as structures

containing instances of other previously defined classes. This makes the object-oriented

design more reusable. Genericity provides parametric polymorphism, allowing the same

code to be used with respect to different types. For example, it is realized by using

templates in C++. A type of element in a linked list can use templates to allow the

programmer to declare a list of integer by using integer as a parameter, to declare a list of

string by using string as a parameter, and so on. More importantly, object-oriented

application frameworks have taken advantage of the features of OOP, and have evolved

into one of the most powerful reuse techniques. In addition to reusing code, frameworks

reuse the design (Lewis et al., 1995).

Another popular reuse technique in the object-oriented programming community is

design patterns. Design patterns represent a recurring solution to a software development

problem within a particular context. They have frequently been used to guide the creation

of abstractions in the software design phase, necessary to accommodate future changes

and yet maintain architectural integrity. These abstractions help us de-couple the major

components of the system so that each component may vary independently (Gamma et

al., 1994).

The current trend in software engineering is towards component-based development.

Building software with components promises more efficient and effective software reuse

and higher productivity. A system can be designed and implemented by assembling

components, customizing or extending them as needed; and publishing components in a

form that can be applied to design and construct others, based purely on interface

specifications (Chappell, 1997; Szyperski, 1998).

3

1.2 Why Move to Component-based Software

Engineering?

To increase software reuse is not the sole driving factor that supports the increasing

interest in component-based software development. Other key driving factors include

(Tran et al., 1997):

• To survive in the competitive software market, software companies have to deliver

higher quality and more reliable software in a shorter time and within a limited

budget.

• Today software markets have increasingly been expecting large-scale, more complex

software projects. Traditional software development technologies and methodologies

are inadequate for managing such projects which normally involve several software

companies.

• Users expect software to be easy to maintain in order to decrease maintenance and

operating expenses.

• Users require that software from different vendors will work together. Such

integration requires strict adherence to standards, creating extra difficulties for

software developers which can be addressed by a component-based approach to

development.

• Techniques and approaches have been developed to make component-based software

development more applicable and feasible.

As a consequence, component-based software development offers the following

advantages over conventional software development (Chappell, 1997; Tran et al., 1997):

• Component-based software development can increase the productivity of software

developers. Component-based software is constructed by assembling existing

4

reusable components. This process is much faster than writing an application from

scratch.

• Component-based software development offers higher quality, more reliable

software. The main reason is that reusable components have been tested and therefore

their quality can be assured.

• Component technology can ease software maintenance. Component-based software

means that a large software application can be made of many small components. A

task for maintaining a large software application can be partitioned to many smaller

and easier tasks for maintaining components.

• Component technology makes it easier to manage software development. Component

partitioning enables parallel development, allowing several organizations to be

involved in development of larger and more complex software.

• Because component technology implies some base set of standards for infrastructure

service, a large application can depend on these standards thereby saving considerable

time and effort.

1.3 Objectives of This Research

As component-based development has become more and more important in the

information technology world, many concepts and conventions have been introduced.

These concepts and conventions are often easily misunderstood and misled. An obvious

demand exists to precisely specify issues such as what is a component, how they are

used, and how they interact with each other. Unfortunately these issues are addressed

only for particular component models, for instance, the component object model (COM).

There is a lack of a general definition for these concepts. As a basis for addressing this

issue, our first objective is to provide an overview of component-based software

technologies and formal approaches to component-based software. We will then propose

a general model for component-based software consisting of formal definitions of what

components are, how they are used, and how they interact with each other.

5

Another challenge in component-based software development is how to assemble

components effectively and efficiently. As a component is ready, it must be deployed into

a component models or frameworks. These component models or frameworks provide a

systematic method of connecting components, where components are assembled by

instantiating and connecting component instances and by customizing component

resources. Component assembly can be done in several ways. One choice is to use a

traditional textual programming language; however, this is likely to be complicated since

the task involves describing networks. One way of simplifying the assembly process is by

using visual programming or visual assembly tools. Once a component model or

framework has been set up, visual programming environments or visual assembly tools

could be devised that allow components to be plugged together graphically. It has been

noted that visual programming has played an important role in component-based software

development (Carrel-Billiard and Akerley, 1998). There are already visual component-

based tools available on the software market. Most of these tools, however, are targeted

to particular component models. For example, VisualAge for Java from IBM uses

JavaBeans model. It is not easy for people to learn and understand the concepts of the

general component model using these tools. A tool or development environment is

definitely needed to clearly and visually present the general component model and

concepts of component-based software. Therefore, our second objective of this research

is to investigate the importance of visual programming in component-based software

development, and to present a prototype of our general model implemented using visual

programming concepts. This prototype will offer a visual integrated component

development environment that enables people to learn and understand the general model

and concepts of component-based software.

The rest of this thesis is organized as follows. Chapter 2 provides an overview of

component-based software systems and technologies addressing issues such as the

definition and characteristics of components. Several commercial component models

such as COM, JavaBean, CORBA (common object request broker architecture) are

6

introduced and compared. We follow with discussing the relationship between

component-based software and visual programming in Chapter 3. An overview of formal

methods for component-based software systems is given in Chapter 4. In Chapter 5, we

propose a general model for component-based software. This model is discussed with the

reference to an example, and compared with other component models. Chapter 6 presents

a prototype of component-based visual programming environment based on our model.

The evaluation of the prototype is discussed in Chapter 7. We conclude in Chapter 8 with

a summary of this research and recommendations for the future work.

7

CHAPTER TWO

Overview of Component-Based Software

The concept of component has been around in the computer hardware industry for a long

time. To build a computer, hardware engineers no longer design tiny, basic elements from

scratch. They simply plug off-the-shelf components such as chips, boards, or cards

together. Component-based development has brought a number of benefits to hardware

engineers such as reusability, maintainability, flexibility, and integration readiness. Due

to the constraint of time and budget, software engineers have sought similar techniques

for software development leading in recent years to various techniques for building

software from components. Component models like COM and CORBA (Common Object

Request Broker Architecture) allow software engineers to plug together components in

different languages and platforms. End-users are also benefiting from these technologies:

for example, spreadsheet, word processing, drawing and database applications often use a

component model to embed editable data from one application into the files created and

managed by another (D’Souza et al., 1997; Jacobson et al., 1997; Szyperski, 1998).

2.1 What Is a Component?

The word “component” is used very broadly and often loosely throughout the software

industries. Generically, a component is defined as a computational unit (Shaw and

Garlan, 1996). Components can be things like clients and servers, databases, filters, and

layers in a hierarchical system. Shaw and Garlan (1996) have classified components

according to their structural properties as in Table 2.1.

8

The interactions among components are also of identifiable kinds. Some of the most

common interactions are summarized in Table 2.2. Components as a computational unit

and interactions among these components have formed the foundation of software

architecture, an emerging discipline in software engineering (Shaw and Garlan, 1996).

Component
Types

Characteristics Examples

Pure computation Simple input/output
relations, no retained state

Math functions, filters,
transforms

Memory shared collection of
persistent structured data

database, file system,
symbol table, hypertext

Manager state and closely related
operations

abstract data type, many
servers

Controller governs time sequences of
other’s events

scheduler, synchronizer

Link Transmits information
between entities

communication link,
user interface (GUI)

Table 2.1 Component Classification According to Shaw and Garlan (1996)

Although Shaw and Garlan (1996) define components in a very generic way, their

definition is not widely accepted in the component software community. This is partly

because their definition is more abstract and at a higher level. Intuitively, most people

think of software components as analogous to hardware components, picturing software

engineers assembling them into software applications much the same way as hardware

engineers assemble a computer out of hardware components. Various researchers have

attempted to define software components to fit this view, resulting in several different

descriptive but informal models.

9

Interaction
Types

Characteristics Examples

Procedure call Single thread of control passes
among definitions.

ordinary (single name
space), remote (separate
name spaces)

Dataflow Independent processes interact
through streams of data;
availability of data yields
control

Unix pipes

Implicit event
propagation

Computation is invoked by the
occurrence of an event; no
explicit interaction among
processes

event systems, automatic
garbage collection

Message passing Independent process interact
by explicit, discrete handoff of
data; may be synchronous or
asynchronous

TCP/IP

Shared data Components operate
concurrently (probably with
provisions for atomicity) on
the same data space

blackboard systems,
multiuser database

Instantiation Instantiator uses capabilities of
instantiated definition by
providing space for state
required by instance

use of abstract data types

Knowledge
passing

Rather than receive and send
data and references to
components, actually transmit
an object, complete with the
code that defines its behaviors

Agent and Mobile Agent

Table 2.2 Interactions among Components According to Shaw and Garlan (1996)

One of the most popular definition of a component was offered by a working group at

ECOOP (the European Conference on Object-Oriented Programming) (Szyperski, 1998):

10

“A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties.”

This definition emphasizes component composition. As a unit of composition, each

component has its specified interface that determines how it can be composed with other

components.

Sterling (1998) extended the above definition then distinguished three aspects of a

component:

• A specification that describes what the component does and how it should be used.

• A packaging perspective in which a component is considered as a unit of delivery.

• An integrity perspective in which a component is considered as an encapsulation

boundary.

They then defined a component simply as:

“A software package which offers services through interfaces”.

A similar definition is given by D’Souza et al. (1997):

“A component is a coherent package of software that can be independently

developed and delivered as a unit, and that offers interfaces by which it can be

connected, unchanged, with other components to compose a larger system. ”

Like Sterling’s definition, the above definition also reiterates that a component is a

software package. D’Souza et al. (1997) have examined a component from a coding point

of view, pointing out that a component package should include:

11

• A list of Imports (import interface) that refers to other components on which this one

depends.

• External Specification (export interface) that is a description of what it provides for

users, and what they need to provide to make it work. In some components, part of the

specification may be available from the executing components themselves such as

JavaBeans components in which a reflection mechanism is available for this purpose.

• Executable Code that exists in binary format. The code can be coupled to the code of

other components if it built according to a suitable and consistent component model.

• Validation Code that is used to help decide whether a proposed connection with other

components is acceptable.

• Design that includes all the documents and source code associated with the work of

satisfying the specification. It may not be available for users in some cases.

Booch (1997) has provided the following rather informal definition of a component:

“A component is a non-trivial, nearly independent, and replaceable part of a

system that fulfills a clear function … [It] can be used in assembling a well-

defined architecture [or application] … A component conforms to and provides

the physical realization of a set of interfaces that specify some logical abstraction

(i.e., system behavior).”

This definition lists most characteristics of a component like nearly independent,

reusable, and a set of interfaces.

A definition of component from http://webopedia.internet.com/TERM/c/component.html

is that a component is

“a small binary object or program that performs a specific function and is

12

designed in such a way to easily operate with other components and

applications.”

Different from other definition, this definition states that a component is a binary object

or program. This implies that a component should be available in its executable code

rather than its source code. This definition is consistent with COM component definition

from Microsoft which we will discuss in Section 2.2.2.

Although these definitions differ in detail, their proposers would probably agree that a

component is an independent software package that provides functionality. Moreover,

they all emphasize the importance of well-defined interfaces. The interface could be an

export interface through which a component provides functionality to other components

or an import interface through which a component gains services from other components.

All these definitions also emphasize the “black box” nature of a component: that is, a

software engineer can use one to create a larger system without any knowledge of how it

is implemented.

2.2 CORBA, COM, and JavaBeans

Given the definition of a component as described in section 2.1, there are two important

questions to be answered: how is a component developed and how is the component

applied in software development? A component model will address both questions. A

component model provides a standard way to develop and use components and is

expressed by a set of conventions. These conventions include (Anderson, 1998):

“the standard structure of a component's interfaces, the mechanism by which a

component interacts with other components, patterns for asking a component

about its features, and a means for browsing active components”

13

The three main component models currently in commercial use are CORBA from the

Object Management Group (OMG), COM from Microsoft, and JavaBeans from Sun

Microsystems. In this section we will investigate these three component models and

summarize their differences and similarities.

2.2.1 CORBA and CORBA components

Common Object Request Broker Architecture (CORBA), was proposed by the Object

Management Group (OMG) to support open distributed communication between objects

across a wide variety of platforms, languages, and implementations. Although "Object"

is used in CORBA's name for historical reasons, CORBA actually provides a model for

components, as defined in section 2.1 above. Therefore, CORBA could more properly be

considered a distributed component model or framework (Harmon, 1998; Szyperski,

1998).

The way in which OMG works on CORBA is to issue Request for Proposals (RFPs) on

all aspects of component technology then ask for the specifications of each part of

CORBA from all member companies of OMG to fit into a broadly common Object

Management Architecture (OMA). Since the goal for CORBA was to build a standard

way to allow open intercommunication between different platforms and programming

languages, at the very beginning, OMG has carefully settled CORBA on a source code

standard, rather than a binary one like COM. This makes it much easier for member

companies and individual vendors of CORBA-compliant products to add value to the

CORBA standard.

OMA is a conceptual model that defines a set of facilities at a high level of abstraction as

shown in Figure 2.1. CORBA is the core part of the OMA, serving as a common

communication bus for all components that sit in heterogeneous environments and

14

supporting a set of facilities. These facilities include object services, application

interfaces, domain interfaces and common facilities. The following is a brief description

of these facilities (Schmidt, 1998; Szyperski, 1998).

• Object Services: these services provide a variety of largely infrastructure services.

Two examples are the naming service which allows other software to find

components based on names and the trading services which allows other software to

find components based on their properties.

• Common Facilities: these facilities are targeted for end-user applications. They

provide interfaces for applications like email, compound documents, and so on.

• Domain Interfaces: these interfaces are targeted for specific application domains.

• Application Interfaces: they are developed specifically for a given application.

Figure 2.1 OMA Model

Given the high level view of OMA model, we discuss how the CORBA component

defines and how these components interact with each other.

A CORBA component can be considered as an object with visible operations defined by

an interface, and is invoked by an object reference, as shown in Figure 2.2. The object

reference is also an abstraction (Yang and Duddy, 1996). An interface is the key part of

CORBA component, determining the operations that other components may perform

using the object reference. The component can only be accessed through operations

15

defined for that interface. All the implementation details are hidden from interfaces

(encapsulation). The interaction between components must carry out via interfaces.

Figure 2.2 CORBA Component

All CORBA components must have interfaces defined in the CORBA IDL (Interface

Definition Language). Different programming languages have standardized bindings to

the IDL. Programmers either manually write IDL, then compile it into the source-code

for the corresponding programming language in order to write their implementations; or

use a programming language compiler that offers direct generation of IDL.

IDL is language and platform neutral, and declarative. It specifies a component's

attributes (or public variables), the parent classes it inherits from, the exceptions it raises,

typed events, programs for generating globally unique identifiers for the interfaces, and

the methods an interface supports including the input and output parameters and their

data types. It comprises the following main elements (Orfali et al., 1996; Yang and

Duddy, 1996):

• Modules provide a namespace to group a set of class description together. A module

has a scoped name that consists of one or more identifiers;

• Interfaces define a set of methods for a component that other components can invoke

the component (see operation below). An interface can declare one or more

16

exceptions. It also may have attributes which can be changed by get and set

operations;

• Operation is the CORBA-equivalent of a method. It represents a service that other

components can invoke. The IDL defines the operation's signature, that is, the

method's parameters and the result that it returns;

• Data types are used to describe the accepted values of CORBA parameters,

attributes, exceptions, and return values.

CORBA component support inheritance through interface inheritance. There is no

support on overriding or specialization of operations or methods as a class in OOP does.

Interface also support aggregation mechanism (Jacobson et al., 1997).

Recently, CORBA defined mappings for the Java language, and aligned closely with

JavaBeans and Enterprise JavaBeans for its component model. In fact, the Java

Transaction Service is defined based on the CORBA model. OMG has also generated

specifications for bindings between CORBA components and Microsoft COM

components (www.omg.com).

CORBA is a quite powerful component model. The problem with CORBA, however, is

that it requires significant overhead because of the encapsulation of objects written in

different languages and the need for communication between those objects and other

objects on other platforms.

Other CORBA-related component models have been developed. IBM’s System Object

Model (SOM) is a component model created for OS/2. It is based on CORBA to which it

adds some extensions, such as a binary standard like COM.

The OpenDoc component model was developed specifically to support GUI components

and compound documents by Component Integration Labs (Apple, 1993) but has been

discontinued by Apple (Szyperski, 1998). OpenDoc was built on top of IBM’s SOM

17

model. Since it is based on CORBA, it has CORBA’s characteristics, that is, source code

standard, cross-platform and cross-language support.

