
Semantic	 Comparison	 of	 Structured	
Visual	 Dataflow	 Programs	

	
	
	
	
	
by	
	
	
	
	

Dang	 Tuan	 Anh	
	
	
	

Submitted	 in	 partial	 fulfilment	 of	 the	 requirements	
for	 the	 degree	 of	 Master	 of	 Computer	 Science	

	
	
at	
	
	

Dalhousie	 University	
Halifax,	 Nova	 Scotia	
December	 2009	

	
	
	
	
	
	
	

©	 Copyright	 by	 Dang	 Tuan	 Anh,	 2009	

ii

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “Semantic Comparison of Structured

Visual Dataflow Programs” by Dang Tuan Anh in partial fulfilment of the requirements

for the degree of Master of Computer Science.

 Dated: December 04, 2009

Supervisor: _________________________________

Readers: _________________________________

iii

DALHOUSIE UNIVERSITY

 DATE: December 04, 2009

AUTHOR: Dang Tuan Anh

TITLE: Semantic Comparison of Structured Dataflow Programs

DEPARTMENT OR SCHOOL: Computer Science

DEGREE: MCS CONVOCATION: May YEAR: 2010

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions.

 Signature of Author

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than the brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

iv

Table	 of	 Content

LIST OF TABLES... VI

LIST OF FIGURES..VII

ABSTRACT .. VIII

LIST OF ABBREVIATION AND SYMBOLS USED IX

ACKNOWLEDGEMENT ... X

CHAPTER 1: INTRODUCTION ... 1

1.1 The evolution of visual languages... 1

1.2 The use of visual tools in software engineering.. 2

1.2.1 CASE tools ... 3

1.2.2 UML.. 4

1.2.3 Other tools... 4

1.3 Visual Programming Languages? ... 6

1.3.1 Prograph.. 7

1.3.2 LabVIEW.. 8

1.3.3 VEE... 8

1.3.4 Simulink.. 9

1.4 Motivation for research ... 10

CHAPTER 2: BACKGROUND ... 12

2.1 Software development support tools for TPLs.. 12

2.2 Differencing in TPLs... 12

2.3 Differencing in DVPLs ... 19

CHAPTER 3: EQUIVALENCE OF DATA FLOW PROGRAMS 23

CHAPTER 4: COMPARISON ALGORITHM ... 28

4.1 Counting differences ... 28

4.2 The comparison algorithm .. 32

4.2.1 Further optimisation of the search .. 36

4.2.2 Practical issues .. 37

4.2.3 Correctness and performance.. 38

v

CHAPTER 5: EXPERIMENTAL RESULTS AND EVALUATION 42

5.1 Algorithm performance in deeply-nested structure programs................... 43

5.2 Using sub-graph isomorphism for methods with large number of
operations in their diagrams .. 44

CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 46

6.1 Conclusions ... 46

6.2 Future work ... 47

BIBLIOGRAPHY.. 50

APPENDIX A ... 54

APPENDIX B ... 71

vi

List	 of	 Tables	

Table 5-1. Two very large programs for experiments... 42

Table 5-2. Experiment test data... 43

Table 5-3. Testing non-equivalent methods .. 44

Table 5-4. Testing non-equivalent methods with large numbers of operations in their
cases ... 44

	

vii

List	 of	 Figures	

Figure 1-1 Hieroglyphics [1] ... 1

Figure 1-2 User Registration Data Flow Chart [4] .. 3

Figure 1-3 X-Tango animation of the quicksort algorithm [10].. 4

Figure 1-4 Visualizing the age of program code changes [10].. 5

Figure 1-5 Prograph method quicksort .. 7

Figure 1-6 A sample program of LabVIEW.. 8

Figure 1-7 A VEE program to find maximum elements in an array [23].......................... 9

Figure 1-8 A Simulink program for simulating the motion of a bouncing ball [2] 9

Figure 2-1 A simple program with one main procedure and its corresponding PDG 15

Figure 2-2 A program with two procedures and its corresponding SDG 17

Figure 2-3 Prograph comparison tool .. 20

Figure 2-4 LabVIEW VIs comparison... 21

Figure 2-5 SimDiff comparison models [50]... 22

Figure 3-1 Isomorphic graphs that violate equivalence conditions 25

Figure 4-1 What are the differences?... 28

Figure 4-2 Counting differences between operations .. 29

Figure 4-3 Directed acyclic graphs corresponding to the cases in Figure 3-1................. 30

Figure 4-4 The search tree structure. Counts of square nodes can only decrease during
search, and Counts of circular ones can only increase................................... 33

Figure 4-5 (1) Search down a path stops at a node X with no children. (2) Cut-off occurs
when C(Y) becomes 0.. 35

Figure 4-6 The value alpha(Y) used to cut off search in step 5 is inherited from node Z
via steps 2 to 4.. 36

Figure 4-7 The search tree structure. Counts of square nodes can only decrease during
search, and Counts of circular ones can only increase................................... 37

Figure 4-8 Search below the node consisting of these two cases will terminate since there
are no subgraph isomorphisms... 41

Figure 4-9 The algorithm determines that methods fact-a and fact-b are semantically
equivalent ... 41

viii

Abstract	

The diff utility is an important basic tool, providing a foundation for many of the

fundamental practices of software development, such as source code management. While

there are many file differencing tools for textual programming languages, including some

that look at more than simple textual variations, there are few for visual programming

languages. We present an algorithm for comparing programs in structured visual dataflow

languages; that is, languages in which dataflow diagrams are embedded in control

structures. Using either subgraph or maximum common subgraph isomorphism for

matching dataflow diagrams, our algorithm compares programs to determine whether

they are semantically equivalent, and if not, to discover the differences between them.

We use the visual language Prograph for illustration; however, the mechanism we are

proposing could be applied to any controlled dataflow language, such as LabVIEW.

ix

List	 of	 Abbreviation	 and	 Symbols	 used	

VL Visual Language

GUI Graph User Interface

IDE Integrated Development Environment

CASE Computer-Aided Software Engineering

UML Unified Modelling Language

VPL Visual Programming Language

DVPL Dataflow Visual Programming Language

SVPL Structured Dataflow Visual Programming Language

TPL Textual Programming Language

PDG Program Dependence Graph

SDG System Dependence Graph

PRG Program Representation Graph

VI Virtual Instruments

MCS Maximum Common Subgraph

x

Acknowledgement	

 I would like to express my deep gratefulness to Dr. Phil Cox for helping me finish

this thesis. He has always encouraged and shown much patience for my thesis research

and spent a lot of time reviewing and giving valuable suggestions from detecting very

slight writing style errors to suggesting innovative ideas. I have studied a lot since

working with him in my Master thesis for both academic research and personal

development.

Thank you to Dr. Arthur Sedgwick and Dr. Brad Lushman for being members of

the examining committee.

I would like to thank Simon Gauvin for his help on the implementation part of this

thesis.

Finally, I would like to thank my wife Yen Le for her support and encouragement

during my study.