OpenDoc is completely object-oriented. The model is therefore implemented by

component classes, called parts. Compound documents with parts contain various media,

such as text, graphics, table and so on. OpenDoc provides a uniform way to manipulate

these media through familiar “cut & paste” and “drag and drop” operations.

Because of its pure object orientation OpenDoc allows inheritance and aggregating other

components (Jacobson et al., 1997).

OpenDoc has the same capability as OLE (object linking and embedding) from

Microsoft. The main difference between them is that OpenDoc is an open component

model, whereas OLE is a proprietary standard. Unlike OLE which must adopt the

paradigm enforced by COM, OpenDoc adopts the familiar object-oriented paradigm so

that developers can implement OpenDoc components without much difficulty.

2.2.2 COM

COM (component object model) is Microsoft's component model. Unlike CORBA,

which is an effort of a group of companies, COM is solely developed by Microsoft and

therefore it is a proprietary component model. As a result, COM is only applied on

Microsoft's own platforms, Windows 95 and NT. It is a high level standard and serves as

a foundation on which all component models on Windows 95 and NT are based, such as

OLE, ActiveX control.

COM is a binary standard, which means it does not bind to any programming language;

so it is language independent. Developers can use any programming languages (C++ and

Visual Basic at most cases) to implement COM components then use these components

18

to develop COM component-based software on Microsoft's platforms as long as these

components meet COM specifications.

COM specifies a standard way to allow COM components to communicate with each

other. There are two key elements for COM: COM interfaces and a system for

registering and passing messages between COM interfaces. All interactions with a COM

component are through COM interfaces in the system. On the binary level, an interface is

represented as a pointer to a pointer (pointer held in the first field of the interface node) to

a table of interface functions (Op1, Op2, …), as shown in Figure 2.3 (Szyperski, 1998;

www.microsoft.com/com).

Figure 2.3 COM Component

From the implementation point of view, COM interfaces are defined in Microsoft's

Interface Description Language (MIDL). Luckily developers do not need to write MIDL

directly. Instead, the MIDL compiler will automatically link the source code written in

C++ or Visual Basic to an MIDL interface on Microsoft platforms.

Whereas CORBA components use object reference, a COM component is identified by

globally unique identifiers (GUID) which is a 128-bit integer. This guarantees that no two

components can share the same identifier. Moreover, all COM components must support

the most crucial interface, IUnknown. This interface provides a uniform way to allow a

user to know what interfaces that the specific COM component actually supports. It also

supports methods to manage component instances.

19

COM defines incoming interfaces as those interfaces that receive calls from other

components and outgoing interfaces as those interfaces that through which other

components are called. Just like JavaBeans use its event, COM uses outgoing interfaces

to define events. Making requests and sending events by outgoing interfaces are similar

to JavaBeans event processing as discussed in Section 2.2.3.

Unlike CORBA, COM does not support interface inheritance. However, it offers two

mechanisms for object composition: containment and aggregation (Szyperski, 1998;

Harmon, 1997).

Based on COM, several other component models have been developed for different

purposes. OLE model is developed to primarily deal with compound documents. For

example, OLE allows Microsoft Office users to “cut and paste” elements between

different applications such as Excel, Word. In addition, it provides several services such

as structured storage, uniform data transfer, and OLE automation and scripting (Jacobson

et al., 1997).

Active X, another COM interface standard, was developed to support Internet and

distributed computing, similar to Java Applets. Much like JavaBeans, ActiveX uses

events to communicate with each other, and also have properties attribute.

COM+ enhanced COM by integrating with Microsoft’s J++ approach (Microsoft’s Java).

It defines a virtual machine model for components, similar in many respects to the Java

virtual machine (Kirtland, 1997).

DCOM is an extension to COM and supports Windows NT cross platform

communications. In other words, DCOM is simply COM plus an ORB (object request

broker). Microsoft’s ORB is a straightforward implementation of a RPC (remote

procedure call) that runs on the top of TCP/IP.

20

2.2.3 JavaBeans

According to the JavaBeans specification from Sun Microsystems (1997), a Java Bean is

"a reusable software component that can be manipulated visually in a builder

tool."

JavaBean components can be visual beans such as individual AWT components or Swing

components for GUI design and also be non-visual beans such as database connectivity

components (Flanagan, 1997).

JavaBeans is a Java -based component model. It depends on the features of Java language

and is therefore language dependent. JavaBeans are portable because of the portability of

Java. More importantly, the Java programming language provides an interface

mechanism for JavaBeans. It supports interface inheritance, and interface registration.

Unlike CORBA and COM, the Java interface is automatically (implicitly) registered, thus

possibly saving developers’ time (Harmon, 1998).

The main aspects of JavaBeans include:

 Events: Events provide a way for one component to notify other components that

something interesting has happened. Instances of JavaBeans can be potential sources

or listeners for specific types of events.

 Properties: Properties are conceptually nothing more than attributes or data fields of

an object in object-oriented languages. It is used for both customization and

programming. Changing properties usually trigger events or results in an immediate

change in a JavaBean component.

 Introspection: JavaBeans allows programmers to discover the component interface

in terms of the events it can signal, its property values that can be read and set, the

methods it implements.

21

 Customization: Using the assembly tool, a bean instance can be customized by

setting its properties.

 Persistence: JavaBeans can remember all aspects of their states between uses. For

example, a JavaBean component can be implemented to maintain a database

connection during a session.

Communication between JavaBeans components is handled by Java delegation event

model. The event model specifies how a component sends a message to other

components without knowing the exact methods that the other component implements.

Figure 2.4 shows event processing in JavaBeans. A component interested on receiving

events is an event listener or event sink. An event source maintains a list of listeners that

is interested in being notified when events occur. The listener indicates its interest in an

event by registering itself to the source or an adapter. When an event occurs on event

source, the event source will notify all the listeners that the event has occurred. In order

for an event source to invoke a method on a listener, all listeners must implement the

required method. An adapter is used to simplify the implementation. Registering an

adapter guarantees that a listener only implements those methods that the listener is

interested in.

Figure 2.4 Event Processing in JavaBeans

22

Enterprise JavaBeans (EJB) is an extension of the JavaBean model. The key driving

factor for introducing enterprise JavaBeans is twofold: first, there is a need to link

JavaBeans with non-Java objects; and second, server components are needed to support a

client/server computing architecture.

EJB retains the basic JavaBean component system, but adds to it the functionality of

encapsulating a JavaBean component as a CORBA component. As such, all CORBA

services can be available by using EJB in whatever CORBA environment is used

(http://java.sun.com/products/ejb/docs.html).

2.2.4 Relationships and Comparisons

The relationships between these component models are shown in Figure 2.5. The models

at the bottom of the diagram form the foundations for the models above them.

Figure 2.5 Component Models and Their Relationship

23

We now compare three component models, JavaBeans, COM and CORBA in various

aspects.

The three leading component models, CORBA, COM, and JavaBeans, provide essentially

similar architectures for component-based software. First of all, all three models

emphasize the component interface through which services are provided. However, there

exists a subtle difference with respect to how the interface is defined and how it is

registered. CORBA and COM use IDL to define interfaces to components and

component systems, the interfaces are explicitly defined and registered, whereas

JavaBeans depend on an interface that the Java language provides which is implicitly

registered. Secondly, the three models specify that the component is a software package

or module that is a “black-box”. The only difference lies in how the internal workings are

implemented. A CORBA component can contain any programming language

implementation. A COM component is normally implemented by C++ or Visual Basic,

although Microsoft has claimed it can be implemented by any language. JavaBeans are

implemented in Java, and can consist of several classes. Thirdly, the three models address

the connection between components in different ways. COM uses interface pointers;

CORBA uses IDL; JavaBeans use Java delegation event model. Finally, the three models

have different variability mechanisms that allow components to be specialized via their

interfaces, such as inheritance and aggregation (Jacobson et al., 1997). Other differences

are related to detail of platform support, distribution mechanism and self-description as

summarized in Table 2.3.

24

JavaBeans COM CORBA
Component Module

containing
multiple classes

Module containing
multiple classes or
other implementation

Module
containing any
implementation

Interface Java language OLE IDL, which
defines interfaces as
collection of functions

OMG IDL

Connection Via event and
listener.

Via interface pointers;
Need to support
IUnknown interface

Via Interface
Definition
Language

Variability
mechanism

Inheritance and
aggregation

Genericity,
containment and
aggregation

Inheritance and
aggregation

Platform Multiple
platforms

Windows 95/NT Multiple
platforms

Implementation
Language

Java Any languages, but
primarily use C++ and
Visual Basic

Any languages

Distribution
Mechanism

EJB, Internet,
RMI (remote
method
invocation)

DCOM, Internet An ORB

Self-description Support via
introspection

No No

Table 2.3 Comparison of Three Component Models

2.3 Characteristics of Component and Comparison with

Object

After discussing the above three most popular component models, we now summarize the

characteristics of a component. To be a good component, the following characteristics

should also be offered (Anderson, 1998; Szyperski, 1997; Chappell, 1997). It should be

pointed out that a component does not have to have all of these characteristics to be

considered a component.

25

• High Cohesion: Cohesion describes the degree of sticking things together tightly.

High cohesion for a component implies that a component is a meaningful unit.

• Low Coupling: Coupling describes the degree of relationship between components.

Low coupling means that a component should be minimally depend on other

components. If a component in a software system changes, the impact on other

components in the system should be minimal, and vice versa.

• Reusability: After a component has been designed, implemented, and tested, it

should be reused as much as possible.

• Well-defined Services and Black-box Nature: A good component should be a black

box with well-defined services. A black box means that its internal workings are both

hidden and isolated from its interfaces so that software engineers are able to build a

software system using a component without any knowledge of how it is implemented.

• Reliability: A component should be tested individually. A reliable component is a

prerequisite for developing high quality and reliable component-based software.

• Distributability: A component can be executed across a remote machine. CORBA,

COM, and JavaBeans have provided this facility, although they use different

mechanisms.

• Interoperability: A component can possibly request the component’s services from

any platform. CORBA and JavaBeans support multiple platforms, thus making

components interoperable.

• Cross-language Support: An interaction between components should not depend on

the programming languages in which a component is written.

• Executability: A component should be executed by anyone without having to make

its source code available.

• Self-description: A component should be able to describe its public interfaces, any

properties that can be customized, and the events that it generates. It is also possible

to retrieve the information from the executing components themselves. For example,

the JavaBean component model provides the introspection mechanism to achieve this.

26

The characteristics of components as summarized above makes it clear that components

and objects have many similarities. Actually the concepts of component and object are

often confused during component-based software development. To better understand

component-based software systems, we summarize their similarities and clarify their

differences as follows (D’Souza et al., 1997; Jacobson et al., 1997; Szyperski, 1998).

Logically speaking, components and objects are the same. They both are used to provide

a concrete representation of real-world problems. Both support encapsulation

(information hiding) and provide software reuse capability. On this level, a good

component and a good object should share such characteristics as high cohesion, low

coupling, well-defined services, and reusability.

Differences between components and objects lie in several aspects. The key difference is

related to the different ways in which they are implemented. Because the concept of

object is related only to object-oriented technology, the internal workings of an object has

to be implemented by an object-oriented programming language such as Java, C++,

Smalltalk, or Prograph. On the other hand, a component can be implemented by any

technology or programming language as long as its interfaces comply with an accepted

component model like COM or CORBA. A component’s interfaces are separated from its

internal implementation. For instance, a component can be implemented by procedural

programming languages such as C, Fortran, object-oriented programming languages such

as Java, C++, or Smalltalk, or even assembly languages. Moreover, since an object is an

instance of a class, an object is realized only by a single class. A component, however,

may be implemented as multiple objects of different classes by object-oriented

programming languages.

27

Component Object

Programming
Language

Can be implemented in any
language

Only object-oriented
programming languages

Interoperability
Support inter-services
between different platforms

Usually does not have this
capability

Intercommunication

Intercommunication can be
message sending, event
propagation, or interface
pointers

Message sending

Persistence
Components have
persistence

Usually does not have
persistence

Frequency of
Changing
Implementation

More static Dynamic

Dependency
Component depends on
other component by import
relation (Szyperski, 1998)

Class can depend on other
class using inheritance or
composition

Table 2.4 Comparison between Component and Object

It is possible for a component to request another component’s services from different

platforms, provided that a component is implemented with the same standard component

model like CORBA and the component has standard interfaces for services. That is not

normally true for objects.

In addition to using the message sending mechanism like the intercommunication

between objects, the intercommunication between components could use event models

like the Javabeans event delegation model or interface pointers as COM uses. A

component must use its interface to interact with other components. It should be noted

that an event model could be realized using the messaging sending mechanism.

As a component is delivered, its implementation is seldom changed. Therefore in terms

of the frequency of changing implementation, a component may be more static than an

object.

28

A component can normally remember their states between uses. However, an object

usually does not have this capability.

Table 2.4 summarizes the major differences between components and objects.

2.4 Major Issues and Challenges

Component-based software has entered the mainstream of software engineering in

computer software industry (Jacobson et al., 1997; Szyperski, 1998; Chappell, 1997).

One of the most important challenges in component-based software development is to

educate developers in the proper use of component technology and tools. This implies a

need for a formal approach to precisely define components, to specify how they are used

and how they interact with each other.

The second challenge in component-based software development is how to develop

component-based software effectively and efficiently. Component-based software

development is typical iterative and incremental (Tran et al., 1997; Barn, 1998). Each

phase of development must be performed several times. This is different from the

traditional software development model such as waterfall model – analyze everything,

design every thing and then test everything. Moreover, component-based software

development emphasizes the component assembly phase. To assemble components

effectively and efficiently is of critical importance to component-based software

development. An effective component assembling environment or tool is required for this

end.

The third challenge for component-based software development is to make component-

based software development an efficient and effective practice that does not suffer from

the shortcomings of previous reuse-based efforts of the 1970’s and 1980’s (Barn, 1998).

29

Tools and methods are, therefore, required that support rigorous component modeling

that separate component specification from component implementation.

2.5 Summary

In this chapter, we have presented an overview of component-based software

technologies. We have discussed various definitions of components. The three most

popular component models, COM, JavaBeans, and CORBA have been introduced and

compared.

From the three component models, we have learned that the core concept for component

development is the idea of creating an interface. Well-defined services for a component

will be provided via interfaces. Interfaces also offer the way to allow components interact

with each other. By registering the interfaces with a set of component system services, it

becomes possible to assemble components together and deliver component-based

software products quickly.

30

CHAPTER THREE

Component-based Software Development

with Visual Programming

Component-based software development means building software by assembling or

gluing components together. An Integrated Development Environment (IDE) is essential

for component-based software development. In an IDE, components can be added to an

application and connected together, and the application can be debugged and tested.

Furthermore, the efficiency and usability of an IDE is a key factor influencing the value

of component-based software development. A component-based visual programming

environment as such is an IDE where the application assembly process is visualized and

debugging and testing are visually interactive. Normally a graphical user interface (GUI)

builder is included in a component-based visual programming environment.

PARTS from ObjectShare (formerly ParcPlace – Digitalk) and IBM’s VisualAge were

early examples of component-based visual programming environments (D’Souza et al.,

1997). Note that the most popular visual environments, such as Visual Basic and Visual

C++ from Microsoft, and Delphi from Borland, provide visual component assembly only

for GUI components. We emphasize that a component-based visual programming

environment is a visual building tool or environment in which general components, not

just GUI components, can be assembled. This kind of environment has proliferated with

the advent of the JavaBeans component model. A JavaBean component provides an icon

defining its appearance in a component diagram; the mechanism of connecting one

component to others; and documentation such as online help for the programmer (Sun

Microsystems, 1997). During assembly, components are instantiated, and instances are

connected using a uniform model –JavaBeans component model as discussed in Section

31

2.3.3.

There are a growing number of such environments or tools like IBM’s VisualAge for

Java, SunSoft’s Java Studio, and others. These environments fall into two categories:

either the programming process in the environment is fully visual as in Java Studio; or

the environment provides only some visual programming capability as in VisualAge for

Java. Environments of this kind take advantage of the benefits of both component-based

software and visual programming, thereby significantly increasing software productivity.

In this chapter we will briefly introduce visual programming, followed by investigating

three visual component-based programming environments, VisualAge for Java from IBM

(1997), PARTS for Java Technology from ObjectShare (http://www.objectshare.com), and

Java Studio from Sun Microsystems (1997). We will conclude with some suggestions or

comments.

3.1 Visual Programming

Visual programming is commonly defined as the use of visual expressions such as

graphics, drawings, forms, animation or icons in the process of programming. It is a field

that results from a marriage of work in computer graphics, programming languages, and

human-computer interaction. Although the very first visual programming language was

implemented in the 1960’s, the success and boom of visual programming was not until

the middle of the 1980’s when graphics hardware became widely used.