1

Chapter	 1: Introduction	

1.1 The	 evolution	 of	 visual	 languages	

A Visual Language (VL) refers to a way of using images and diagrams for

communication purposes. VLs have been used since the dawn of human history. In

ancient times, words and images already played an important role in communication

between people. They often used cave paintings to express their thoughts in simple

sketches and drawings. The ancients also exploited images in the use of languages, such

as pictographs, ideograms, phonograms, and hieroglyphics [1]. In these languages, each

graphic symbol can be referred directly or indirectly. For example, Figure 1-1 shows an

example of ideogram to represent, “to eat” or “to drink”.

Figure 1-1 Hieroglyphics [1]

Although VLs have had a long history, they reached their turning point with the

advent of low-cost graphic computers. In 1983, with the introduction of Macintosh

computers by Apple Computer Inc., people could communicate with a computer by a

mouse, keyboard, and graphical user interface instead of a simple command-line

interface. More importantly, Macintosh computers provided an ability to integrate the use

of diagrams and images for communication. For computer users, some obvious benefits

of this innovation were that users could delete a file or folder by dragging to the trash,

rename files, or move files.

Although diagrams, such as Goldstine and von Neumann flow diagrams, PERT and

CPM Charts [1], were already being used at this time, they were mainly paper-based. As

the popularity of graphic user interfaces (GUI) for personal computers increased,

researchers began to investigate the benefits of images and diagrams in computer

software development. Unfortunately, software developers had to continue using text

languages to write complex software programs and develop GUI programming. In an

effort to resolve this shortcoming, there was great interest in exploring the direct use of

diagrams in software development. The advent of graphic computers and the lack of

2

adequate development tools led to intensive research on visual tools for software

development, such as visual software project management tools, integrated development

environments (IDEs), and visual tools for software modelling and engineering [2].

1.2 The	 use	 of	 visual	 tools	 in	 software	 engineering	

Today, the demand for software applications is increasing at an astounding rate.

They are used in many areas, including aerospace, nuclear power generation, financial

markets and so on. A virtual army of programmers, designers, and project managers are

employed in the computer industry. However, software development is an intricate

process requiring the combination of many disciplines from modelling and design to code

generation, project management, testing, deployment, change management, and beyond

[3]. In the software design phase, designers need to analyze and understand customer

requirements from purely textual descriptions. A good design plan helps developers to

understand project requirements in the coding phase. Nevertheless, not all software

requirements can be expressed efficiently in textual languages in order, for instance, to

display the relationship between database elements or draw electronic circuits.

Additionally, a software project can involve many developers for many years. Over the

years, such a project can include millions of lines of code. The enormous size of software

programs, together with a lack of well designed documentation leads to the problem that

understanding, analyzing, changing, and modifying code is extremely time-consuming

and costly.

In order to produce a reliable product at minimum cost, one approach to assist

software engineers in coping with program complexity and increase programmer

productivity is the use of visualization tools. Software visualization tools take advantage

of graphical techniques to build a visual representation of the structure and behaviour of a

program. Software structure is intricate and challenging to understand, so these

visualization tools aid both designers and programmers to understand and clarify

software products. The ultimate goal of visual tools is to aid the comprehension of

software systems and improve the productivity of the software development process.

In recent years, as the size and complexity of software projects has increased,

visualization tools have become very important for the software development process. A

3

wide variety of software visual tools supporting software development in accordance

with user needs and targets has been developed.

1.2.1 CASE	 tools	

Since the beginning of computing, one of the principal efforts to improve the

software development process has been to alleviate the intervention of the human effort

in the software development cycle. This aim is achieved by applying computer-aided

software engineering (CASE) as a visualization tool to ease the specification, design,

implementation and management of the software process. One typical example of

visualization CASE tools is VisualCase [4]. Figure 1-2 depicts a user registration process

by the flow chart diagram. CASE tools can also be used to visualize software

maintenance processes, data modelling tools, and database relationships.

Figure 1-2 User Registration Data Flow Chart [4]

4

1.2.2 UML	

Unified Modeling Language (UML) is widely accepted as a standard for the

general-purpose modeling of software systems in the field of software engineering. UML

uses a set of graphical notations to visualize all phases of software development. For

example, EJB and Java™ UML visual editing [5] supports the capacity to visualize class

diagrams in Java. Visual Paradigm SDE for Visual Studio [6] provides a set of tools to

build a visualization of database modelling, requirement modelling, and object-relation

mapping.

1.2.3 Other	 tools	

Mili and Steiner [7] discuss two software visualization tools named “Jinsight” and

“GraphViz”. Jinsight visualizes “the dynamic behaviour of Java programs” and allows

the user to visualize and analyze the performance and understandability of Java programs

through an execution view, object histogram view, or table view [8]. Graphviz displays

structure information through diagrams and graph networks [9].

Figure 1-3 X-Tango animation of the quicksort algorithm [10]

5

Diehl [11] describes StackAnalyzer, X-Tango, and SeeSoft as visualization tools

for the software development. StackAnalyzer provides the visualisations of the stack

usage of an application using call graph or control flow graph visualization to help

programmers to analyze, predict, and optimize the program [12]. X-Tango [13] is a

general purpose algorithm animation system to visualize the execution of algorithms.

Figure 1-3 depicts a process of sorting an array with the quicksort algorithm. The pivot

element is represented by a specific color, while the outline box of the elements

symbolizes the current recursive calls.

SeeSoft [14] is a visualization tool that shows the evolution of a software program

by the use of colour. Red represents the most recently updated code, while blue is the

least recently changed code. Figure 1-4 shows an example of the visual representation of

a program history.

Figure 1-4 Visualizing the age of program code changes [10]

6

1.3 Visual	 Programming	 Languages	

In this section, we give a general overview of what Visual Programming Languages

(VPLs), explain briefly how they function and give brief descriptions of some

contemporary VPLs, both general-purpose and domain-specific. Although visual tools

already play a crucial role in software development, in the coding phase, developers still

need to deal with the complexity of programs coded in textual programming languages

(TPLs). In an effort to alleviate the complexity of programming tasks, researchers have

investigated the direct use of graphics in programming tasks called “Visual

Programming” or “Graphical Programming” [15]. There has been a recent explosion of

interest in VPLs, and some visual programming systems have been remarkably successful

in both the software industry and academic research [16,17]. The main difference

between VPLs and software visualization is their intended goal: VPLs aim to make

programming tasks easier by using graphical notation to build programs, while software

visualization strives to help programmers cope with program complexity.

A VPL is a programming language that uses a wide variety of visual symbols, such

as “spatial relationship”, icons, or shading to represent the structure of a program, so that

the programmer can have a better understanding of the program he or she is building. In

VPLs, text does not play an important role except for comments, names of entities, or

variable values. A VPL program is not necessarily translated into text at any time,

including when compiling or debugging [2], as translating to text is redundant since the

VPL by itself provides all the necessary expressive power. Research have shown that for

many tasks VPLs outperform TPLs because a visual representation of program structure

helps software developers to analyze, code, debug, and manage programs [2,18].

Although some programming languages, like Visual C++ [19] or Visual J++ [20], appear

to be similar to VPLs, they are, in fact, not VPLs. Those TPLs only take advantage of

graphical techniques and visualization to ease programmer programming tasks, not to use

visual notations to construct programs directly [10]. Some examples of VPLs are

Prograph	 [21], LabVIEW [16], Simulink [22] and VEE [23].

7

1.3.1 Prograph	

Prograph is an object-oriented, dataflow VPL (DVPL) intended for general-purpose

application development [24]. The concept of dataflow programming is commonly used

in many VPLs. In dataflow programming, each program is a directed graph where the

nodes are operations and edges are datalinks representing the flow of data between

operations [25]. Figure 1-5 illustrates a Prograph program to sort an array by the

quicksort algorithm. A detailed explanation of Prograph will be provided in Chapter 3.

Figure 1-5 Prograph method quicksort

8

1.3.2 LabVIEW	

LabVIEW, a DVPL that provides libraries and a programming environment for

hardware devices, has achieved great industrial success [16]. Like Prograph, LabVIEW

can be used to program any algorithm, but the product itself is domain-specific, for

example, providing extensive support for accessing instrumentation hardware. Figure 1-6

depicts a LabVIEW program that computes the factorial of an integer. The icon “I32” at

the upper left represents the user interface control that provides the input integer, while

the constant 1 initialises the result variable. The block diagram in the centre is a “for

loop” iteration. The “for loop” variable “i” counts iterations. It begins at 0 so it will go

through the range of 0 to N-1 where N is the number of iterations.

Figure 1-6 A sample program of LabVIEW

1.3.3 VEE	

VEE is another DVPL and development environment used with data acquisition

devices, such as digital voltmeters and oscilloscopes, and source devices like arbitrary

waveform generators and power suppliers. Figure 1-7 is a VEE program to find the

maximum number in an array. The “Random_Number” function generates ten random

numbers and adds them to the “Collector-Create Array”. Then the function “max(x)”

finds the maximum value in the array and displays the “Max Value” [23].

9

Figure 1-7 A VEE program to find maximum elements in an array [23]

1.3.4 Simulink	

Simulink is a domain-specific dataflow visual programming environment for

simulating dynamic and embedded systems [22]. Figure 1-8 depicts a Simulink program

that simulates “the motion of a bouncing ball by continuously re-computing its velocity

and position” [2].

Figure 1-8 A Simulink program for simulating the motion of a bouncing ball [2]

Most VPLs that have achieved some level of industrial success are based on the

data flow model, and are either domain-specific or general purpose, and structured or un-

10

structured, where a structured DVPL (SVPL), is one in which the data flow diagrams are

acyclic, enclosed in control structures of some kind, and have the single-assignment

property. Some examples are as follows.

Although Simulink, a DVPL for simulation of physical systems, provides some

control structures, it is primarily unstructured, allowing feedback loops appropriate to its

application domain [26]. LabVIEW and VEE are structured and domain-specific,

designed for data acquisition and virtual instrument control [16,23]. Prograph is

structured and general purpose [24]. During its commercial life, Prograph CPX was used

in a range of projects in which C++ would have been the usual choice [17]. At present, to

our best knowledge, it is the only visual programming environment that has been used in

this way for industrial software development, as a replacement for traditional text-based

tools. Hence, in considering software development support tools, we have focussed on

SVPLs.

1.4 Motivation	 for	 research	

Although VPLs have been the subject of continuing research for at least the last 25

years, they, unlike their textual counterparts, have made few inroads into the world of

industrial software development and are not considered a part of mainstream software

engineering. While it has become the norm to use visual representations to specify the

architecture of software systems, visual representation of algorithms has not caught on as

a replacement for or a supplement to standard, imperative, TPLs. This lack of success is

at least partly due to the reluctance of professional developers to invest in learning about

a new technology [27]. However, unless the new technology satisfies certain criteria, the

professional developer should be wary of adopting it, as participants noted in a focus

group study conducted by Apple to determine the viability of Prograph CPX as a devel-

opment environment for Windows applications [28]. In particular, to become a viable

alternative to textual programming, a VPL should interoperate with standard textual

languages, by, for example, providing a robust, reversible translation between visual and

textual programs [29]; include modern language features such as exception handling [30];

and include visual counterparts of the many code management and analysis tools

available for textual languages, which is the focus of the work reported here.

11

One of the mainstays of many of the code management tools used by software de-

velopers is differencing, exemplified in its simplest form by the UNIX diff command

which finds the lexical differences between two text files or source programs. Among

other things, it is used, to manage modifications and rollback changes, reveal anomalies

during debugging, manage concurrent changes made by several people, and merge

changes from different versions of programs. Differencing underpins many source code

control systems such as CVS [31] and SVN [32]. Although there has been extensive

research on differencing algorithms for TPLs, a lack of good differencing tools is one of

the main obstacles preventing the popular use of VPLs for professional developers.

Here, we propose a differencing algorithm in VPLs to eliminate one of the

impediments to their industrial adoption. In Chapter 2, we discuss differencing in textual

software development and briefly review the existing differencing tools in VPLs. In

Chapter 3, we define semantic equivalence, an equivalence relation on program elements

in an SVPL, while in Chapter 4 we present an algorithm for finding semantic

equivalence, or discovering semantic differences. Experimental results and an evaluation

are discussed in Chapter 5. Finally, we make some concluding remarks and discuss future

work in Chapter 6.

12

Chapter	 2: Background	

2.1 Software	 development	 support	 tools	 for	 TPLs	

Software development support tools, such as developing tools, analyzing tools,

testing tools, debugging tools, and maintaining tools, are programs or applications

devised to ease the tasks of software developers. When the size and complexity of

software projects increases, there is a need to develop some source-code control tools to

manage the huge amount of code. For example, the purpose of testing tools is to find

software bugs when executing programs, while debugging tools assist programmers to

locate a bug in a large program. Initially, these tools were very simplistic, but they have

since become quite complex and have been incorporated into a powerful IDE. IDEs help

to increase programmer productivity and ease programming tasks. They include some

valuable features, such as, a source-code editor, a compiler, and a debugger. Some typical

commercial IDEs are Visual Studio 2008 for .NET development and Eclipse for Java.

One other indispensable integrated feature in IDEs is differencing tools. Differencing

tools locate all the differences between two files or programs and provide information

which can then be used by other source code management tools to generate a change

history. Differencing tools also allow programmers to see the history of changes between

different versions of a program made by many developers. In the next section, we present

a brief overview of differencing tools for TPLs.

2.2 Differencing	 in	 TPLs	

In TPLs, differencing tools play a vital role in finding differences between two

programs. When a software project is large and involves many software developers, the

complexity of the software program also increases. As time goes by, and new

programmers join this project to fix bugs, find discrepancies, or reveal underlying flaws

between two versions of a program, they need to analyze and understand a large amount

of code made by previous developers. This task can be very frustrating and time-

consuming. There is thus a need not only to know the changes made by other

programmers but to ease program understanding and maintenance tasks.