3.1.1 Features of Visual Programming

It is a well-known quotation that “a picture is worth a thousand words”. Pictures express

more information than text does under some circumstances. The goals of visual

programming are to improve the ways in which programmers express the representation

and processing of information so that it is easy to understand and to modify logical

connections and results by using visual expressions such as graphics and icons (Burnett et

32

al., 1995).

The advent of the graphical user interface (GUI) has made it possible to move many

programs from text-based to window-based. It allows users to perform operations with

point-and-click actions with the aid of a mouse rather than having to memorize key

combinations. The powerful graphics capabilities provided by modern operating systems

provide the foundation for visual programming environments, which require the simple

construction and manipulation of possibly complex diagrams.

Visual programming offers many advantages over traditional textual programming.

Burnett et al. (1995) have identified the following four common characteristics that are

particularly important to visual programming although textual programming may also

offer some of them in different levels:

1. Fewer programming concepts: Visual programming aims to simplify the

programming process by reducing some complex programming concepts like scope,

variable declaration, pointers, and memory allocation, so that programmers without

knowledge of these concepts can still create applications. Most visual programming

languages have achieved this goal.

2. Concreteness: Visual programming manipulates concrete objects that are depicted as

icons or other pictorial representations to create applications. Such representations are

more concrete than textual programming. For example, a linked list can have a visual

representation that shows its structure and data values.

3. Explicit depiction of relationships: Visual representation allows programmers to

clearly see the relationship between program elements. For example, flow-chart-like

pictorial syntax is often used in visual programming languages. This makes programs

much easier to follow and to understand in contrast to traditional textual

programming where programmers have to follow the program statement by statement

or block by block, and especially if there is no documentation at all. The flow chart

33

also allows programmers to follow the logic of the program. If there is a logical

mistake, it is easier to trace and make necessary changes.

4. Immediate visual feedback: Programmers can see the consequences of actions they

perform in a visual programming environment. This obviously benefits both

debugging and the general understanding of a program.

The major disadvantage of visual programming lies in its difficulty with handling large

programs. This problem is called the scaling-up problem. Nine kinds of scaling-up

problems have been identified by Burnett et al. (1995). One problem is how to effectively

use the computer screen. Due to the complexity of large programs and the limitation of

computer screen size, it is very hard to visualize everything together. The use of

abstraction mechanisms in some visual languages (for instance, a block contains other

blocks) has alleviated this problem.

3.1.2 Visual Programming Languages vs. Visual Programming
Environments

Visual programming can be broken into two closely related areas, Visual Programming

Environments (VPE) and Visual Programming Languages (VPL). VPEs are normally

implemented in a VPE, but a VPE does not necessarily provide a VPL.

A VPE is defined as a system in which the tools are graphical, using graphical

techniques for manipulating pictorial elements and for displaying the structure of the

program, whether it was originally expressed textually or visually (Goldberg et al.,

1995). The environment usually uses techniques such as point-and-click for action

invocation or selection, and a “connect-the-dots” approach. “Connect-the-dots” means

that modules are related to one another by drawing a line from one to the other. The lines

specify particular relationships such as message sending, data flow etc.

A VPL is defined as a programming language with a visual syntax (Goldberg et al.,

34

1995). Visual syntax means that at least some of the terminals of the language grammar

are graphical, such as icons, forms or animations. The programmer writes a program by

manipulating icons or other graphical representations in a visual environment. In the

same visual environment, the program can subsequently be debugged and executed.

Visual programming languages may be further classified according to the type and extent

of visual expression used, into icon-based languages, form-based languages and diagram

languages. In purely visual programming languages, the program is compiled directly

from its visual representation into machine code. And it is never translated into an interim

text-based language before compiling into machine code. Prograph (Cox, Giles, and

Pietrzykowski, 1989) is one of the most commercially successful purely visual

programming languages. It has a number of features that are desirable for visual

programming languages and environments. Moreover, some of its features shed light on

designing and implementing a component-based visual programming environment. It is

therefore worthwhile to discuss Prograph in more detail.

3.1.3 Prograph

Prograph is an object-oriented, data-flow, visual programming language for general

purpose application development (Cox, Giles, and Pietrzykowski, 1989; Cox and

Pietrzykowski, 1990). It has been available as a commercial product for over 10 years

and has been used for creating a number of commercial software packages. Its original

version was released on the Macintosh platform and it now exists in both the Macintosh

and the Windows platforms. Prograph allows programmers to work on both high and low

levels, allowing them to design and maintain from simple to rather more complicated

software applications (Prograph International, 1993).

Prograph integrates the familiar notion of object-orientation with a powerful visual

dataflow specification mechanism. It supports all standard Object-Oriented Programming

features such as inheritance, polymorphism, and encapsulation. In Prograph, classes are

35

organized in a single inheritance hierarchy. Each class contains the declarations for the

attributes and the method of the class. All classes, methods, and attributes are explicitly

public.

Prograph is dataflow in style. Dataflow means that the execution order of program is not

fixed. Instructions are executed when all of their input data become available. Data flows

into an operation which acts on them, producing results which flow out of the operation

and on toward other operations along data links.

Prograph is purely visual. All the elements are concrete objects represented by icons.

These icons provide an effective communication vehicle for programmers to design and

create applications. Prograph’s visual syntax allows programmers to create a program just

by placing a set of built-in or user-defined primitives in a window then drawing lines to

link these icons together.

In Prograph a project consists of sections that contain universal methods, persistent data

objects, and classes. Classes consist of methods and attributes. Methods, in turn, are

composed of cases. This characteristic encourages programmers to follow a top-down

software development methodology.

Figure 3.1 shows the case window of a method. The inputs and outputs of a case are

graphically represented as horizontal bars at the top and bottom of the case, respectively.

Data may flow into the case through an input bar located in the top via the terminals,

represented by small circles attached below the input bar. Data may flow out of a case

through the output bar (bottom bar) via roots represented by small circles attached above

the output bar.

36

Figure 3.1 A Case in Prograph

Prograph CPX implements the Prograph language in an IDE that includes a program

editor, code interpreter, compiler, graphical debugger and GUI builder. This interactive

environment provides a powerful facility for developing simple programs to more

complicated applications.

Note that the above presents just the basic features of Prograph and is not sufficient to

illustrate all the features of the language and environment. We conclude this section with

a list of the important aspects of Prograph and particularly those aspects that benefit

component-based software.

• Prograph is a purely visual programming language. Despite its simple visual syntax,

Prograph allows the creation of complex applications. Furthermore, Prograph avoids

syntactic errors since the visual syntax is particularly well suited to syntax-directed

editing.

• Prograph employs dataflow diagrams in cases. This makes the logic of the program

much clear, thus allowing programmers to trace and debug the program more easily.

• Prograph is an object-oriented programming language. All the concepts of object-

orientation are represented graphically. Since the concept of component-based

software evolved from that of object-oriented software, the visualization concepts and

design style of Prograph definitely lend themselves to the design and implementation

of a component-based visual programming environment. In fact, Munch and Schurr

37

(1999) have recently classified Prograph as a component-based visual language by

classifying operations as components, and the terminals and roots of operations as in-

ports and out-ports respectively (Figure 3.1). Although this analogy does not

rigorously comply with the concepts of component-based software as discussed in

Chapter 2, it is very helpful for the design and implementation of a prototype of a

component-based software development environment, which will be presented in

Chapter 6.

• Prograph frees programmers from dealing with tedious and unnecessary levels of

detail. For example, its visual nature eliminates the variable required by textual

programming languages.

• Prograph provides an environment which encourages a top-down approach to

software development. The design concept could be used in implementing visual

programming environments for component-based software development.

3.2 Component-based Visual Programming

Environment

Applying the concepts of visual programming to a component-based software

development environment has a significant impact on software productivity. A

component-based visual programming environment may completely visualize the whole

assembly process. The “connect-the-dots” approach is normally applied in this

environment where a component is represented as a particular icon a connection between

components is visually expressed by drawing a line from one to another. As such, it is

quite easy for programmers to follow the logic of the application and to understand the

architecture of the application, thereby speeding up software development.

In this section we will introduce three component-based visual-programming

environments: VisualAge for Java, Java Studio, and PARTS for Java. These

environments are IDEs with visual editor, debugger and interpreter. They provide the

38

ability to select a visual component from a palette and place it on the user interface. The

programmer can modify the component’s appearance and other attributes. For connecting

components together, some use the drag-and-drop paradigm while others have the

programmer click on the origin component for a connection and then click on the

destination component.

3.2.1 VisualAge for Java

VisualAge for Java was developed by IBM in 1997. It is an integrated, visual

programming environment that supports the complete cycle of Java program

development. With VisualAge for Java, the programmer can build a Java platform

compatible application, applets and JavaBeans components (IBM, 1997).

One of the most important parts of VisualAge for Java is the Visual Composition Editor

(VCE), where programmers can develop programs by visually arranging and connecting

JavaBean components. In the VCE, programmers select JavaBean components from a

palette, specify their characteristics, and make connections between them. Beans can

contain other beans and also connect to other beans. This kind of abstraction results in a

cleaner picture of connections between components in VCE allowing programmers to

design and debug programs more easily. VisualAge for Java not only provides visual

tools for building the user interface of the applets or applications, but the whole applet or

application itself, provided that the necessary Javabean components have been developed.

An important aspect for developing software applications in this environment is how to

visually connect or “wire” JavaBean components together. Four main connections

between beans have been identified and provided by VisualAge for Java (Carrel-Billiard

and Akerley, 1998). These connections are represented by different colors.

39

Figure 3.2 Visual Composition Editor in VisualAge for Java

We use an example to show how these connections work. The example is to construct a

simple calculator. Figure 3.2 shows a snapshot of this simple calculator illustrating all

Javabean components and the connections between components. In the calculator, two

textfields are provided for entering numbers. The value of the result will display in a

result textfield. When the add button is clicked, the result textfield displays the result of

adding two numbers together and when sub button is clicked the result textfield displays

the result of subtracting one number from another. Besides, the result textfield can

display its value with different colors according to the user’s selection. A user-defined

JavaBean Calculator has been created by using textual programming whose functionality

is to manipulate two numbers and obtain the result according to the request. A

ColorEditor bean and other visual beans are used like frame and label. Four kinds of

connections are identified as follows:

1

4

2

3

Free-form surface

ColorEditor
Bean

Calculator
Bean

40

• Property-to-property: this connection links property values between two JavaBeans

components together. When one component’s property value changes, this connection

will cause other component’s property value to change. This connection never takes

parameters. After the target property is initially set up, events are required to fire the

connection. The connection # 1 in Figure 3.2 is a property-to-property connection

which links a value of the textfield to a value in Calculator component. The change

in the value in the textfield will cause the corresponding value in Calculator to

change.

• Event-to-method: it links a source event to a target method. This connection invokes

the target method whenever the source event occurs. Since the JavaBean component

model is based on events, many of the behaviors of an application can be specified

visually by triggering the execution of a method of one bean whenever an event is

signaled by another bean. The connection #2 in Figure 3.2 is an event-to-method

connection between a button and Calculator component. When users click the button,

a method in Calculator for adding two numbers together will be executed.

• Script connections or event-to-code: this connection is used to access behavior that

is not part of the bean interface. The script refers to local methods declared as private

or protected or to the inherited methods declared as protected. This connection is

graphically represented a line between the free-form surface and a Javabean that

accesses the script. The connection # 3 is such a connection. In this case a local

method AdjustColor (Color aColor) is created that allows the result textfield to

access.

• Parameter connections: By passing either the value of a property of a JavaBean

component or the return value from a method, this connection provides an input value

to the target of a connection. There are three kinds of parameter connections:

parameter-from-property, parameter-from-script, and parameter-from-method. The

connection # 4 is a parameter connection. In this case, a parameter Color is provided

from ColorEdior bean to the target of connection # 3: the local method AdjustColor

41

(Color aColor).

Note that in this environment, the programmer can access all methods, selectively show

connections between components, and edit existing connections.

Although it is powerful, VisualAge for Java is still not very popular. The main reason is

probably it has a complex user interface, and requires thorough knowledge of the

JavaBean component model.

3.2.2 PARTS for Java Technology

PARTS for Java is a complete visual-programming environment that creates small

applets to large scale distributed Java applications (http://www.objectshare.com). It fully

supports the JavaBeans component model. Besides this, it also supports CORBA

architecture and has a bridge for conversion between JavaBeans components and COM

components. Active X controls and other COM components can be imported into Java

programs, and used just like any of the other Beans. A JavaBeans component can also be

published as an ActiveX that can be used in any ActiveX container in which ActiveX can

be composed, such as Microsoft Visual Basic or a Web browser. This environment is one

powerful visual component-based programming environment in terms of its support for

several popular component models.

From aspects of visual programming, this environment is very similar to VisualAge for

Java. It has the Visual Designer that is an application development tool that allows

programmers to construct applications by arranging and connecting components on a

workbench surface. These include visual components that are used to create user

interfaces, or non-visual components that perform certain “behind-the-scene” operations.

All these components are in the form of JavaBeans. But Active X controls or other COM

components can be imported and automatically converted into JavaBeans components.

42

Figure 3.3 Visual Designer in PARTS for Java

Applications are realized by assembling or “wiring” components together using links or

connectors. A link represents a message sent from one component to another, usually as

the result of an event, like a button click, since JavaBean uses event delegation model as

discussed in Chapter 2. Figure 3.3 shows components with links.

A component in the Visual Designer has an exposed interface (events and messages) for

connecting. An event is a signal that something has happened, such as the user clicking a

button or pressing a key. A message is a request for an object to perform some action,

such as responding to an event. Both event and message refer to a method in object-

oriented languages. A link or connection provides a visual indication of the interactions

between components. There are the following kinds of links in PARTS for Java:

2

43

• An event link connects a single event with a single message (equivalent to the event-

to-method connection in VisualAge for Java). In Figure 3.3, link # 1 is such a

connection. It links a help button to a help message. When the button is clicked, the

help message will be shown.

• An argument link requests a value from another object to complete the link

(equivalent to the parameter connection in VisualAge for Java). The link # 2 is this

kind of connection.

• A result link cascades messages, passing the return values of one message along to

subsequent message as an argument value (equivalent to parameter connection in

VisualAge for Java)

• A diving link cascades messages by constructing a series of messages to the object

returned by an event link

A nice feature is that a label for each event or message will be displayed as necessary.

This secondary notation helps make coding and debugging the application much easier.

(since this software is not available, I am not able to present the same example)

3.2.3 Java Studio

Java Studio is a visual programming environment developed by Sun Microsystems

(1997). Although Java Studio has been discontinued, it is worthwhile describing it here

because of its unique features. Java Studio was developed not only for end users who do

not want to write textual code, but also for programmers who want to rapidly create

prototypes, JavaBean components, or working applications. A set of robust JavaBeans

components was shipped with Java Studio. These include GUI-building components, as

well as components for string handling, simple numerical calculations, and control and

data flow between components.

Java Studio provides two ways for viewing the design while creating it: the design

window where components are connected or “wired” together to create the application,

44

and the GUI window where the GUI page elements are laid out and can be tested as the

application is being built. This unique feature provides “progressive evaluation” so that

the programmer gets immediate feedback on design and programming decisions (Green

and Petre, 1996). In the design window, each JavaBean component has an iconic

representation with ports shown visually along the border of the component icon. Once a

design is complete, it can be generated as a Java applet, a Java application, a JavaBean

component, or packaged design that can be re-imported into this environment.

The Java Studio architecture is based on the JavaBeans specifications. A component is a

so-called the end-user bean which wraps up a JavaBean (the skilled-user bean). Each

component contains a series of ports through which the component can interact with

other components, as shown in Figure 3.4. A port may either be:

• Input: it can only receive inputs

• Output: it can only send outputs

• Two-way: it is a bi-directional, input-output (I/O) port which can both send outputs

and receive inputs

• Trigger: it activates an output connector and it is a specialized input connector;

• Hide/Show: it makes a component visible or invisible;

• Enable/Disable: it enables a component to perform its actions or prevents it from

performing its actions.

45

Figure 3.4 JavaBeans Component for Java Studio

Specifically, a port is used to map JavaBeans events, methods, and bound properties.

Ports can receive or send messages. The message type could be numerical value, string,

boolean value, action, or variable.