13

File differencing first appeared in the UNIX operating system in the early 1970s,

using an algorithm reported in Hunt and Mcllroy [33]. The seminal algorithms for the diff

command were first proposed in Miller and Myer [34,35] and Ekkonen [36]. The

traditional UNIX utility diff is designed to discover differences between text files rather

than programs. This utility is too simple to present accurate results for the differences

between two programs. Moreover, this comparison tool often produces irrelevant results;

for example, a minor difference, such as an extra space or line break can contribute sig-

nificantly to the result of a comparison, since diff looks for physical differences rather

than syntactic ones.

In response to these limitations, many syntactic diff algorithms have been

developed that build syntax trees representing the structure of programs. Comparing two

programs is equivalent to comparing their trees [37]. For instance, Cdiff uses a tree-

matching algorithm to compare syntactic differences between two programs in the C

language [38]. Syntactic algorithms can more accurately locate differences, such that

extra spaces or line breaks can be eliminated. However, syntactic comparison utilities

also have a critical shortcoming: they cannot find the semantic differences between two

programs because the comparison is entirely based on the program text and syntactic

structure [37]. One syntactic difference between two programs can result in many

semantic differences which a syntactic differencing algorithm cannot locate.

To overcome this limitation, various comparison methods have been proposed that

build structural representations of programs, allowing semantics to be taken into account.

Two such representations are program dependence graphs (PDGs) and system

dependence graphs (SDGs) which include both control and data flow information.

Binkley [39] presents an empirical study to justify the helpfulness and usefulness of

semantic differencing algorithms for the tasks of program comprehension. Semantic

differencing tools based on applying graph isomorphism to subgraphs have achieved

some level of success [40,41]. In the next paragraph, we will present some definitions of

PDGs and SDGs as discussed in Horwitz [42].

The PDG of a program is a directed graph the vertices of which represent the

assignment statements and the predicate statements, such as “if-else” or “while”. Each

PDG starts with an “ENTRY” vertex representing entrance into the procedure. The edges

14

between vertices represent either control or data dependence. Control dependence

edges, which are labelled either true or false, represent the conditional structures of

programs in TPLs, such as if-else or while structures. The source of a control dependence

edge can be the ENTRY vertex or a predicate vertex containing a condition to be tested,

while the destination of a control dependence edge can be an assignment statement that is

dependent on the source. Figure 2-1 depicts a program for computing the factorial of 10,

together with the PDG of the program. In the diagram, the bold arrow edge from the

vertex “while i<10” to the vertex “fact=fact*i” is a control dependence edge, indicating

that the condition “while i<10” determines whether or not the assignment statement

“fact=fact*i” is executed.

Data dependence edges include flow dependence edges and def-order

dependence edges. The flow dependence edges represent the flow of values through a

program. There is a flow dependence edge from vertex v to vertex w if:

• v defines variable x

• w uses variable x

• There is no execution path from v to w passing through a vertex that defines x.

There are two sub-types of flow dependence edges: loop independent and loop

carried edges. A flow dependence edge from v to w is carried by a loop L if:

• There is an execution path from v to w that includes a flow dependence edge

from a statement to the predicate statement of loop L.

• The statements corresponding to v and w are in the body of the loop L.

For example, in the diagram of Figure 2-1,”i= i+1” defines the value of i, while

“fact= fact*i” uses the value of i; both statements are enclosed in the loop “while i<=10”,

and there is a flow dependence edge from “i=i+1” to the predicate “while i<10”; thus,

there is a loop carried edge from “i=i+1” to “fact=fact*i”.

In contrast, if there is no flow dependence edge to the predicate statement, the data

dependence edge is called loop independent. In the diagram of Figure 2-1, statement

“fact=1” defines the variable fact, while “fact=fact*i” uses the variable fact and there is

no flow dependence edge from w or v to any predicate statement. Hence, there is a loop

independence edge from “fact=1” to “fact=fact*i”.

15

Def-order dependence edges exist to guarantee that the PDG of each program is

unique and the PDGs of two different programs are not isomorphic. In a program, there is

a def-order dependence edge from v to w if:

• Both v and w define the same variable x and are in the same branch of a

conditional statement.

• There are flow dependence edges from both v and w to a vertex s.

For example, in the diagram of Figure 2-1, both “i=2” and “i=i+1” define the value

of i and there are flow dependence edges from each of them to “while i<10”, so there is a

def-order dependence edge from “i=2” to “i=i+1”.
void Factorial10()
{

fact=1;
i=2;
while (i< 10)
{

fact = fact * i;
i=i+1;

}
}

Figure 2-1 A simple program with one main procedure and its corresponding PDG

An SDG is a graph consisting of all the PDGs of a program, including one main

procedure and other secondary procedures. Figure 2-2 depicts a program with two

procedures, together with the SDG of the program including the two PDGs of the main

procedure and the Factorial procedure. The white nodes belong to the PDG of the main

fact=1 i=2

fact=fact*i

while(i<10)

i=i+1

ENTRY

FinalUse(i) FinalUse(i)

T T T T T

T
T

Control dependence edge
Loop independence edge
Loop carried dependence edge
Def-order dependence edge

16

procedure, while the black nodes represent the PDG of the Factorial procedure. The grey

nodes are introduced to represent the passing of parameters between the PDG containing

the call and the PDG of the corresponding procedure. Note that the ENTRY vertex of the

PDG of a procedure now becomes the ENTER vertex, plus the procedure name.

The SDG includes two new vertices called formal-in (formal parameters inputs)

and formal-out (formal parameters outputs) vertices, which are control dependent on the

Enter vertex of the procedure, as well as new vertices called actual-in (actual parameter

inputs) and actual-out (actual parameters outputs) vertices, which are control dependent

on a call vertex representing a procedure call.

To connect the PDGs of a program to create its SDG, three new kinds of edges are

established: call edge connects a call vertex to the corresponding procedure definition

site; parameter-in edges connect between actual-in and formal-in; and parameter-out

edges connect between formal-out and actual-out. In addition, SDGs include a new kind

of edge called summary edges which connect some actual-in vertices and actual-out

vertices when the values of actual-in vertices may potentially affect the values of the

actual-out vertices. In the diagram of Figure 2-2, the four vertices: “xln:=x”, “rln:=r1”,

“xln:=y”, and “rln:=r2”are actual-in vertices, while “r1:= rOut” and “r2:=rOut” are

actual-out vertices. The two new vertices “x:=xln” and “r:= rln” are formal-in vertices,

while “rOut := r” is a formal-out vertex. There are also two summary edges from

“xln:=x” to “r1:=rOut” and from “xln:=y” to “r2:=rOut” because the values of x and y

affect the output of the function. Also, the actual-in vertices and the formal-in vertices are

connected by parameter-in edges, and there are two parameter-out edges from the formal-

out vertex “rOut:=r” to two actual-out vertices “r1:=rOut” and “r2:=rOut”.

17

void main()
{

x = 10;
y = 20;
Factorial(x,r1);
Factorial(y,r2);
Print (r1);
Print (r2);

}

void Factorial(int x, int r)
{

r = 1;
i = 2;
while (i<=x){

r = r * i;
i=i+1;

}
}

Figure 2-2 A program with two procedures and its corresponding SDG

These graphs capture some of the semantic properties of programs, and, together

with a technique called slicing, can be used to find semantic differences between

programs [43]. A slice of a program with respect to some criterion is the set of all

r=1 i=2

r=r*i

while(i<=x)

i=i+1

Enter Factorial

FinalUse(i) FinalUse(r)

Enter main

Call Factorial(x,r1)

y=20

print(r1)

xln:=x r1:= rOut

rln:=r1

x:=rln

r:=rln

print(r2)

Call Factorial(y,r2)

x=10
TTT

T T

T

TT

T
T

T
T T T T

T T

xln:=y r2:= rOut

rln:=r2

x:=rln

r:=rlnT
T

rOut:=r
T

T T
TT

Control dependence edge
Loop independence edge
Loop carried dependence edge
Def-order dependence edge

 Summary edge
Call, parameter-in, parameter-out

T T

18

statements that satisfy the criterion. For example, a criterion might be specified as a

subset of the program variables, in which case the slice would be the set of all statements

that could affect the value of any of these variables. Slices can be categorized as: static or

dynamic slice, backward or forward, and interprocedural or intraprocedural. A static slice

is computed without considering the program inputs, while a dynamic slice is calculated

with respect to a specific test case. A backward slice is a program slice the statements of

which are discovered by a backward traversal of PDGs starting at the statements affected

by the slicing criterion and a forward slice is similar to a backward slice, but the

statements are determined in the forward direction starting at the statements affected by

the slicing criterion. Finally, an intraprocedural consists of statements from only one

procedure and is computed from the corresponding PDG, while an interprocedural slice

consists of statements from several procedures and is computed from the SDG derived

from the program which includes these procedures. PDGs, SDGs and program slicing are

used widely in many applications, such as program debugging, program differencing,

program integration, software maintenance, and software testing. Various slicing

techniques are discussed in Tip [43] and Xu et al. [44]. Here, we focus on the use of these

techniques for finding semantic differences.

The use of PDGs and graph isomorphism to detect semantic differences has been

intensively researched. Horwitz et al. [45] state that if two PDGs of two programs are

isomorphic, the programs are strongly equivalent. Strong equivalence means that with the

same inputs, two programs will produce the same outputs.

Yang et al. [46] propose the Sequence-Congruence Algorithm using program

representation graphs (PRGs), a variant of PDGs in which extra variables are introduced

to obtain the single assignment property, for discovering program components that have

identical execution behaviours. This algorithm will detect larger equivalence classes than

those discovered by comparing slices.

Horwitz [42] proposes three algorithms to calculate both semantic and textual

differences. This technique uses PRGs and a partitioning algorithm to separate program

components into partitions so that two program components will produce equivalent

behaviours, if they are in the same partition. These algorithms have been proved to be

19

more accurate than the algorithms using program slicing because they deal with smaller

components of code than the algorithm using program slicing [43].

Horwitz et al. [45] and Binkley et al. [48] present a technique using PRGs to

determine semantic differences for integrating two versions of a program based on

comparing their intraprocedural slices for the program integration algorithm. The

algorithm integrates two modified versions A, B from a program Base by merging their

PDGs with respect to their semantic differences.

Binkley [49] proposes two algorithms using PDGs and SDGs to reduce the cost

regression testing. The cost of regression testing between two versions of programs can

be reduced by detecting the semantic differences and applying incremental regression

testing. This paper also provides an empirical study to support that semantic difference

can be used as an aid for detecting errors during debugging and regression testing.

Anderson and Teitelbaum [41] present CodeSurfer, one of the most advanced

commercial analysis tools for detecting flaws in software programs based on the

dependence–graph representation of a program. CodeSurfer uses PDGs, SDGs and

program slicing to provide a graph library for accessing to and querying on SDGs for the

purpose of software investigation and maintenance, for example, finding the dependency

between two selected statements or locating where a variable was assigned its value.

2.3 Differencing	 in	 DVPLs	

One important improvement of semantic differencing tools over syntactic

differencing tools in TPLs is that the differences are defined based on program input-

output behaviours rather than syntactic changes [40]. From the perspective of structure

reflecting semantics, DVPLs have an inherent advantage over TPLs. To apply semantic

differencing techniques to programs written in the standard imperative TPLs on which

the software industry relies, the graphs that represent the semantics must first be

constructed as described above. SVPLs are functional, however, so their semantics, like

those of a functional language, are closely aligned with their syntax, a dataflow graph at

the lowest level [25]. Hence no construction phase is necessary: to compare DVPL

programs at the lowest level, we need only compare dataflow graphs. Differencing tools

are available for Prograph, LabVIEW and Simulink.

20

The Windows version of Prograph provides a simple file comparison tool.

However, the results show only some physical information, such as names, positions, in-

arities, out-arities, and method types. As an illustration, Figure 2-3 shows a comparison

between Prograph methods. The two windows on the top show the methods for

evaluation as highlighted, while the two windows on the bottom show the differences

between them. It is clear that these two methods have different names, positions, and in-

arity. This comparison produces only superficial syntactic differences, and does not

provide any useful information about the structural (and therefore semantic) differences

between dataflow diagrams.

Figure 2-3 Prograph comparison tool

LabVIEW provides a graphical comparison tool to manage different versions of

Virtual Instruments (VIs). This tool compares two VIs and shows the differences between

them by looking for a maximal pair of isomorphic subgraphs. However, it matches

vertices only if they are syntactically identical, ignoring semantic equivalence that might

21

be determined by comparing the diagrams that implement the vertices. Hence, although it

is more sophisticated than the mechanism provided by Prograph, it is still essentially a

syntactic rather than semantic tool [16]. When the two VIs in Figure 2-4 are selected for

comparison, LabVIEW starts finding a list of differences. Figure 2-4 shows a list of

differences and their descriptions between two VIs.

Figure 2-4 LabVIEW VIs comparison

The first box lists the differences, while the second shows the details of each

difference. When we click on the “show difference” button, the selected difference detail

will be shown graphically. The diagrams of the two VIs are displayed side-by-side and

the items in the diagrams corresponding to the difference selected in the “Difference”

panel are outlined with circles as illustrated in the figure.

SimDiff [50], a model comparison tool for Simulink has functionality similar to

that of the LabVIEW utility, providing a single-level syntactic match between data flow

graphs. It provides a graphical display of differences between two Simulink models,

which can be additions, updates, deletions, and so on. Each type of change is highlighted

in a specific colour. Figure 2-5 depicts an example in which two Simulink models are

22

compared. SimDiff detects both cosmetic changes, for example, a simple layout change

of the two icons “Random aircraft motion” in the left of both diagrams, and syntactic

changes, for example, the kind of changes, such as inserts, deletes, updates that must be

made to transform the icon “Filter1” to the icon “Filter2”.