Figure 3.5 Design Window in Java Studio

Figure 3.5 shows a simple calculator in the design window. The calculator is the same as

46

one discussed in Section 3.2.1 except that there is no selected color display for the value

of the result textfield. A package named addsub1 is implemented to contain the

functionality of the calculator and it only exposes four ports: two inputs, two triggers, and

one output. Two textfield components are used to input numbers and connect to the input

ports of addsub1 via their output ports, respectively. Two button components are used to

trigger events and connect to trigger ports of addsub1 via their output ports, respectively.

A textfield component is used to display result and connects to output port of addsub1 via

its input port.

The visual implementation for addsub1 is shown in Figure 3.6. All components employed

are shipped with Java Studio. It should be noted that four external connector components

are applied to implement ports of the package. The properties of these connectors depend

on the ports to which they connect.

Figure 3.6 Package in Java Studio

As demonstrated above, Java Studio provides a fully visualized component-based visual

programming environment where the task of programming simply involves visually

connecting the components together. Networking between components is quite clear,

47

which allows programmers to follow the logic without any difficulty. It is simple enough

for non-programmers to write an application. However it may be not powerful enough for

professionals to write large applications. Furthermore, it is impossible to write a recursive

program using Java Studio.

3.3 Summary

After investigating the above visual programming environments, we conclude that:

• Applying the principles of visual programming to a component-based software

development environment could significantly ease and speed up developing

component-based software, thereby increasing software productivity.

• The features of Prograph have implications for developing a component-based visual

programming environment.

• The most popular commercial component-based visual development environments

are those that are based on the JavaBean component model. Furthermore, some of

these environments have the built-in capability to convert between JavaBean

components and other components including CORBA and COM components.

• The popular “connect-the-dots” approach has been applied in most visual component-

based environments. The advantage of this approach is that it provides a clear picture

of the logic of the program. It makes programs conceptually simple, and easy to

debug. But if there are too many connections, this approach may make the window

look like a “spider-net”. However, this problem can be solved using abstraction. For

example, if a component can contain other components, the connections will be

reduced to the certain level.

• The success of component-based visual programming environments largely depends

on whether or not they provide powerful functionality or are easy to learn. Two

extreme examples are Java Studio and VisualAge for Java. Java Studio’s “poor”

functionality probably resulted in its recent withdrawal from commercial distribution.

48

VisualAge for Java is not popular partly because of its complexity.

• It should be pointed out that in the above visual programming development

environments, recursion is not realized. The lack of this feature could be considered

as a shortcoming from a programming point of view.

49

CHAPTER FOUR

Overview of Formal Models for

Component-based Software Systems

By a “formal approach” we mean an approach with a sound basis in mathematics. A

formal approach allows system functionality to be precisely specified. As the complexity

of building software systems is continually growing, it becomes more important to use a

formal approach to attain a reasonable level of dependability and trust in software

systems. Formal approaches allow us to analyze programs, to precisely describe the

behaviors of programs, and to verify program properties. A formal model for component-

based software is of critical importance because it provides a basis for the understanding

of the underlying concepts of component models, component certification techniques,

component testing etc. In this chapter, we will introduce Petri Nets, a graphical-based

formal approach. Following that we will discuss the formalism of component models.

Two formal models for COM will be briefly presented.

4.1 Petri Nets

There are five types of formal approaches: model-based, logic-based, algebraic, process

algebra and net-based (graphical) approaches (Liu et al., 1997). Two examples of such

formal approaches which could be used for specifying component-based software are Z

notation which is model-based and Petri Nets which are net-based.

The model-based approach formalizes a system by explicitly defining states and

operations that change the system from one state to another. Model-based systems

employ standard mathematical notations such as sets and relations. Since this approach

50

normally has rich constructs, the specification and formalization of software can be fairly

concise (Sommerville, 1992). Three of the most popular model-based approaches are Z,

VDM, and the B-method (Sommerville, 1992; Liu et al., 1997). This kind of approach is

attractive for modeling component-based software because of its expressive power.

Particularly, Z has been used for modeling COM components (Sullivan et al., 1997),

which we will introduce in Section 4.2.2.

The Net-based approach uses graphical notations with a formal semantics to model

systems. Because of their natural pictorial representation, graphical notations are easier to

comprehend and, hence, more accessible to non-specialists (Liu et al., 1997). Petri Nets

and State Charts belong to this category. Since component-based software has a close

relationship with visual programming, this approach could shed some light on visually

modeling component-based software in terms of its graphical notations.

Petri Nets have been thoroughly researched since they were invented by Carl Adam Petri

in the beginning of the 60’s. Originally defined to generalize automata, Petri Nets have

found wide applicability in computer science, in such fields as performance evaluation,

operating systems, and software engineering. In particular, Petri Nets have proved to be

useful for describing the concept of concurrently occurring events (Schach, 1997).

Petri Nets can be considered as both a formal and a graphically appealing language. A

Petri Net consists of four parts: a set of places P, a set of transitions T, an input function I,

and an output function O. A place is graphically represented by a circle. A transition is

graphically represented by a square. An input or output function is graphically

represented by an arrow. Consider the Petri Net shown in Figure 4.1.

The set of places P is {p1, p2, p3, p4, p5}. The set of transitions T is {t1, t2}. The input

functions for the two transitions, represented by the arrows from places to transitions, are

I(t1) = {p2, p4}

51

I(t2) = {p2, p5}

The output functions for the two transitions, represented by the arrows from transitions to

places, are

O(t1) = {p1}

O(t2) = { p3, p3}

Note that unlike a transition in an automaton which connects one state to another state, a

transition in a Petri net connects a set of places to another set of places.

Figure 4.1 Petri Net

An important feature of Petri Net is that it can assign tokens to the places of the Petri Net,

called a marking of the Petri Net. Places may contain zero or more tokens that are

graphically represented by a black circle inside a place. The initial assignment of tokens

is determined by the initial state of system. A set of markings can be represented by a

vector. For example, the set of initial marking in Figure 4.1 can be represented as M =

{1,1,0,1,2}.

p1

•

p2

•

p3

p4

•

t1
t2

p5

••

52

The markings are used to express the state of the Petri Net at different times. They

change during execution of the net as the tokens “travel” through it. The number and

distribution of the tokens control the execution of the Petri Net. A transition is enabled if

each of its input places contains at least as many tokens as there exists links from that

place to the transition. When a transition is enabled it may fire. When a transition fires,

all enabling tokens are removed from its input places, and a token is deposited in each of

its output places.

It should be pointed out that the above describes basic Petri Nets. Higher level nets such

as colored nets, timed Petri Nets, and stochastic nets have been introduced to extend the

modeling power of Petri Nets to deal with complex systems.

The primary strength of Petri Nets lies in the way they can deal with concurrency, non-

determinism and casual connections between events. Furthermore, since Petri Nets use

graphical notations, they are much easier to comprehend.

Graphically a “place” in a Petri net is analogous to a component, and the way that tokens

travel through nets is similar to the passing of messages between components in

component-based software. In this sense there exists a possibility of using concepts of

Petri Nets to visually model component-based software. However, a component is much

more complex than a “place”. More features must be added to “places” if we are to use

them to model components. The significance of Petri Nets, however, is that we could use

them as a basis for visualizing the concepts of components. This is reflected in the visual

syntax of our general model for component-based software presented in the next chapter.

4.2 Formalization of Component Model

Some component models have been formalized because of their importance. CORBA has

been formalized by Bryant and Evans (Sullivan et al., 1997) using Z notation in order to

53

provide a consistent and unambiguous specification so that member companies of OMG

can follow it when they add more facilities to CORBA. Unfortunately the details for the

model and its consequence are not described in the available publication.

There appears to be no the formalizations of the JavaBean component model, although

Drossopoulou and Eisenbach (1998) have formalized the subset of the Java language on

which JavaBean is based. From available publications it seems that there have been only

two attempts to formalize the COM component model. Because of the popularity and

some subtle features of COM, it is not surprising that people have paid more attention to

the formalization of COM than other component models. In this section we will briefly

present these two formalisms.

4.2.1 COMEL Language

As has been discussed in Chapter 2, COM provides a theoretical foundation for

Microsoft’s OLE and Active X controls. It specifies a binary standard for object

invocations and a number of interfaces for foundation services, independent of any

specific programming language.

Like many software systems, COM was originally not formally defined, but is defined by

its implementation. If one wishes to write specifications for COM-based software, or

derive properties of such software, a formal definition is necessary. To this end Ibrahim

and Szyperski (1998) have proposed a formal model for COM presented in the form of a

language, providing an example of how the concepts inherent in COM might be formally

captured. This language, called COMEL (Component Object Model Exemplary

Language), provides a formal syntax and semantics embodying COM’s informal and

complex rules.

The importance of this language is that it formalizes COM- specific properties in addition

54

to the familiar object-orientation concepts. This may serve as a starting point for

generating a general specification language for component-based software. Furthermore,

this language has provided a formal foundation for simplifying COM implementation by

removing the commonly used interfaces of COM like IUnknown.

4.2.2 Another Formal Model for COM

Another attempt to formalize COM has been carried out by Sullivan, Socha, and

Marcjukov (1997). Their motivation for this work was purely practical, arising from a

commercial software development effort in which they were using COM in the

implementation of a multimedia authoring system. They discovered during this

development that without precise, formal definitions for COM concepts, they could not

be confident that their system would not fall prey to faulty decisions made in the early

stages of design. In order to avoid such situations, it is necessary to reason about a

proposed architectural style based on COM at an early stage. To this end, they proposed a

formal model for COM based on basic first-order set theory concepts, expressed in Z

notation. Its syntax was checked by the Z/Eves system (Sullivan et al., 1997).

Using Z to formalize COM has led the model to be unambiguous and consistent, allowing

software developers to have more confidence in their COM-based projects. Based on this

model, some expected properties of COM can be deduced. More importantly, this model

has revealed subtle features of COM that developers may ignore or misinterpret during

developing COM based software systems, thereby empowering the developers to easily

find software design faults at early stage without sacrificing more time and cost.

4.3 Summary

In this chapter, we have introduced Petri Nets, and briefly described two formal models

for COM. One is the model proposed by Ibrahim and Szyperski (1998) presented as a

55

language COMEL described using appropriate programming language formalisms.

Another is the model by Sullivan, Socha, and Marcjukov (1997) expressed in Z notation.

Both of these formal models precisely specify COM, and could be used by developers to

design and build robust COM-based software. Although both these formalisms are

potentially quite useful for developing and reasoning about COM-based software, they

apply only to COM. Even though it may be possible to extend them to other component

models, they necessarily include details that are COM- specific, and therefore obscure the

fundamental characteristics of components common to all models.

In summary, therefore, a general model is needed for component-based software. The

goals for the general model are similar to those of the above two formal COM models.

The emphasis of the general model, however, should be placed on capturing the

fundamental common features of component-based software. Moreover, the model

should be expressed in a succinct and clear style so that people can understand it easily.

We will present our general model for component-based software in the next chapter.

56

CHAPTER FIVE

A General Model for Component-based

Software

On the basis of our studies of three commonly used component models, JavaBeans,

COM, and CORBA, we propose a general model to formalize component-based software

systems. The model consists of definitions of the concept of “component” and its

properties. The model offers the following features:

1 It captures the essence of component-based software at a high level;

2 It provides a simple but precise characterization of components which may clarify the

confusion that results from the rapid evolution of many subtly different component

technologies;

3 It describes an underlying structure on which the syntax of component-based

languages can be based, as well as a semantics for such languages.

4 Components are normally delivered as black-boxes with an interface specification.

The source code and other artifacts may be entirely unavailable. This may cause

difficulties in evaluating and testing the component. We believe that our model could

be used as a starting point to develop a formal testing and verification methodology.

5 Our model incorporates recursions, a control structure not incorporated in any

existing component-based systems, to our knowledge.

57

5.1 Definitions

The following notional conventions will be used in our descriptions:

Notational conventions: When an entity X is defined as a tuple, we can refer to the

constituents of X in various ways. For example, consider definition 5.1.5 below. If X is a

simple component, we can refer to the first constituent of X as inports(X), or by the

phrase “the inports of X”. If X is understood in context, we can omit the X, and simply

write inports or refer to “the inports”. If an item is a set, we will usually give it a plural

name so that we can refer to its members in the singular. For example, if X is a simple

component, we can use phrases such as “an inport of X”.

If f is a function with domain S and range T, and S’ is a subset of S, then f(S’) denotes

the subset { f(s) | s ∈ S’ } of T. If S’ is an n-tuple or sequence of elements of S for some

n, then f(S’) denotes the n-tuple or sequence of elements of T obtained by applying f to

each element of S’. When it is convenient to do so, we will treat a tuple or sequence as if

it were a set, in which case we mean the set consisting of all elements occurring in the

tuple or sequence.

Definition 5.1.1: The domain D is a set which does not include the element none. A is an

arbitrary but fixed infinite set called the set of attributes, each element x of which is

associated with a subset of D denoted τ(x) called the type of x.

Three important concepts are introduced in this definition: domain, attribute, and type.

The domain D might include values from any data type such as integers, strings, or

instances of classes. Attributes can be thought of as variables or data fields. τ is a

function that defines the set of all elements of D that can be values of an attribute. For

example, suppose D includes the set Z of all integers, and for some attribute x of A, τ (x)

= Z, then τ defines the type of x as integer.

Definition 5.1.2: A component over A is either a source over A, a sink over A, a simple

58

component over A, a compound component over A, or a prototype over A.

Definition 5.1.3: A source over A is an attribute. If X is a source, attributes(X) and

outports(X) are both defined to be the set consisting of the single attribute X.

In general, a component produces data at its outports in response to the arrival of data at

its inports. A source component has no inports, so from the point of view of the

application in which it is embedded, a source component spontaneously generates data.

For example, a button component generates an output value when the button is clicked

rather than in response to receiving an input.

Pictorially, a source can be represented as a box with the outport represented by an arrow

on the perimeter pointing out from the box as shown in Figure 5.1.

Figure 5.1 A Visual Representation of a Source Component

Definition 5.1.4: A sink over A is an attribute. If X is a sink, attributes(X) and

inports(X) are both defined to be the set consisting of the single attribute X.

A sink is a component with only inports as shown in Figure 5.2. It receives its input data

via its inports. If we can think of sources as active components, we can think of sinks as

passive ones. The visual representation of a sink is similar to a source except that the

single attribute is represented by an arrow pointing into the box. An example of a sink is

a text field which displays the data it receives on its inport.

59

Figure 5.2 A Visual Representation of a Sink Component

Definition 5.1.5: A simple component over A is a 4-tuple X of the form (inports,

outports, function, triggers) where:

• inports is an n-tuple (a1, …, an) of attributes for some integer n ≥ 0;

• outports is an attribute distinct from a1, …, an;

• function is an n-ary function from τ (a1) x … x τ (an) into τ (outports);

• triggers is a set of pairs of the form (target, relation), where target is an

attribute distinct from the outport, and relation is a binary relation on

τ(target).

• attributes(X) is defined to be the set of attributes consisting of the inports, the

outport and the targets of X.

The role of simple components in a component-based system is analogous to that of

primitive functions such as arithmetic operations or library routines in a programming

language: that is, they provide services implemented using a different formalism or

language. Ports (inports and outports) provide the interface through which the

component interacts with other components. The functionality of a component is

implemented through function. Triggers provide the mechanism for initiating execution

of the component, the importance of which will be seen in the following definitions.

Figure 5.3 A Visual Representation of a Simple Component

Outport b

Inport a1

Inport & trigger a2

Trigger a3

60

Figure 5.3 shows the visual representation of a simple component. Inports and triggers

are located on the left of the box and outports on the right side. Since a trigger may or

may not be an inport, there will be three combinations on the left of box, only inport

represented by an arrow, only trigger represented by a little gun-like icon, and both inport

and trigger represented by icon with an arrow on one end and gun-like symbol on the

another end.

An example of a simple component would be the computation for the sum of two integer

values (Figure 5.3). Inports is a 2-tuple of attributes (a1, a2) and outports is an attribute

b. function adds two integer values together and then assigns the result to τ (outports),

an integer in domain. The output of the component will be provided through outports.

There are two triggers for this simple component. The target for one trigger is a2 and

expressed as (m, n)| m≠n. The target for another trigger is a3 and expressed as (m, n)|

m=1. The relation for target a2 says that new value is not equal to old value. The relation

for target a3 says that the value of target is equal to 1. We can see that in the above

example, a1 is only inport, a2 acts as both inport and trigger, and a3 is only trigger.

The execution of the simple component will be defined in the following definition. But

for now, we can simply think that when the relation for trigger is true, the simple

component will perform its function evaluation. For example, when the relation for the

trigger a3 is true, the sum of two values for a1 and a2 will be calculated.

Definition 5.1.6: A compound component over A is a 4-tuple X of the form

(components, inports, outports, connections) such that:

• inports is a sequence of distinct attributes.

• outports is a sequence of distinct attributes.

• components is a set of components, not including X.

• attributes(X) is defined as the set inports(X) ∪ outports(X) ∪ { x | ∃Y ∈

components(X) such that x ∈ attributes(Y) }.

61

• The sets inports(X), outports(X), attributes(Y) and attributes (Z) are

pairwise disjoint for any Y, Z ∈ components(X).

• connections is a set of pairs of the form (origin, destinations) such that if K

is a connection then

• origin(K) is either an inport of X or an outport of a component of X

• destinations(K) is a set of attributes of X not containing origin(K)

• For each destination d of K, τ(origin(K)) ⊆ τ(d).

A compound component is a network of connected components. This is a very important

concept as it allows thinking about problems at the appropriate level of abstraction. A

connection associates an outport of one component, the origin of the connection, with the

inports of one or more other components, the destinations of the connections. A

connection indicates the passage of data from origin to destinations. Each destination

must be able to accept any value it receives from the origin, so its type must be a subset

of the type of the origin.

Figure 5.4 (a) shows the visual representation of a compound component. It looks like a

simple component except for the color of box. It is important to note that its visual

representation has only inports, and does not have trigger or both inport and trigger as a

simple component does. Furthermore, the compound component may have many

outports.

The details for the compound component are hidden from its visual representation. Figure

5.4 (b) shows a detail for the compound component as shown in Figure 5.4 (a). The

compound component consists of two simple components. The connections are expressed

as lines, linking together all components by which the functionality of the compound

component is accomplished. Consider connections K1 and K2 in Figure 5.4(b). They can

be expressed as K1= (a4, {a5, a6}) and K2= (b3, { b2}). Attributes for the compound

component includes inports, outports, and all the attributes of the components inside the

compound component.

62

(a) (b)

Figure 5.4 A Visual Representation of a Compound Component

Definition 5.1.7: Two components X and Y are equivalent iff there exists a bijection Φ:

attributes(X) → attributes(Y) such that

• for all x ∈ attributes(X), τ(x) = τ(Φ(x))

• inports(Y) = Φ(inports(X))

• outports(Y) = Φ(outports(X))

• if X and Y are compound components, then

• connections(Y) = Φ(connections(X))

and there is a bijection Ψ: components(X) → components (Y) such that for

each component Z of X

• Ψ(Z) is equivalent to Z

• Φ(attributes(Z)) = attributes(Ψ(Z))

• if X and Y are simple components, then

• function(Y) = function(X)

• triggers(Y) = { (Φ(t), C[x1, x2]) | (t, C[x1, x2]) ∈ triggers(X) }

• if X and Y are prototypes, then class(X) = class(Y).

63

According to this definition, components are equivalent if they are syntactically identical.

It is easy to show that the relation “equivalence” is, in fact, an equivalence relation on

components, which leads to the next definition.

Definition 5.1.8: If U is the set of all components, then U is partitioned into equivalence

classes by the equivalence relation defined above. Each such class is called a component

class.

Since the semantics of components, provided below, ascribes identical behavior to

equivalent components, the partitioning provided by equivalence provides a basis for

procedural abstraction, as follows.

Definition 5.1.9: A prototype over A is a triple X of the form (class, inports, outports)

where

• class is a component class the elements of which are compound components.

• inports and outports are mutually exclusive sequences of distinct attributes

of the same lengths respectively as inports(Y) and outports(Y) for any Y

∈ class.

• attributes(X) is defined to be the set inports(X) ∪ outports(X).

Note that since prototypes can occur in compound components, the procedural

abstraction mechanism provided by prototypes naturally includes recursion, which is not

normally a feature of component software models.

Figure 5.5 shows the representation of a prototype based on the class of which the

compound component in Figure 5.4 is a representative. Its appearance is the same as the

compound component the class of which it is based, except that its box is green.

64

Figure 5.5 A Visual Representation of a Prototype

Definition 5.1.10:

• A component Y is said to occur in a component X iff either X = Y or X is a

compound component and Y occurs in a component of X.

• A connection K is said to occur in a component X iff either X is a compound

component and K is a connection of X, or K occurs in a component that occurs in X.

Having defined the five categories of components, we now define their semantics.

Definition 5.1.11: A state of the set A of attributes is a function σ: A → D such that σ(x)

∈ τ(x) ∪ {none} for each x ∈ A.

A state is an assignment of values to all attributes. As we shall see, an execution of a

component assumes a certain starting state, which is transformed as the execution

proceeds.

Definition 5.1.12: If X is a component and σ is a state, an execution of X from σ is a

sequence of the form (σ0, X0, S0), (σ1, X1, S1), (σ2, X2, S2), … where

• for each i ≥ 0, σi is a state, Xi is a component, and Si is a subset of the simple

components occurring in Xi

• σ0 = σ; X0 = X; S0 = ∅

• for each i ≥ 1

• (σi, Xi, Si) is a propagation of (σi - 1, X i - 1, S i – 1) if one exists;

• otherwise, (σi, Xi, Si) is an expansion of (σi - 1, X i - 1, S i – 1) if one exists;

• otherwise, (σi, Xi, Si) is an evaluation of (σi - 1, X i - 1, S i – 1)

65

This definition divides execution of a component into three phases: propagation,

expansion and evaluation defined below.

The propagation rule, as its name implies, moves values that have been generated by a

component along connections from the component’s outports to other components.

During this process, some of these values may arrive at triggers of some simple

components, which may become ready to execute as a result. The third item in each of

the elements of an execution is the set of all simple components which are ready to

execute.

The evaluation rule applies to the execution of the set of simple components which are

ready to execute. During the evaluation process, the function of a simple component is

evaluated and its resulting value is set to the outport of the simple component.

The expansion rule deals with a prototype. During the process, the prototype will be

replaced by a compound component that is an instance of its class. The execution of the

compound component is carried out in the same way as the above three phrases.

Definition 5.1.13: If σ and σ’ are states, X is a component, and S and S’ are subsets of

the simple components occurring in X, then (σ’, X, S’) is a propagation of (σ, X, S) iff

for all x ∈ A

• if x is a destination of a connection K occurring in X such that σ(origin(K)) ≠

none, then σ’(x) = σ(origin(N)), where N is a connection of which x is a

destination and σ(origin(N)) ≠ none.

• if x is the origin of a connection occurring in X such that σ(x) ≠ none then

σ’(x) = none

• otherwise σ’(x) = σ(x).

• S’ = S ∪ { Y | Y is a simple component occurring in X

66

∧ Y has a trigger t

∧ t is a destination of a connection K occurring in X

∧ σ(origin(K)) ≠ none

∧ (σ’(target(t)), σ(target(t))) ∈ relation(t) }

Consider a compound component X shown in Figure 5.6. This compound component

consists of two source components Sr1 and Sr2, a simple component Sc, and a sink

component Si, connected as shown. All attributes are of integer type. The function f of Sc

is defined by f(x) = x2 for any integer x. The relation of the trigger of Sc is { (x,y) | x≠y}.

Assume the triple characterizing the execution is (σ, X, ∅) where σ(a) = 2, and σ(b) =

σ(c) = σ(d) = none. Propagation produces the triple (σ’, X, ∅’), where σ’(b) = 2, and

σ’(a) = σ’(c) = σ’(d) = none, and since σ’(b) ≠ σ(b), Sc is ready to execute, so that ∅’ =

{ Sc }.

Figure 5.6 An Example

Definition 5.1.14: If σ and σ’ are states, X and X’ are components, and S and S’ are

subsets of the simple components occurring in X and X’ respectively, then (σ’, X’, S’) is

an expansion of (σ, X, S) iff

X
K1

K3

K2

a2

a1

b c

d

67

• either S’ = S and X is a compound component and X’ is a compound

component identical to X in every respect except that components(X’) =

components(X) – {Y} ∪ Y’ where (σ’,Y’,∅) is an expansion of (σ,Y,∅).

• or S’ = S = ∅, X is a prototype and X’ is a compound component such that X’

∈ class(X), inports(X’) = inports(X) and outports(X’) = outports (X) and

σ’(x) = σ(x) if x ∈ attributes(X) and σ’(x) = none otherwise.

Expansion replaces a prototype with a compound component which is an instance of its

class. As we have already mentioned, this process is the equivalent of procedural

abstraction in programming languages, and therefore provides the basis for recursion.

The example in Section 5.2 illustrates this process.

Definition 5.1.15: If σ and σ’ are states, X is a component, and S is a subset of the

simple components occurring in X, then (σ’, X, Ø) is an evaluation of (σ, X, S) iff for all

x ∈ A

• if x is an outport of Y for some Y ∈ S, then σ’(x) = function(Y) (σ(a1), …,

σ(an)) where inports(Y) = (a1, …, an)

• if x is an outport of some source occurring in X, then σ’(x) ∈ τ(x) ∪ {none}

• otherwise σ’(x) = σ(x).

The evaluation rule describes the execution of a simple component. Consider the example

following Definition 5.1.13, where applying propagation resulted in the triple (σ’, X, { Sc

}) where σ’(b) = 2, and σ’(a) = σ’(c) = σ’(d) = none. Applying evaluation leads to the

triple (σ”, X, Ø) where σ”(b) = 2, σ”(a) = σ’(d) = none and σ”(c) = σ”(b)2 = 4.

5.2 Discussion with an Example

In this section, we go through an example to demonstrate how our model works. The

example is to recursively calculate the factorial of a number.

68

We assume domain D includes integers and all attributes in this example have integer

type. A compound component fact wraps all the calculation detail and is comprised of

three simple components, one prototype of fact itself, one inport x, one outport y, and

five connections. This can visually be represented as shown in Figure 5.7.

Figure 5.7 The Component fact

Formally, the component fact is defined as follows.

fact = ({ f1, f2, f3, factPro},(x), (y), {(x, {t1, t2, i3}), (o2, {tf}), (of, {t3}), (o1, {t3}),

(o3, {y})})

The three simple components f1, f2, f3, are as follows.

f1 = ((t1), o1, F1, {(0,m), (1,m) }) where F1(i) = 1 for all integers i

f2 = ((t2), o2, F1, {(n,m) | n > 1}) where F2(i) = i - 1 for all integers i

69

f3 = ((t3, i3), F3, {(n,m) | either n ≠ m or n = 1})

where F3(i,j) = 1 for j =0 and all integers i

 F3(i,j) = i *j for j>0 and all integers i

The prototype factPro is defined as follows.

factPro = (factClass, tf, of)

Where class factClass is the component class that contains the compound component

fact.

A simple component not only performs the basic computations, but also controls the

execution flow of program. The function of f1 is to decide whether or not to invoke the

base case, whereas the function of f2 is to decide whether or not to invoke the recursive

case of factorial, passing a value to f3 only if the incoming integer is greater than 1. The

function of f3 is to calculate the multiplication of two numbers.

To illustrate the above definitions, we will now describe the execution of fact given a

starting value of 2. The paragraphs that follow describe successive triples in the

execution, and show how each triple is derived from the previous one. In each paragraph,

we will describe the new state by giving only the attribute values which have changed:

attributes not mentioned have the same values as in the previous state.

(σ0, fact, Ø)

σ0(x) = 2, and σ0(a) = none for all attributes a ≠ x.

Propagation applies since x ≠ none and is the origin of two connections.

(σ1, fact,{f2})

σ1(x) = none, and σ1(t1) = σ1(t2) = 2.

70

Since σ1(t1) is not 1 or 0, f1 is not triggered. Since σ1(t2) > 1, f2 is triggered.

Propagation does not apply since no there is no origin with a value other than none.

Expansion does not apply since the third element of the triple is not Ø.

Evaluation applies, yielding the following triple.

(σ2, fact, Ø)

Although the above example is quite simple, it does demonstrate most features of our

model. It shows how a compound component is composed of other components,

particularly including prototypes. From the example, we see that the notion of “recursive

component” is a natural extension of the usual concept of component. The example also

shows that the concept of compound component includes the notion of “program”.

An execution of a program is thought of as a sequence of steps, each producing a new

state by changing the values of one or more attributes. Each step is accomplished by

propagating values then evaluating the functions of simple components that have been

triggered by the arrival of new data.

Visually we can construct a component-based program by connecting components

together according to our definitions. The components must satisfy the component

definitions and connections cannot be made unless the types of connected attributes are

compatible according to definition 5.1.6. Further features of our model will be

demonstrated in a component-based visual programming environment, described in the

next chapter.

5.3 Comparison with Other Component Models

Generally our model captures the essence of the JavaBean, COM, and CORBA

component models at a high level. As has been stated, all component models emphasize

that the functionality of a component is provided with an interface, and an

71

implementation is encapsulated behind interfaces. In our model, the interface is expressed

in term of ports (inports and outports). All the internal detail is hidden inside component.

Through ports, a component can receive inputs or send outputs. Encapsulation is a

characteristic that all components should possess.

Although the three component models, JavaBean, COM, and CORBA, have different

mechanisms by which components interact with each other, they do use “connections” to

facilitate communication between components via some specific connectors provided by

the components. This is reflected in our model by the definition of connections with

matching rules to enforce type correctness. Our model does not explicitly dictate the

mechanisms used in connections. The connections could therefore be via event-listener as

in JavaBeans, via pointers as in COM, or something else.

In our model, we classify five kinds of components, sources, sinks, simple components,

compound components, and prototypes. This classification makes concepts much clearer

and also allows us to achieve a certain level of programming abstraction.

We explicitly define a source component and a sink component. Although the three

component models embed these two kinds of components implicitly, they do not

explicitly define them. This lack may make people to confuse the concepts.

As has been stated, simple components provide primitive functionality in component-

based software. Definition of simple component captures the core concept of component,

that is, all services are provided via ports. This concept is reflected in all the three

component models.

Our definition of compound component provides an abstraction mechanism analogous to

begin-end blocks in a programming language. The component can contain components.

For instance, a compound component may consist of several simple components, another

72

compound component, and a prototype of the same compound component. But from

outside, we still see only ports. This mechanism is the same as aggregation mechanism in

the above three component models. In other words, the concept of compound component

exists in the three component models implicitly.

One important concept in our model is “prototype”. As we discussed, the prototype

concept provides an abstraction mechanism analogous to procedures in programming

languages. One of its important consequences that our model provides for recursive

components, thereby extending the usual notion of “component” in a natural and

consistent way. There is no equivalent definition in the above three component models.

In particular, the end-user JavaBean component for Java Studio does not have the

prototype kinds of components. As a result it can not realize a recursive program as

described in Chapter 3.

5.4 Relation with Petri Nets

Although the concepts of Petri Net have influenced the visualization of our general

component model, we have found that it is hard to use Petri Nets as a basis for

component-based software because such software requires concepts difficult to express in

Petri Net graphical notation. For example a component possesses more properties than a

simple “place” in Petri Net, whereas in Petri Net a “place” simply represents conditions

for execution. In Petri Net tokens are used to control the execution of the Petri Net,

conveying a signal to the next “place”. The signal can be thought as a special value. In

our model, a message with data is travelling through the connection to control the

execution of a program.

5.5 Summary

In this chapter, we defined our general model for component-based software. Discussions

with an example have demonstrated most features of the model. One unique feature of

73

the model is that recursion is naturally embedded, extending the usual definition of

component in other models. We have compared our model with three leading component

models, CORBA, COM and JavaBeans, showing how it captures their essence. Its

relationship with Petri net has also been discussed.

74

CHAPTER SIX

A Prototype of a Component-Based

Visual Programming Environment

As has been noted, our general model for component-based software captures the essence

of various component models, providing a useful guideline for developing component-

based software. The goals in designing and implementing a prototype of component-

based software development system, Component Software Construction Kit (CSCK), are

similar: to build a platform for verifying the applicability of our model to the software

development task. With CSCK, we should be able to check how easy or difficult it is to

write certain kinds of programs using our model, to discover the kinds of programming

tasks it is good for and those it is not good for. It is also hoped that CSCK might be used

to help people understand the concepts of component-based software.

6.1 Overview of CSCK

CSCK is implemented as a simple integrated development environment. The integration

of visual programming principles into this environment is intended to simplify the

development process, and benefit programmers in terms of development time and

productivity by allowing the programmer to build execute, modify and debug

components within a single environment. CSCK is implemented in the Java language.

The reader is referred to Appendix A for the details of design and implementation.