Figure 2-5 SimDiff comparison models [50]

Although differencing tools already play a role to some extent in VPLs, the existing

ones, described above, are quite primitive compared with those that are available for

TPLs. In the following chapters, we present a definition of equivalence for SVPLs and an

algorithm for comparing two visual dataflow programs. The relationships between

“strong equivalence”, “semantic difference” and Horwitz’s [42] algorithm, discussed

above, are analogous to the relationships between our definition of equivalence for

SVPLs, our notion of semantic difference, and the algorithm for semantic comparison of

SVPL programs.

23

Chapter	 3: Equivalence	 of	 data	 flow	 programs	

We use Prograph as the sample language on which to base our discussion of com-

parison in SVPLs. Although we assume the reader is familiar with Prograph, we will

briefly review the example in Figure 1-5 in order to introduce some notation and

terminology. A detailed description of Prograph can be found in [24].

In Prograph, a program is a set of methods together with a set of persistents, which

are globally accessible storage locations. A persistent always has an associated value. The

initial value of a persistent is called its static value. A method in Prograph consists of a

sequence of cases, each of which is a data flow diagram of operations connected by

datalinks. For example, the two cases of a method quicksort are shown on the top of

Figure 1-5. Every operation has a type, which is one of input bar, output bar, primitive,

match, constant, persistent or defined. A defined operation can be a call or a local. Each

case has exactly one input bar, usually adorned with little circles denoting roots (data

sources), and exactly one output bar, adorned with terminals (data sinks), which respec-

tively pass values into and out of the diagram. In the first case of quicksort there is a

match operation, named (), which tests the value flowing into it from the input bar, and a

constant () which passes its value to the output bar. In the second case of quicksort, de-

tach-l, attach-l, and (join) are primitive operations, which invoke built-in functions; the

two quicksort operations are calls, which initiate executions of the quicksort method;

and partition is a local operation which represents a sequence of cases, in the two

windows at the bottom of the figure.

Each operation has a sequence of terminals along the top, where data flows in, and

a sequence of roots along the bottom where results flow out. Each terminal and root has a

type, which can be simple, list or loop. All terminals and roots in the example are simple,

except for the roots and the rightmost terminal of the partition operation, which are of

type list. Each operation also has a control associated with it. In Figure 1-5, the match ()

in the first case of quicksort, and the primitive > in the first case of partition both have

the control next-case-on-failure , while all other operations have the control continue-

on-success, which has no visual representation. When quicksort is invoked, its first case

is attempted. If the incoming value is the empty list, the match succeeds, the empty list is

24

passed to the output bar and execution of quicksort concludes. Otherwise, the first case

is abandoned, and the second case tried. The head is removed from the list, and the tail

partitioned into elements that are less than the head, and those that are not. The two lists

are then sorted, and the resulting sorted list assembled and passed to the output bar.

The only operation type not represented in Figure 1-5 is persistent. A persistent

operation refers to a persistent by name, and may have one at most one terminal, and at

most one root for, respectively, setting and getting the value of the associated persistent.

The example also does not include a synchro, which is a link of the form

from one operation to another that enforces order of execution, an example of which can

be found in Figure 3-1.

To streamline the definitions below, we introduce some notation as follows. If P is

a program, opers(P) denotes the set of all operations occurring in P. If C is a case,

opers(C) denotes the set of operations that are the nodes of the data flow diagram of C. If

M is an operation, terminal or root, type(M) denotes the type of M.

If M is a call, ref(M) denotes the sequence of cases of the corresponding method. If

M is a local, ref(M) denotes its sequence of cases. If M is a simple or persistent opera-

tion, ref(M) denotes its name. Note that input and output bars behave like primitives in

the sense that they invoke built-in functions that perform common tasks; so, for the pur-

poses of the definition that follows, we can assume that all input bars have the same

name, and all output bars have the same name.

If M is an operation, then roots(M), terms(M) and arity(M) denote, respectively,

the sequence of roots of M, the sequence of terminals of M, and the pair of integers

(|terms(M)|,|roots(M)|).

 If X is a sequence, Xi denotes its ith element.

Definition 1: If P is a program and ≡ is an equivalence relation on opers(P), then ≡ is

called a semantic equivalence iff ∀B,C ∈ opers(P), if B ≡ C then

(1) arity(B) = arity(C), and

for each i (1 ≤ i ≤ |terms(B)|), type(terms(B)i) = type(terms(C)i), and

for each i (1 ≤ i ≤ |roots(B)|), type(roots(B)i = type(roots(C)i).

(2) B and C have the same control.

(3) 3.1 type(B) = type(C), and

25

 3.2 if B is simple then ref(B) = ref(C)

 3.3 else |ref(B)| = |ref(C)|, and ∀i (1 ≤ i ≤ |ref(B)|), there is

a bijection f: opers(ref(B)i) → opers(ref(C) i) such that

3.3.1. ∀A∈ opers(ref(B)i), A ≡ f(A), and

3.3.2. ∀D,E ∈ oper(ref(B)i):

(a) if there is a datalink from roots(D)j to terms(E)k for some j and k

then there is a datalink from roots(f(D))j to terms(f(E))k

(b) if there is a synchro from D to E

then there is a synchro from f(D) to f(E).

Two operations M1 and M2 in a program P are said to be semantically equivalent iff

there exists a semantic equivalence on opers(P) such that M1≡M2.

Figure 3-1 Isomorphic graphs that violate equivalence conditions

Semantic equivalence classifies operations according to what they compute. For

simple operations, this is easily determined, and depends only on the names of the op-

erations. Functionality of a defined operation is determined by the structure of the

sequence of cases to which it corresponds. The bijection between data flow diagrams

defined in 3.3 is a more constrained form of graph isomorphism. For example, condition

3.3.2(a) requires that datalinks not only connect corresponding operations in two graphs

as required for isomorphism, but also connect corresponding terminals and roots on those

operations. So although the two graphs in Figure 3-1 are isomorphic, they violate several

26

of these extra conditions: specifically, the roots of detach-l are connected to the terminals

of div in a different order, violating 3.3.2(a); the () operations have different controls,

violating 2; the operations div and div have different types, violating 3.1, and different

arities, violating 1; the show and display operations have different references, violating

3.2; and the terminals of show and display have different types, violating 1.

As noted above, the semantics of structured data flow programs, like the semantics

of functional programs and unlike those of imperative languages, is closely aligned with

the syntax. Hence, although the above definition of semantic equivalence appears to be

purely syntactic, it captures the notion of identical input/output behaviour, as does

semantic equivalence of textual programs [40]. Specifically, the relationship between

semantic equivalence and the execution functions of Prograph program elements (defined

in [17]) is characterised as follows. If P is a program A, B ∈ opers(P) and arity(A) =

arity(B) = (m,k), then A and B are semantically equivalent iff fA(w) = fB(w) for every m-

tuple w of values, where fA and fB are the execution functions of A and B, respectively.

While it can be useful to compare two operations in one program, programmers

frequently want to compare two different versions of a program. Accordingly, we need to

extend the definition of semantic equivalence. First, we note that if the two programs we

wish to compare have disjoint name spaces, and we simply combine the two programs

into one, the above relationship between semantic equivalence and Prograph execution

functions will still hold in the absence of persistents. If persistents are involved, however,

we need to ensure that there is a one-to-one correspondence between appropriate subsets

of the persistents of the two programs. Accordingly, we extend Definition 1, obtaining

the following definition, in which pers(P) denotes the set of persistents of a program P,

and value(p) and name(p) denote static value and name of a persistent p.

Definition 2: If P1 and P2 are two programs, which we can assume without loss of

generality to have no names in common, A ∈ opers(P1) and B ∈ opers(P2), then A in P1

is semantically equivalent to B in P2, denoted A[P1] ≡ B[P2] iff for some V1∈pers(P1) and

V2∈pers(P2), there is a bijection g:V1→V2 such that ∀X∈V1, value(X) = value(g(X))

and A≡B, where

• ≡ is a semantic equivalence relation on opers(P'),

• P' is the program obtained by combining P1 and P2', and

27

• P2' is obtained by renaming persistent operations in P2 as follows:

if A is a persistent operation in P2 and ref(A) = G for some G∈pers(P2)

then rename A to name(g(G)) iff G∈V2.

Note that the relationship between semantic equivalence and Prograph execution

functions also holds for this extended definition of semantic equivalence.

28

Chapter	 4: Comparison	 algorithm	

In this section, we present and discuss an algorithm, that determines whether two

methods in two programs are semantically equivalent, and if not, finds differences

between them. Note that, although Definition 1 defines semantic equivalence for

operations, it embodies as a by-product, the definition of semantic equivalence for

methods.

Figure 4-1 What are the differences?

The algorithm uses depth-first search to traverse the two programs, guided by

heuristics based on estimates of the numbers of differences between the items being

compared. We say “estimates”, because there may be more than one way to account for

the differences between two programs. For example, we might decide that the difference

between the two operations in Figure 4-1 resulted from changing the types of the second

and third terminals. Alternatively, we might conclude that the difference arose from

dragging the second terminal to the right of the third. Although this ambiguity might be

resolved by, for example, looking to see what roots the terminals are connected to, it is

generally not possible to provide a precise account of semantic differences [40].

4.1 Counting	 differences	

To count differences, we define two functions, Count and Local. Local applies to

pairs of operations, methods or cases, as well as to subgraph isomorphisms between

cases, producing an estimate of the number differences which can be observed locally,

that is, by examining only the structure of its argument. Count applies to isomorphisms,

and to pairs of operations or methods, producing a count that includes differences

contributed by other parts of the program.

Operations: Local((A,B)), the number of differences between two operations A and B, is

computed according to conditions 1, 2, 3.1, and 3.2 of Definition 1. In view of the

bijection required by Definition 2, however, condition 3.2 is not applied to persistents,

29

which are discussed later. To illustrate, consider the two operations in Figure 4-2. The

numbers of roots of these operations differ by 1, violating 1; their first terminals have

different types, as do their second terminals, violating 1; and the operations have different

controls and types, violating 2 and 3.1. Hence, in this example Local is 5. Note that we

have chosen not to compare types of roots (or terminals) if the numbers of roots (or

terminals) differ.

Figure 4-2 Counting differences between operations

Comparing methods: If M is a method, we will use |M| as an abbreviation for |ref(M)|.

When two methods M1 and M2 are compared, the local difference count is computed as:

 Local((M1,M2)) = ||M1|-|M2||

and the total difference count as:

 Count((M1,M2)) = sum{Count(C1i,C2i) | 1≤i≤n,

C1i and C2i are the ith cases of M1 and M2,

and n = min(|M1|,|M2|}

+ Local((M1,M2))

where Count for pairs of cases is computed as discussed below. Note that we have

assumed that if one method has more cases than the other, then we should match cases in

sequence, starting at the beginning, and treat the extra cases at the end of the longer

sequence as “differences”, that is, items that have been added, and do not correspond

with anything in the smaller sequence. This is an arbitrary choice, but is cheap to

compute compared to alternatives involving a search for the best match.

Cases and isomorphisms: Comparing two cases C1 and C2 is somewhat more

complicated. First, each case is considered as a directed acyclic graph where the vertices

are the operations, and there is an edge from A to B iff there is a datalink or a synchro

from A to B. See, for example, the graphs in Figure 4-3. The set S(C1,C2) of subgraph

isomorphisms between the two graphs is computed [8], and for each function f in this set,

several counts are computed, according to conditions in Definition 1, as follows. Note

that because of their special status as transmitters of values into and out of a case, the

30

input and output bars of one case must be mapped to the input and output bars of the

other. Hence S(C1, C2) excludes any function which violates this condition.

Figure 4-3 Directed acyclic graphs corresponding to the cases in Figure 3-1

Condition 3.3 requires a bijection between the cases, but although f∈S(C1,C2) is

injective, it is not necessarily surjective. A measure of the extent to which f is not

surjective is provided by

xoCount(f) = ||opers(C2)|-|opers(C1)||

the number of extra operations in the larger case.

Condition 3.3.2(a) requires that the bijection preserves each datalink in C1. The

number of mismatched datalinks, dCount, is computed by counting the terminals in C1

which have datalinks attached that comply with the condition, and subtracting this

number from the total number of terminals in C1.

dCount(f) = |{ T | T is a terminal of some A∈opers(C1)}|

− |{ T | for some A∈opers(C1) and some i,

T = terms(A)i, |terms(A)| = |terms(f(A))| and

either there is no datalink

attached to T and no datalink

attached to terms(f(A))i

or for some B∈opers(C1),

|roots(B)|=|roots(f(B))|, and

for some j there are datalinks from roots(B)j to T and

from roots(f(B))j to terms(A)i }|

detach-l ()

div show

detach-l ()

div display

31

The computation of dCount considers all the datalinks in C1 and any datalink in C2

attached to a terminal of some operation B such that B=f(A) for some operation A of C1.