CSCK consists of several editors and an interpreter. There are five different editors, the

project editor, compound component editor, function editor, port editor, trigger and inport

75

editor, and visual bean selection editor. Each editor appears in its own window which can

be invoked by double-clicking an icon of an appropriate kind. These editors are used to

create components, manipulate these components by adding ports and specifying

component function, for example, and to construct a component-based software program.

The interpreter traverses the data structure representing a component-based program built

by the editors, and executes it according to the semantics of our model.

Unlike textual languages in which programs are encodings of the various multi-

dimensional structures inherent in the syntax, the success of a visual language depends to

a large extent on providing the programmer with consistent and meaningful concrete

representations of syntactic structures. Designing a friendly GUI for such a language is

therefore an important issue.

In designing CSCK we have tried to keep the GUI as simple and consistent as possible.

An important aspect of consistency is adhering to the “look and feel” of the host

operating system, since the time taken for a user to become familiar with new software

can be shortened if that software employs familiar interface conventions. In order that the

prototype system is consistent in this way, we have used the Java Swing classes to

implement the GUI, since Swing provides a rich set of standard “look and feel”

conventions (Sun Microsoft, 1999).

Color can be a powerful tool for communication if used correctly. We have carefully

used color to convey meaningful semantic distinctions. For example, different colors are

used to represent different components. It should be noted that in order enable color-blind

users to use the system, we should use other means to remedy the possible consequence

caused by the use of color.

It should be noted that Prograph has much influenced the design and implementation of

CSCK. Some visual concepts and design styles for the prototype have been borrowed

from Prograph. For example, an editor window can be opened by double-clicking its

76

corresponding visual representing icon. Like Prograph CPX, our prototype implements an

interaction style which encourages a top-down approach to software development.

6.2 Working with the System

In this section, an example is given to demonstrate how the system works and what

features its environment has. The example is the same as that in Chapter 5, that is, to

recursively calculate the factorial of a number.

When we start the system, the primary window appears, as shown in Figure 6.1. In this

primary window, the user can construct a component-based program and execute it. Eight

menus accompany the primary window, File, Edit, Component, Prototype Classes,

Project, Look & Feel, Window, and Help. Table 6.1 lists the items on each menu.

Toolbars that float under the menu bar are provided for frequent actions across screens

common to several different kinds of windows, for example, new, open, save, simple

component, compound component, prototype class, generate code and run. Tooltips,

the labels that appear as the mouse passes over toolbar graphics is also provided.

Menu Menu Items Description

New Create a new project

Load* Open a project

Save* Save project

File

Exit Exit the system

Copy* Copy the selected component

Paste* Paste component

Edit

Delete Delete the selected component

Simple Select simple componentComponent
Compound Select compound component

77

Prototype Classes The menu items will dynamically be added as

compound components are added to the

project (need future improvement)

Generate Code* Generate corresponding JavaBean codeProject
Run Execute the program

Metal Default Java Look & Feel

CDE/Motif X Windows Look & Feel

Look & Feel

Windows MS Windows Look & Feel

New Window*Window
Arrange All*

Help* Provide helpHelp
About Displays information about the software.

Table 6.1 Menu Items for each Menu of Primary Window
NOTE: MENU ITEMS WITH * ARE NOT IMPLEMENTED IN THE PROTOTYPE FOR THE TIME BEING.

When the user selects the new item from the File menu, a project editor appears. The

Project editor is the main graphical editor for manipulating all components and their

connections. Figure 6.2 shows a snapshot of a project editor identified by a network-like

icon in the upper left corner of the window.

The diagram in the project editor consists of a network of connected components.

Although we have already seen examples of component icons in the last chapter, we will

describe their representations here for completeness.

78

Figure 6.1 A Snapshot of CSCK after Starting-up

Figure 6.2 Project Editor

79

Component

A rectangular box with a title in a text field is used to represent a component. Different

colors are used to represent different kinds of components. Blue, brown and green

represent simple, compound, and prototype components respectively. Since source and

sink components can be considered special kinds of simple components (a simple

component with only one inport is a sink and a simple component with only one outport

is a source) we still use blue to represent them. Figure 6.3 illustrates these five different

kinds of components. It should be pointed out that in a full implementation of CSCK we

would not rely solely on color but also use other devices such as different shapes to

represent different kinds of components in order to allow color-blind people to

distinguish them.

In the project editor, the user can select kind of component, using the Component or

Prototype Classes menus, then add a component by double-clicking mouse button 1 at

the point where the component is to be added. The user can move a component by

dragging it with mouse button 1 depressed.

Figure 6.3 Components

Simple
Component

Compound
Component

Prototype
 Component

Sink
Component

Source
Component

Outport

Inport & trigger

Inport

80

Port and Trigger

In general, a port is represented by a red arrow, pointing inwards for an inport and

outwards for an outport. Inports are located on the left of a component and outports on

the right side. The user can add an inport or outport by double-clicking the left or right

side of a component respectively. The environment allows only one outport to be added

to a simple component.

Recall that in our model a simple component has triggers. A trigger may or may not be an

inport. In the visual representation, there are three combinations for inport and trigger,

represented by the three different icons shown in Table 6.2.

Icon Description

Inport only

Trigger only

Both inport and trigger

Table 6.2 Icons for Inports and Triggers

Connection

A connection defines a data transmission path from the outport of one component to the

inports or triggers of others. A connection is represented by lines from the origin of the

connection to its destinations. To add a destination to a connection, the user clicks mouse

button 2 on the origin, drags a “wire” to the new destination on another component, and

then double-clicks on the destination. Repeating this action removes an existing

destination from a connection.

In the project editor as shown in Figure 6.2, we have created three components, a source

component ProjC0, a sink component ProjC1, and a compound component

ProjCC0. The source and sink components are used to provide the input and display the

81

output respectively. The compound component will be used to calculate the factorial of

number in this example.

Inports, triggers and outports are editable. When the user double-clicks a port or trigger,

either a Port editor or a Trigger and Inport editor appears. Using the Port editor, the

programmer names a port, and specifies its type by selecting from a default list provided

in a combo box, as illustrated in Figure 6.4. The four data types, integer, double, boolean,

and String are provided. The default data type is integer. In our example for calculating

factorial, we choose the default port name and the default data type integer for all the

ports.

A Trigger and Inports editor invoked by a double-click on an inport of a simple

component, is used to name the port and specifying its data type. With this editor the user

can also change the port into a trigger, or specify that it is a trigger as well as a port, and

can enter the trigger condition. This will be illustrated as we proceed with our example.

Figure 6.4 Port Editor

In our example, when we double-click the compound component in the project editor, a

compound component editor appears, indicated by the brown cube in the upper left

82

corner of its window as shown in Figure 6.5. The Compound component editor is very

similar to the project editor differing only in that its window contains two vertical bars

that represent the inports and outports of the corresponding compound component icon.

This is analogous to the input and output bars in the case window of Prograph (Prograph

International, 1993).

Figure 6.5 Invocation of a Compound Component Editor

In the compound component editor, we construct a component that calculates the

factorial of a number as illustrated in Figure 6.6. We have created three simple

components, namely, ProjCC0C0, ProjCC0C1, and ProjCC0C2. For each of these,

two important tasks have to be performed, specifying triggers and trigger relations, and

specifying the function.

83

Figure 6.6 Compound Component Editor

Consider the simple component ProjCC0C2. We have decided to use its port inport1 as

both inport and trigger. When we double-click the port, a Trigger and Inports editor

appears as shown in Figure 6.7. Here we can select a data type using a combo box as in

the port editor. There are two check boxes, one indicating whether or not the attribute is

an inport (by default selected), another for indicating whether or not the attribute is a

trigger (by default unselected). A text area is shown if and only if trigger check box is

selected, in which the user can type Java code for the trigger relation. In the relation, x

and y represent the old and new values of the attribute respectively. Note that this editor

only valid combinations of the inport and trigger checkboxes. In our example, we check

both check boxes, and specify the trigger relation as x!=y indicating that the component

should be executed if the value of the attribute is changed.

84

Figure 6.7 Trigger and Inport Editor

To specify the function of the simple component ProjCC0C2, we double-click the

component to open the function editor shown in Figure 6.8. The Function editor has

two panes, providing the function template that the programmer is not allowed to change

and a text area where the user can type in the function. The function template is created

according to the names and data types of the inports and the outport. The function itself is

coded in Java in the provided text area, using the information form the template. In our

example, we write the function as: “return new Integer(inport0*inport1);” since the

function template specifies two inports inport0 and inport1 with data type integer, and the

returned data type is also integer.

The same procedure is followed to specify the details of the simple components

ProjCC0C0 and ProjCC0C1.

85

Figure 6.8 Function Editor

In the compound component editor shown in Figure 6.6, we have added a prototype

component whose class is a component class the element of which is the compound

component ProjCC0. A menu item corresponding to a compound component will

dynamically be added to the menu Prototype Classes when the compound component is

created. Note that since many or most of the compound components created in a project

are likely to be used for one time, we will improve this implementation in the future. We

could implement a popup dialog to allow the user to select a component from a list of

compound components and then ask for a prototype to create from it.

The user adds a prototype component by first selecting the prototype name in the menu

Prototype Classes, which places a checkmark by that item in the menu then adding a

component to the project editor or compound component editor. The system guarantees

that only one kind of component can be selected at any time. For instance, if a user

selects a prototype component from the check mark in the menu, then menu item for

simple component and compound component will be automatically deselected.

To complete our program components are “wired” together by connections, as explained

above. Before we execute it, we have to create an interface by specifying visual beans to

correspond to the source and sink components. A Visual Beans Selection editor is

opened by double-clicking the source or sink as illustrated in Figure 6.9 allowing the user

86

to select the required bean. Icons for these visual beans are organized by toggle buttons in

Java Swing, allowing only one visual bean to be selected at one time. In this editor,

tooltips are provided to explain the functionality of the available beans. In our example,

we have chosen text fields for the source component ProjC0 and the sink component

ProjC1.

Figure 6.9 Visual Beans Selection Editor

Now we are ready to execute the program. Selecting the run item in the Project menu or

clicking run in toolbar, opens an interpreter window as shown in Figure 6.10. In our

example, two textfields are displayed in the interpreter window corresponding to the

project editor. The left one is for input and the right one for output. When 2 is typed in

the left textfield, its factorial 2 is computed as described in Chapter 5, and displayed in

the right textfield.

The data structures and algorithms used in the implementation of CSCK are presented in

Appendix A.

6.3 Summary

In this chapter, we have described, CSCK, the prototype implementation of our general

model for component-based software. The functional operations of the prototype have

been introduced with an example. Through the example, the features of the prototype

have been demonstrated. We will evaluate this prototype and discuss related issues in the

next chapter.

87

Figure 6.10 Interpreter

88

CHAPTER SEVEN

Evaluation of the Prototype CSCK

After developing the prototype of component-based visual programming environment,

CSCK, we must perform the evaluation and testing. This is the most important stage of

software development, particularly for a prototype (Smmerville, 1992). In this chapter,

we will evaluate the prototype with respect to the Green and Petre’s cognitive dimensions

framework (Green and Petre, 1996) against other similar environments, Java Studio,

Prograph, and VisualAge for Java. The necessity of testing for CSCK will be discussed.

7.1 Evaluation of CSCK According to Cognitive

Framework

The cognitive dimensions framework of Green and Petre (1996) is a set of commonly

accepted, qualitative, visual programming language evaluation criteria. We use this

framework to evaluate the prototype against three visual programming environments,

Prograph, VisualAge for Java, and Java Studio. Although it may be not appropriate to

evaluate CSCK at this stage, it is hoped the evaluation will reveal something valuable

that can be used for further improvement and development. Readers are assumed to be

familiar with the cognitive dimensions framework.

Abstraction Gradient

Both VisualAge for Java and Java Studio are based on the JavaBean component model

implemented by Java; so they are object-oriented systems. Prograph can be used a full

object-oriented programming environment. Therefore, these environments have all

abstraction mechanisms that an object-oriented language offers.

89

In our general model we have provided compound component and prototype component

concepts which allow programmers to construct a component-based program

incrementally. In CSCK, the coding detail for a compound component is hidden from its

visual representation. The abstraction gradient in CSCK can be considered gentle.

Closeness of mapping

The closeness of mapping between a problem world and a program world is very

important in the programming. The closer the mapping is, the easier the problem should

be solved. Java Studio provides a good mapping in this respect. Each visual bean affords

close mapping to its functional metaphor. For example, a GUI bean component resembles

their actual appearances in the design, a timer bean is like a clock, an expression

evaluator is like a calculator, etc. Each bean has explicitly expressed ports. A user can

write applets, applications or beans by easily “wiring” these metaphors together.

VisualAge for Java only has a good mapping for GUI components. For the user defined

JavaBean component, a puzzle-like icon is generally used. Also the interfaces or ports for

Javabeans is not explicitly visualized. This makes connections between components not

so easy as Java Studio does. Therefore VisualAge for Java is moderate in this dimension.

Prograph is for general programming purpose. Although it did not provide a good

mapping to a particular problem, it employs dataflow diagrams which offer a clear logic

of the program.

Like Prograph, CSCK is implemented for general component-based software

programming purpose. The component is visualized to reassemble the black box in the

real world. Its ports are explicitly expressed. The relationships between components are

represented by connecting lines, which mimics the networks in the real world. Although

there is no specifically functional metaphor to map for each component, we believe that

the closeness of mapping in CSCK is still good.

90

Consistency

Consistency refers to “when some of the language has been learnt, how much of the rest

can be inferred?”(Green and Petre, 1996). Prograph, Java Studio, and ViualAge for Java

are excellent in this dimension. CSCK must be considered strong in the dimension. The

programming procedure in CSCK is pretty much consistent. The visual syntax and

semantics are logic and consistent. For example, the coding procedure in the compound

component editor is the same as the project editor. All editors in CSCK take advantage of

the user’s familiarity with common windowing and mouse functionality.

Diffuseness/Terseness

Diffuseness defined by Green and Petre (1996) means that “the more material to be

scanned, the smaller the proportion of it that can be held in the working memory, and the

greater the disruption caused by frequent searches through text.” Green and Petre found

that Prograph is much more diffuse in terms of entities that it uses. The entity here refers

to as words, icons, connectors, and windows.

Java Studio and VisualAge for Java fare no better. Java Studio requires many beans and

connections even for a simply application and the design window becomes very crowded

with too many beans and lines. In VisualAge for Java, many connection lines are needed

for building an application and it makes the Visual Composition Editor look like a

“spider-net” window. CSCK suffers from the same problem. For a simple application,

we may need several editor windows. However, it should be note that terseness is not

always good either (Green and Petre, 1996).

Error-proneness

Generally speaking, visual programming environments offer less syntax errors than does

a textual programming environment (Green and Petre, 1996). In Prograph, Java Studio,

and VisualAge for Java, there is little that can go wrong to induce errors.

Like the three environments, CSCK can minimize syntax errors. Editors in the prototype

91

enforce the syntax of the model. Moreover, the concrete visual syntax makes the users to

find errors easily. For example, when connecting two components, the data type for ports

are automatically checked. Thus the users can not connect two incompatible ports.

Hard mental operations

Hard mental operations concern two questions. Are there places where the user needs to

resort to fingers or pencilled annotation to keep track of what’s happening? Does the

notation induce serious logic flaws? (Green and Petre, 1996)

Green and Petre (1996) pointed out that Prograph would result in hard mental operations

because of control constructs. Java Studio has not been found any hard mental operations

from the author’s experience. VisualAge for Java would cause hard mental operations for

a large program because the user needs to keep track of each step.

Due to the simplicity of CSCK, it is not possible to have “hard mental operations”. There

is no need for the user to resort to fingers or pencilled annotation to keep track of what is

going on.

Hidden dependencies

Java Studio and VisualAge for Java do well in avoiding the hidden dependency problem.

For both products, the relationship (dependency) between two components are clearly

visible since connections explicitly indicate which one is dependent on which one.

CSCK has the same problem as Prograph in this dimension. Like Prograph, there is no

any hidden dependency problem at a local level. The connecting lines make the local

component dependencies clearly visible. But there would be a problem with proceeding

up the call graph in the same way as the programmer can quickly navigate down the call

graph by clicking on icons to open their edit windows (Green and Petre, 1996). To

alleviate the difficulty, a searching tool is needed, allowing the programmer to look back

the icon from the edit windows.

92

Premature commitment

A thumbnail description of premature commitment is that do programmers have to make

decisions before they have the information they need? (Green and Petre, 1996)

Prograph, VisualAge for Java, and Java Studio use the box-and-line to represent a

program. There is less commitment to the order of constructing a program than text

languages. In Java Studio the user can easily change the decision at any stages. There is

no separate build or run step to worry about. However, VisualAge for Java does require

the order of connecting components for creating code.

For CSCK, there is no observation of premature commitment. But when a program

becomes larger, “visual spaghetti” will occur. To avoid this “visual spaghetti”, the

programmer has to look ahead. This problem is one of the common problems in box-and-

line visual programming languages or environments

Progressive evaluation

Progressive evaluation is interpreted as can a partially-complete program be executed to

obtain feedback on “How am I doing”? (Green and Petre, 1996)

Prograph is excellent for progressive evaluation (Green and Petre, 1996). It provides

facilities to allow the user to evaluate any method separately. Java Studio is also good

for progressive evaluation. It supports immediate feedback through parallel views and

provides the interactive environment that lets the user create “live” applications easily.

VisualAge for Java is moderate. The user can test out a small piece of code in the

Scrapbook window even though VisualAge for Java does not support immediate

feedback.

For the time being, the progressive evaluation functionality has not yet been implemented

in CSCK. The design concepts for progressive evaluation in Prograph and Java Studio

should be applied in the future implementation.

93

Role-expressiveness

Role-expressiveness concerns whether the reader can see how each component of a

program relates to the whole. It can be improved by using meaningful identifiers, well-

structured modularity, secondary notation, and so on (Green and Petre, 1996). In Java

Studio, each bean can be given a name and users can define identifier for the packaged

design. VisualAge for Java integrates both techniques of visual and textual programming.

Users can either read the visual programming design or read the generated source codes.

This would increase the program readability.

CSCK has provided a compound component concept. The complex programs can be

constructed as a compound component. This definitely improves role-expressiveness. But

much more work is needed to further enhance this criterion.

Secondary notation

Secondary notations such as layout, color, or other cues can be used to convey extra

meaning besides the semantics of the language.

The secondary notation is weak in box-and-line visual programming environments like

Prograph, VisualAge for Java and Java Studio. There is no exception for CSCK.

In CSCK, we only use color to distinguish different components. There is almost no

secondary notation supported in the prototype. We need to improve this in the future.

Viscosity

Viscosity refers to how difficult the user changes a program. Prograph allows users to

add the extra code in the existing code with little difficulty. In Java Studio, when users

want to insert some new functions (or bean) into design, they may have to rebuilt many

of the wires. Since the program in Java Studio is usually not very large, this problem

seems not serious. VisualAge for Java allow users to change program quite easily. It has

“undo” and “redo” facilities while building an application. Besides, since VisualAge for

Java supports textual programming, the user can change the program by just typing a few

lines as long as the added codes do not effect the connections.

94

CSCK is quite viscose at present. It is very difficult to make change after finishing the

program even though users can remove or add connection easily. More features will be

added and allow users to easily remove or add components and connect them together.

Visibility

Visibility in Prograph is weak because of its deep subroutine. Both Java Studio and

VisualAge for Java are moderate. The user can use scroll bar to check the program when

building an application. Each bean in the design is at the same level.

For CSCK, there is no visible problem for a small program. Each compound component

is defined in its own window. They can be compared side by side up to the limits of

screen space. However, as a program becomes large, it may be very difficult to see every

part of the code simultaneously.

As many components add or create in the environment, how to manage these components

becomes a big issue. A component browser is needed for organizing and navigating

components easily.

7.2 Testing

In addition to the cognitive evaluation of CSCK, a thorough testing for CSCK is required.

Testing is the software process of critical importance, assuring that the software meets its

requirements (verification process) and the requirements meet the needs of software users

(validation process). For CSCK implementation, due to the lack of time and resource, we

have not performed testing yet. In order to test CSCK in a meaningful way, CSCK

requires further improvement and development. In this section, we discuss the testing

process of CSCK.

The testing of CSCK should follow the normal software testing processes. It should

involve two processes: verification and validation. The verification of CSCK is to verify

95

the applicability of our general model for component-based software. We have used some

practical examples to go through this process. We believe CSCK represents a sound proof

of our general component model even though it needs further improvement.

The validation of CSCK involves intensive evaluation processes. Its purpose is to test

whether this innovation meets the needs of target users and whether it increases software

productivity. An independent test group is recommended to perform this process. At least

two kinds of tests are required, usability testing and functionality testing.

The usability testing involves having the users work with the innovation and observing

their response to it. It often focuses on the product’s presentation rather than its

functionality and in the end discovers how easy it is for users to bring up what they want.

The target users for CSCK are professional developers or novice programmers. This

means these users are assumed to have basic background for programming. The intended

use for the innovation will be for both developing “off-the-shelf” software components

and developing application using these components. We shall invite these target users to

go through the usability testing. The following usability characteristics should be tested

(Kit, 1995):

• Accessibility: can users enter, navigate, and exit with relative ease?

• Responsiveness: can users do what they want, when they want in a clear way?

• Efficiency: can user do what they want in a minimum amount of steps and time?

• Comprehensibility: do users understand the prototype structure easily?

Functionality testing is a process of attempting to detect discrepancy between a

program’s functional specification and its actual behavior. We recommend use the black

box testing method to test the functionality of the environment. The functional

specifications for the environment should include a number of test cases which cover all

aspects of the functionality of the prototype.

In addition to the usability testing and functionality testing, we also recommend to

96

conduct other testing processes including performance testing, resource usage testing.

It is very important to note that we should test CSCK against the existing similar visual

programming environments like VisualAge for Java, PART for Java, Prograph, and Java

Studio. The same evaluation criteria and testing procedures should be applied to these

environments to make comparison more sense. Based on the testing results, we can draw

conclusions and find out the shortcomings for further improvement of CSCK.

7.3 Extending the Prototype

Besides the features mentioned in Section 7.1, other features that are needed to add or

improve are:

1. The unimplemented parts shown in Table 6.1 should be completed.

2. It should allow users to generate JavaBean source codes or COM binary component

based on the network diagram in the project editor.

3. It should allow users to import any component based on the component model like

COM or JavaBeans. These components can be used in the construction of

component-based programs.

4. An online help is needed which allows users to get help when necessary.

5. A debug facility should be integrated with the environment, allowing for detecting

and correcting syntax and logical errors.

7.4 Comparisons with Other Aspects

In section 7.1, we have compared CSCK with visual programming environments in terms

of cognitive dimensions framework. Now we compare them in other aspects.

Both Java Studio and Visual Age for Java are based on the JavaBean component model.

The communication between components is through event delegation model. The internal

97

works of a Javabean component consist of objects since JavaBeans is implemented by

Java -- an object-oriented programming language. Prograph is based on a dataflow

computational model. In the model, an operation executes when its data become

available. Therefore the communication between operations is through data.

In CSCK, the communication between components can be considered a message with

data via component ports. Whenever the trigger condition is met, the component

executes. In the current implementation of CSCK, the internal works of a component is

realized by using a Java method. However, it is very important to note that we can use

any implementation to realize the internal works of a component like objects, procedure

abstractions. To make whole implementation process of component-based software fully

visual, we may use the visual programming language like Prograph to implement the

internal works of a component. This is a very interest area to explore.

As we have presented in Section 7.1, CSCK is quite similar to Java Studio in terms of

networking between components. However, CSCK is more powerful than Java Studio. A

component can be initially created by CSCK. More importantly, CSCK offers an abstract

mechanism to realize the program recursion. In the other hand, CSCK avoids the

complex GUI as VisualAge for Java does while its functionality is still rich, provided that

more features are added.

7.5 Summary

In this chapter, we have evaluated CSCK according to the Green and Petre’s framework,

indicating that CSCK is good in many dimensions. During the discussion, we have also

identified many features that need to add or improve for CSCK, as compared to Prograph,

Java Studio, and VisualAge for Java. The testing process for CSCK has been discussed.

At this stage, we can draw conclusions as follows.

• CSCK has proved the our general model for component-based software to be

applicable;

98

• CSCK is able to help users familiarize themselves with our general model and

component-based software development;

• CSCK exhibits good standings in term of the cognitive framework of Green and Petre

although many features are needed to add.

• CSCK is implemented using Java Swing and Java in Window NT. As Java is a

platform-independent language, it is easy to deploy the prototype to other platforms

such as UNIX, Mac-OS.

99

CHAPTER EIGHT

Summary and Conclusions

This thesis presented a general model for component-based software and a prototype for

the general model.

We have reviewed currently most successful component technologies, particularly three

leading component models, CORBA, COM, and JavaBean. Their similarities and

differences have been summarized and discussed. In order that developers are able to use

component technologies properly and reduce the misinterpretations and implementation

errors, a formal approach is necessary to precisely specify component models. The formal

approaches for component-based software has therefore been investigated, which

revealed that only COM component model has been formalized and there is a lack of a

general model for component-based software. Based on the investigation of three

component models, CORBA, COM, and JavaBean, we have proposed a general model

for component-based software that consists of a series of definitions with a sound basis in

mathematics. We believe that the general model captures the essences of most component

models. It can help us familiarize ourselves with a component model, and learn the basic

concepts of component and component-based software development.

A prototype for the general model, CSCK, has been designed and implemented in the

thesis. CSCK has integrated the principle of visual programming, backed up by our

overview of component-based software development with visual programming. It has

well demonstrated the general model and proved that the general model is applicable. We

have further evaluated CSCK according to the cognitive dimensions frameworks of

Green and Petre (1996) while compared to the existing component-based visual

programming environments like Java Studio, VisualAge for Java and Prograph. The

testing procedure for CSCK has been discussed.

100

Further work is needed to extend the efforts we have made.

• Although our general model contains syntax and semantics, rules for proving

theorems are required to enhance the general model;

• More features are required to add to the prototype. These features are described in

Chapter 7.

101

References
Allen R. and Garlan D. (1997). A Formal Basis for Architectural Connection, ACM
Transaction on Software Engineering and Methodology, Vol. 6, No. 3, pp. 213-249.

Andersen Consulting (1998). Understanding Component,
http://www.ac.com/services/eagle/eagl_thought1.html.

Apple (1993). OpenDoc – Shaping Tomorrow’s Software (white paper).

Barn B., Brown A.W. & Cheesman J. (1998). Methods and Tools for Component-Based
Development, In: Proceedings of Technology of Object-Oriented Languages, pp. 385-
395.

Bass L., Clements P., Kazman R.(1998). Software Architecture in Practice, Addison-
Wesley.

Booch G. (1994). Object-Oriented Analysis and Design, with Applications, 2nd edn, The
Benjamin/Cummins Publishing Company, Redwood City, CA.

Booch G. (1998). The Future of Software, Developing Component-based Systems,
Presented at Component Directions ’98 in Chicago.

Budd T. (1997). An Introduction to Object-Oriented Programming, 2nd edn, Addison-
Wesley.

Burnett M., Baker M., Bohus C., Carlson P., Yang S., van Zee P. (1995). Scaling Up
Visual Programming Languages, Computer,
http://www.cs.orst.edu/~burnett/Scaling/ScalingUp.html.

Carrel-Billiard M & Akerley J. (1998). Programming with VisualAge for Java, IBM
redbook.

Chappell D. (1997). The Next Wave: Component Software Enters the Mainstream,
Rational Rose white paper,
http://www.rational.com/uml/resources/whitepaers/dynamic.jtmpl?doc_key=354.

Coad P. (1999). Java Modeling in Color with UML, http://www.oi.com.

Coad P. and Yourdon E. (1991). Object-Oriented Design, Yourdon Press.

102

Cox P.T., Giles F.R., and Pietrzykowski T. (1989). Prograph: A Step toward Liberating
the Programmer from Textual Conditioning, In: Proceedings of the 1989 IEEE Workshop
in Visual Languages, pp. 150-156.

Cox P. T. and Pietryzkowsky T. (1990). Using a Pictorial Representation to Combine
Dataflow and Object-Orientation in a Language-Independent Programming Mechanism,
In Glinert, E. P., editor, Visual Programming Environments: Paradigms and Systems.
IEEE Computer Society Press, Los Alamitos, CA.

D’Souza D. F. and Wills A.C. (1997). Objects, Components, And Frameworks with UML
– the Catalysis Approach, Addison-Wesley, Reading, Mass.
http://www.iconcomp.com/catalysis/index.html.

Drossopoulou S and Eisenbach S (1998). Towards an Operational Semantics and Proof of
Type Soundness in Java, http://www-dse.doc.ic.ac.uk/projects/slurp/pubs.html#towards.

Englander R. (1997). Developing Java Beans, O’Reilly.

Flanagan D. (1997). Java in a Nutshell, 2nd edition, O’Reilly.

Gamma E., Helm R., Johnson R. and Vlissides J. (1994). Design Patterns – Elements of
Resuable Object-Oriented Software, Addison-Wesley, Reading, MA.

Geary D. (1999). Graphic Java 2 Mastering the JFC: Swing (Sun Microsystems
Press Java Series), Prentice Hall.

Geary D. and McClellan A. L. (1996). Graphic Java: Mastering the AWT (Sunsoft
Press Java Series), Prentice Hall.

Ghezzi C., Jazayeri M. and Mandrioli D. (1991). Fundamentals of Software Engineering,
Prentice Hall.

Goldberg A., Burrentt M.M., and Lewis T. (1995). What is Visual Object-Oriented
Programming? M. Burnett, A. Goldberg & T. Lewis (Eds) Visual Object-Oriented
Programming: Concepts and Environments, Manning Publications Co., Grrenwich, pp.
21-42

Green T.R.G., Petre M. (1996). Usability Analysis of Visual Programming Environment:
A “Cognitive Dimensions” Framework, Journal of Visual Languages and Computing,
v.7, no.2, pp.131-174.

Gregory D.A., Allen R. and Garlan D. (1995). Formalizing Style to Understand
Descriptions of Software Architecture, ACM Transaction on Software Engineering and
Methodology. Vol4, No 4, pp. 319-364

103

Harmon P. (1998). Component Development Strategies, Vol. VIII, No 7,
http://www.cutter.com/itgroup.

IBM (1997). VisualAge for Java – Getting Started for OS/2 and for Windows, version
1.0.

Ibrahim R. and Szyperski C. (1998). Formalization of Component Object Model (COM)
– The COMEL Language, In 8th PhD Wrokshop, ECOOP’98.
http://www.fit.qut.edu.au/~ibrahim.

Jacobson I., Christerson M., Jonsson P. and Overgaard G. (1992). Object-Oriented
Software Engineering, A Use Case Driven Approach, ACM Press, Addison-Wesley.

Jacobson I., Griss M., and Jonsson P. (1997). Software Reuse, Architecture Process and
Organization for Business Success, ACM Press, Addison-Wesley Longman.

Kirtland M. (1997). The COM+ Programming Model Makes it Easy to Write
Components in Any Language, Microsoft Systems Journal.

Kit, E. (1995). Software Testing in the Real World: improving the process, ACM press,
Addison-Wesley.

Leach R. J. (1997). Software Reuse - method, models, and costs, McGraw-Hill.

Lewis T., Rosenstein L., Pree W., Weinand A., Gamma E., Caulder P., Andert G.,
Vlissides J. and Schmucker K. (1995). Object Oriented Application Frameworks,
Manning Publications Co.

Liu X., Chen Z, Yang H., Zedan H., and Chu W.C. (1997). A Design Framework for
System Re-engineering, In: Proceedings of Asia Pacific and International Computer
Science Conference, pp. 324-352.

Logica UK Ltd. (1995). Z Specific Formaliser User Guide v7.3.

Meyer B. (1990). Introduction to the Theory of Programming Language, Prentice Hall.

Munch M. and Schurr A (1999), Leaving the Visual Language Ghetto, Proceedings of
IEEE Symposium on Visual Languages.

Orfali R., Harkey D, and Edwards J. (1996). The Essential Distributed Objects Survival
Guide. Wiley.

104

PARTS for Java, http://www.objectshare.com.

Pelegri-Llopart E. and Cable L.P.G. (1997). How to be a Good Bean, Sun white paper.

Prograph Internationals (1993). Prograph CPX User Manuals.

Rational Software Corporation (1999). Unified Modeling Language (UML),
http://www.rational.com

Robinson M. and Vorobiev P. (1999). Swing, Manning Publications Co. (to be
published) http://manning.spindoczine.com/sbe/

Rumbaugh J., Blaha M., Remerlani W., Eddy F. and Lorensen W. (1991). Object-
Oriented Modeling and Design, Prentice Hall.

Schach S.R. (1997). Software Enginnering with Java, WCB/McGraw-Hill.

Schmidt D. Overview of CORBA, http://www.cs.wustl.edu/~schmidt/corba-overview.html.

Shaw M. and Garlan D. (1996). Software Architecture - Perspectives on an Emerging
Discipline, Prentice Hall.

Sommerville I. (1992). Software Engineering, 4th edition, Addison-Wesley Publishing
Company.

Sterling (1998). Modeling with Interface,
http://www.sterling.com/content/white_papers_article.asp?id=37&pid=57&sid=1.

Sullivan K. J., Socha J., and Marchukov M. (1997). Using Formal Methods to Reason
about Architectural Standards, In: Proceedings of 19th International Conference on
Software Engineering, Boston, USA

Sun Microsystems (1997). JavaBeans for Java Studio: Architecture and API, White
paper.

Sun Microsystems (1997). JavaBeans Specification, http://www.javasoft.com/beans/spec.html.

Sun Microsystems (1999a). Enterprise JavaBeans Specification, v1.1,
http://java.sun.com/products/ejb/docs.html.

Sun Microsystems (1999b). Java Look and Feel Design Guidelines,
http://java.sun.com/products/jlf/.

105

Szyperski C. (1996). Independently Extensible Systems – Software Engineering Potential
and Challenges, In Proceedings of the 19th Australasian Computer Science Conference,
Springer, Melbourne, Australia.

Szyperski C. (1998). Component Software, Beyond Object-Oriented Programming, ACM
Press, Addison-Wesley.

Thomas A. (1997). Enterprise JavaBeans™ – Server Component Model for Java™,
http://java.sun.com/products/ejb/white_paper.html.

Tran V., Liu D., and Hummel B. (1997). Component-based Systems Development:
Challenges and Lessons Learned, In: Proceedings of eighth IEEE International
Workshop on incorporating Computer Aided Software Engineering, pp. 452 - 462.

Weinschenk S., Jamar P., and Yeo S.C. (1997). GUI Design Essentials, John Wiley &
Sons.

Wordsworth J.B. (1992). Software Development with Z – A Practical Approach to
Formal Methods in Software Engineering, Addison-Wesley.

Yang Z. and Duddy K. (1996). CORBA: A Platform for Distributed Object Computing,
ACM Operating Systems Review, 30 (2), pp. 4-31, http://www.omg.com.

106

APPENDIX A

Design and Implementation of CSCK

This appendix illustrates the design and implementation of the prototype of component-

based visual programming environment, CSCK.

A.1 Class Diagram of the implementation

UML (unified modeling language) notation has been used for the documentation of class

diagram for the implementation. UML is the standard modeling language for visualizing,

specifying, constructing, and documenting the artifacts of a software-intensive system.

UML modeling tool, Rational Rose by Rational Software Corporation

(http://www.rational.com), has been used to draw all design diagrams.

A class diagram shows how the classes that implement a system are related. It provides a

blueprint for implementation of the system. A package is a grouping of model elements,

usually classes. Packages “own” the model elements they contain and may be nested with

one another. In designing CSCK, we have used several packages to group classes with

similar functionality together. As shown in Figure A.1, there are seven packages, namely,

views, editors, processing, system, interpreter, customizedComp, and Java Swing.

MainProg and temp are also included in the diagram for the purpose of showing the

whole picture of the system even though they are not packages. MainProg is the main

program for the system that invokes the primary window. temp is a directory used to

temporarily store the Java bytecode generated during builder processing. Now we discuss

each package in detail.

107

Figure A.1 Packages in Implementation of CSCK

The Package editor contains all classes that implement various editors as we discussed

above. Class diagram for the package is shown in Figure A.2. All of these editor classes

inherit from the Java Swing class JinternalFrame. CompoundEditor is a subclass of

ProjectEditor which has BlackBoxView (simple component visual representation),

CompoundView, and PrototypeView. Rubberband class is used to draw a rubber band

when connecting components. Most of these classes consist of Java Swing classes like

JTextArea, JLable, and JTextField.

108

Figure A.2 Class Diagram in Package editors

Classes for the visual representations for all elements are grouped into package views

shown in Figure A.3. Class BlackBoxView is for the visual representation of a simple

component and also for a source or a sink component. Class CompoundView is for

compound components, and Class PrototypeView is for a prototype component. Java

Swing class JPanel is the superclass for all the view classes.

109

Figure A.3 Class Diagram in Package views

Package system mainly contains MainFrame class (Figure A.4). Class MainFrame is for

designing the primary window. It inherits from JFrame and consists of JMenuBar,

110

JMenuItem, JDesktopPane, JPanel, ButtonGroup, CustomizedJRadioButtonMenuItem (a

subclass of JRadioButtonMenuItem), as well as ProjectEditor, Interpreter, and AboutBox.

Figure A.4 Class Diagram in Package system

The Package interpreter is shown in Figure A.5. Classes in this package are used to build

and interpret the component-based program. Class Builder is used to generate Java source

111

code using the function and trigger condition of a component and then compile it into

Java byte code and store it in directory temp. The Class Interpreter will execute the

program by calling the Java byte codes according to the semantics of the model. It is a

subclass of JinternalFrame implemented with Java Interface Runnable in order to run

this class as a separate thread. Classes SimpleCompClass and TriggerClass are abstract

classes used only as a base from which other classes inherit. Java code generated by

Class Builder for component function is a class which inherits from Class

SimpleCompClass, whereas Java code generated by Class Builder for trigger condition is

a class which inherits from Class TriggerClass. Doing so will provide a general way for

Class Interpreter to execute Java byte code for function and trigger condition.

Figure A.5 Class Diagram in Package interpreter

Packages processing (Figure A.6) and customizedComp (Figure A.7) are two rather

simple packages. Package processing provides class MyCompiler which is used to

compile a Java source code into Java byte codes, and class RunProgram can run outside

112

Java class from a running Java program. Package customizedComp contains classes

which customize some Java Swing class in order to conveniently use these Java Swing

classes.

Figure A.6 Class Diagram in Package processing

Figure A.7 Class Diagram in Package customizedComp

113

Since we use mouse to do most of the operations, most of the above classes have

implemented Java Interface MouseListener and MouseMotionListener which handle

actions such as mouse click, mouse drag, mouse press, mouse release. Interface

FocusListener is also used in some classes to manipulate focus actions.

A.2 Implementation with Java

A.2.1 Java Look & Feel and Swing

Java look and feel is the default GUI for applications created by Java Foundation Classes

(JFC). JFC includes Swing. Swing is a large set of components ranging from the very

simple, such as labels, to the very complex, such as tables, trees, and styled text

documents. These Swing classes provide good, high-level support for GUI development.

Their appearance conforms to the standards of different platforms like Windows, Unix

and Mac. Besides, all these Swing components have look and feel designs to specify.

Swing adopts the well–understood and highly advanced concepts from Java’s

predecessors in the object-oriented world. It can easily be integrated with Java

implementation. The Swing basic concepts are the same as a regular object-oriented user

interface toolkit. But Swing uses some advanced concepts like Model-view design pattern

that separates the application’s data from the data’s display, to provide a flexible and

solid foundation for creating novel GUI design (Robinson and Vorobiev, 1999).

Swing supports component-based software development. Swing classes are compatible

with JavaBeans component model. All of the associated benefits of JavaBeans, for

example, ease of use in IDEs, serialization support, and full support for event delegation

model, can be gained from Swing components.

114

Given the above features of Java Swing, it is not surprising that Java Swing has been

used to design and implement the GUI of the prototype.

A.2.2 Why Java?

We choose Java programming language to implement CSCK not only because Java

Swing is so attractive for designing GUI as we discussed above, but because Java has

offered important features (Flanagan, 1997) for the implementation of CSCK. First of all,

Java provides a rich set of classes such as Java Swing, classes for data structures like

Vector, Hashtable. Secondly, Java supports runtime compilation of code, making it easy

to implement the semantics of our general model. Thirdly, Java is a simple language, as

compared to other object-oriented programming languages such as C++. The most

important is that Java uses automatic garbage collection to deal with memory

management, and totally eliminates pointers. This would ease the development. Fourthly,

Java is platform-independent. Because Java programs are compiled to a platform-

independent byte code formats, a Java application can run on any system, as long as the

system implements the Java Virtual Machine.

A.2.3 Major Data Structure

In the implementation, class Vector in Java is frequently used for keeping track of a

number of objects. Vector implements an array of objects that grows in size as necessary.

It is very convenient for manipulating a number of objects without knowing in advance

how many there will be. Figure A.8 shows major data structure in the implementation. As

seen, class ProjectEditor maintains a Vector which manipulates a number of objects.

These objects have three kinds, BlackBoxView, CompoundView, and PrototypeView. The

number of objects depends on how many components are added into the project editor

window.

115

Each BlackBoxView maintains a Vector which keeps track of how many inports

(represented in InportView object) are added into the simple component. Furthermore,

each InportView maintains a Vector which keeps track of a number of objects including

OutportView and CompoundPortView that are connected to this inport, and at the same

time, an OutportView for BlackBoxView also maintains a Vector to keep track of

InportView or CompoundPortView that are connected to this outport.

Figure A.8 Major Data Structure in the Implementation

Each CompoundView maintains two Vectors, one is used to keep track of inports, another

is used to keep track of outports. Each inport or outport (implemented by

CompoundPortView) also has a Vector which is used to record outports or inports that are

Vector

ProjectEditor

BlackBoxView BlackBoxView CompoundView PrototypeViewVector

In
po

rt
V

ue
w

 I
np

or
tV

ue
w

In

po
rt

V
ue

w
 I

np
or

tV
ue

w

V
ec

to
r

fo
r

In
po

rt

C
om

po
un

dP
or

tV
ie

w
 C

om
po

un
dP

or
tV

ie
w

C

om
po

un
dP

or
tV

ie
w

C
om

po
un

dP
or

tV
ie

w
 C

om
po

un
dP

or
tV

ie
w

C

om
po

un
dP

or
tV

ie
w

V
ec

to
r

fo
r

In
po

rt

V
ec

to
r

fo
r

O
ut

po
rt

Vector Vector

116

connected to the inport or outport. The data structure for PrototypeView is the same as

CompoundView.

A.2.3 Data Structure and Algorithms for Builder and Interpreter

Both function and trigger are of critical importance for execution of a component-based

program. In our implementation, both are coded in Java and must therefore be compiled

before execution. This requires two steps, First, Java source code is generated

incorporating the text input by the programmer, then this code is compiled into Java byte

code. This task is accomplished by Class Builder as discussed in the last section.

In order to provide a general way for the Class interpreter to execute the byte code

generated by Class Builder, two abstract classes SimpleCompClass and TriggerClass are

used. SimpleCompClass serves as superclass of a class (Java source code generated by

the Class Builder) for each function of simple component and TriggerClass serves as a

supuerclass of a class (Java source code generated by the Class Builder) for all trigger

condition.

Figure A.9 Implementation of Class SimpleCompClass

/**
 * SimpleCompClass.java 1.0 6/26/99
 * Copyright 1999 by Baoming Song
 * This class serves as superclass for each component function
 */

package interpreter;

import views.*;
import editors.*;

public abstract class SimpleCompClass{

public abstract void copyInfo(BlackBoxView bbv);
public abstract Object function();

}

117

In SimpleCompClass, there are two abstract methods, copyInfo, and function, as shown in

Figure A.9. Since we do not know in advance how many inports a simple component has,

the arguments for the function method have to be determined dynamically. To simplify

the implementation of interpreter, in Java source code generated by the Class Builder

(Figure A.10) we use method copyInfo to copy all the information about inports in the

simple component visual representation into corresponding data fields in the class (Java

source code generated by the class Builder). Then we can use method function (without

arguments) to evaluate component function. The method function returns a Java Object.

Sample source code generated by class Builder for a component function is shown as

Figure A.10.

Figure A.10 A Sample Java Source Codes for Component Function Generated by
Builder

package temp;
import java.util.*;
import interpreter.*;
import views.*;

public class TempProjCC0C2 extends SimpleCompClass {

protected int inport0;
protected int inport1;

public void copyInfo(BlackBoxView bbv){
Vector inportsVector = bbv.getInports();
Enumeration enum=inportsVector.elements();
while(enum.hasMoreElements()){

 PortView temp = (PortView)enum.nextElement();
 String portName=temp.getPortName();

if(portName.equals("inport0"))
inport0=((Integer)(temp.getValue())).intValue();

if(portName.equals("inport1"))
inport1=((Integer)(temp.getValue())).intValue();

}
}

public Object function(){
 return new Integer(inport0*inport1);

}
}

118

Figure A.11 Implementation of Class TriggerClass

Each Trigger condition is a binary relation. This means we can use two arguments to

express trigger condition, one is the new value for the trigger, and the other is its old

value. Since the number of arguments is fixed, triggers are easy to implement. In the

Class TriggerClass, there is only one method, called condition. This method returns a

boolean value (Figure A.11). A sample of the Java source code for a trigger generated by

class Builder is shown in Figure A.12.

Figure A.12 A Sample of Java Source Codes for Trigger Condition Generated by Builder

package temp;
import java.util.*;
import interpreter.*;
import views.*;

public class TempProjCC0C0inport0 extends TriggerClass {

public boolean condition(Object oldV, Object newV){
boolean flag = false;
int x, y;
if(oldV==null) x = 0;
else

x =((Integer)oldV).intValue();
y =((Integer)newV).intValue();

flag = (x!=y);
return flag;

}
}

/**
 * TriggerClass.java 1.0 6/30/99
 * Copyright 1999 by Baoming Song
 * This class will serve as a superclass for all trigger condition
 */

package interpreter;

import views.*;
import editors.*;

public abstract class TriggerClass{

public abstract boolean condition(Object oldValue, Object newValue);

}

119

It should be noted that source code is generated only for simple components. This is

because in our model compound component or prototype component can essentially be

decomposed to simple components.

Now we discuss the algorithms used in the class Interpreter. The main algorithm used to

interpret a program according to the semantics of the model is described in the form of

pseudo code in Figure A.13. Recall that our general model has three processes to execute

a program, propagation, evaluation, and expansion. In the implementation, we use three

Vectors to manipulate and control these three processes. A while-loop is kept running. A

Thread is forced to sleep for a while in order to allow the programmer to input data if

necessary.

Figure A.13 Pseudo Code for Algorithm used in Interpreter

Vector 1 is used to store a list of simple components ready for the evaluation process.

Vector 2 is used to store a list of inports ready for the propagation process. Vector 3 is

used to store a list of prototype components for the expansion process.

Figure A.14 shows a pseudo code for the evaluation process. For each simple component

in Vector 1, we perform the evaluation process according to Definition 5.1.15. Note that

the contents of Vector 2 or Vector 3 will be added before all elements in Vector 1 are

// Keep running a the following
 While (true) {

// allows user to type input
 Try {

 Thread.sleep (100)
} catch (InterruptedException e){}
if (Vector 1 for components for evaluation is not empty)

do evaluation (pseudo code in Figure A.14)
if (Vector 2 for inports for propagation is not empty)

do propagation (pseudo code in Figure A.15)
 if (Vector 3 for prototype for expansion is not empty)

do expansion (pseudo code in Figure A.16)
}

120

removed. Figure A.15 shows a pseudo code for the propagation process according to

Definition 5.1.13. During this process, simple components are added to Vector 1 if

certain conditions are met. Figure A.16 shows a pseudo code for the expansion process

according to Definition 5.1.14. Since the expansion rule of execution changes program

structure by expanding prototype component, we need to make a copy of the structure. In

order to avoid duplication during copying, Java Class Hashtable is used.

In order to start the execution, when the user inputs data into a source component, the

inports that connect to this source component will add into Vector 2.

Figure A.14 Pseudo Code for Evaluation

Figure A.15 Pseudo Code for Propagation

For each simple component in Vector 1 for components for evaluation
Get its class name
Call corresponding function Java byte code
Set the result into outport for the component
Get a list of the inports to which this outport connects
If the component to which the inports belong is not prototype component

Add the list of inports into Vector 2 for inports for propagation
Else add the component into Vector 3 for prototype for expansion

End for loop
Remove all elements in the vector for components for evaluation

For each inport in Vector 2 for inports for propagation
If the inport is a trigger

Call trigger Java byte code
If the result is true

Add the component to which this inport belongs into Vector 1
for simple components for evaluation

Set the inport a new value from outport it connects, and then set the outport null
If the component to which the inport belongs is a visual bean (a sink component
with no outport) such as a text field

show the value of inport in the visual bean
End for loop
Remove all elements in the vector for inports for propagation

121

Figure A.16 Pseudo Code for Expansion

For each prototype in Vector 3 for prototype for expansion
Using a universal hashtable as reference, do copy structure
Expansion the corresponding compound component
Add the inport into Vector 1 for inports for propagation

End for loop
Remove all elements in the vector for prototype for expansion