However, we need to account for the remaining datalinks in C2, which are counted as

follows:

xdCount(f) = |{T | T is a terminal of some

A∈opers(C2)−{ f(B) | B∈opers(C1)}

and there is a datalink attached to A }|

Finally, by condition 3.3.2(b), it is necessary to count mismatched synchros,

accomplished as the formula as follows:

xsCount(f) = number of synchros in C1

+ number of synchros in C2

− 2|{ A | A,B∈opers(C1) and

there is a synchro from A to B

and a synchro from f(A) to f(B) }|

Using these functions, a count of the local differences between cases that arise from

subgraph isomorphism f is calculated as follows:

Local(f) = sum{Count((A,f(A))) | A∈opers(C1)}

+ xoCount(f) + dCount(f)

+ xdCount(f) + xsCount(f)

and the total difference count is computed as:

Count(f) = Local(f)

+ sum{ Count(ref(A),ref(f(A))) | A∈opers(C1) and both A

 and f(A) are defined }

+ sum{ pCount(ref(A),ref(f(A))) | A∈opers(C1) and both A

 and f(A) are persistent }

The function pCount occurring in the last expression, cannot be described in the

same neat declarative fashion as the others since it deals with persistents, the non-

functional feature of Prograph, similar to non-functional features frequently found in

other functional languages. According to Definition 2, two persistent operations are the

same if the persistents they refer to are related by a bijection. This bijection, however, is

32

not known in advance, and must be computed by the algorithm on the fly, as discussed

below.

Finally, the local and total difference counts for the cases C1 and C2 are computed

as follows:

€

Local((C1,C2)) =

1+ ||opers(C1) | − |opers(C2) ||
 + | no. of datalinks in C1 - no. of datalinks in C2 |
 + | no. of synchros in C1 - no. of synchros in C2 |
 if S(C1,C2) = ∅
∞ otherwise

⎧

⎨

⎪
⎪ ⎪

⎩

⎪
⎪
⎪

 Count((C1, C2)) = min({ Count(f) | f ∈ S(C1, C2) } ∪ {Local((C1, C2))})

Note that if there are no isomorphisms between the cases, there is no reasonable

way to compare them in detail, so we have chosen a formula which gives a rough

estimate of the difference in size, and is cheap to compute. The 1 in this formula is

necessary to ensure correctness (Section 4.2.3).

4.2 The	 comparison	 algorithm	

Since the structure of the comparison algorithm is a standard depth-first search, we

will describe it informally first, concentrating instead on its unique features and provide a

listing later (see Appendix A). For simplicity, we will assume that the programs being

examined have no persistents, and will discuss later how they are dealt with. Also, since

local operations can be replaced by operations that call methods, we treat them as such.

The algorithm traverses a search tree, each vertex of which is either a pair of

methods, a pair of cases, or an isomorphism between cases. We refer to these as method

nodes, case nodes and isomorphism nodes, respectively, indicated by M, C and I in

Figure 4-4, which illustrates the structure of a search tree. The pair of methods or cases in

a node indicates program elements to be compared, while the structure of the sub-tree

descending from a node results from propagating this comparison through the calling

structure of the program, as required by the definitions of the counting functions above.

33

Figure 4-4 The search tree structure. Counts of square nodes can only decrease during

search, and Counts of circular ones can only increase

In general, the children of a method node are the case nodes (C11,C21),…,(C1n,C2n)

where n=min(|M1|,|M2|) and for each i, C1i and C2i are the ith cases of M1 and M2.

However, if the method node is a descendent of another method node consisting of the

same pair of methods, then it has no children. The children of a case node (C1,C2) are the

nodes consisting of the functions in S(C1,C2), so if there are no isomorphisms between

the two cases, the case node has no children. The children of an isomorphism node f are

the method nodes of the form (ref(A),ref(f(A))) where A is a defined operation in the

domain of f and ref(f(A)) is also defined. The isomorphism node will have no children if

there is no defined operation A in the domain of f such that ref(f(A)) is defined. Figure 4-

4 shows the structure of a search tree.

The algorithm applies depth-first, left-to-right search to the search tree, guided by

heuristics based on estimates of the number of differences between items being

compared, to compute the Count value for the root node, and find, for each case node it

visits, the child (isomorphism) node that minimises the number of differences between

the cases.

M

C

I I

C

I I I

M M M M M

C

I

M M M

C C CC

34

As search proceeds, the Count value for each node is incrementally computed as

the search tree below it is explored. The Count value of a case node is the minimum of

the Count values of its child nodes, while the Count value of each of the other nodes is

its Local value, plus the sum of the Counts of its children plus their local differences.

Hence the Counts of case nodes can only decrease during search while the Counts of

other nodes can only increase. We exploit this fact to reduce the number of nodes visited

by a technique similar to alpha-beta pruning [52].

When a node X is visited, three associated values are initialised, as follows.

As described below, these values change as the search proceeds in such a way that,

for each node X that is visited, the value of C(X) tends towards Count(X). As soon as

done(X) becomes true, further search in the subtree rooted at X is abandoned to avoid

exploring parts of the search tree that cannot affect the value of C that will be computed

for the root.

If node Y is the parent of a node X, and done(X) is assigned, or updated to, true,

then the values associated with Y are updated as follows.

if (Y is a method or isomorphism node)

1. then C(Y) = C(Y)+C(X)

2. else C(Y) = min(C(Y),C(X)) ;

if (done(Z) = true for every child Z of Y)

3. then done(Y) = true ;

if (Y is a case node and C(Y)=0)

4. then done(Y) = true ;

if (Y is a case node)

5. then alpha(Y) = min(alpha(Y),C(Y));

if (Y is a method or isomorphism node and C(Y) ≥ alpha(Y))

6. then done(Y) = true ;

35

Figure 4-5 illustrates two conditions under which search terminates. In this and

following figures, a node is drawn black, grey or white to indicate, respectively, that it

has been visited, will not be visited because of cut-off, or may yet be visited as search

proceeds. In this figure, the isomorphism node labelled X has no children, so done is set

to true (line 3), terminating search below this node. Its C value remains 0. The C value

of its parent node Y set to 0 (line 2), and its done value to true (line 4), terminating

search below Y, and cutting off the grey-shaded parts of the tree.

Figure 4-5 (1) Search down a path stops at a node X with no children. (2) Cut-off occurs

when C(Y) becomes 0

The value used for determining when to terminate search beneath a method or

isomorphism node Y, is the minimum value of C(Z) among all case-node ancestors of Y.

This is illustrated in Figure 4-6. In this figure, the value of alpha(Y) is inherited from

node Z in steps 2 to 4. When the search below node X terminates, update of the values

associated with node Y is triggered, and because the updated value of C(Y) is greater

than alpha(Y), search below Y is terminated (line 6).

M

C

I

C

I I I

M M M

I

No children so
done = true (initialisation)
C = 0 (initialisation)

M

C

1

C = 0 (line 2)
done = true (line 4)

2

X

Y

36

Figure 4-6 The value alpha(Y) used to cut off search in step 5 is inherited from node Z via

steps 2 to 4

4.2.1 Further	 optimisation	 of	 the	 search	

Clearly, if search below a node will be cut off, the sooner this can be discovered the

better. Hence, since search below a case node X will stop as soon as the value of C(X) is

reduced to 0, the children of X should be visited in order of ascending value of Local,

assuming that nodes with lower Local values will have lower Count values.

Similarly, the search below an isomorphism or method node X will be cut off as

soon as C(X) exceeds alpha(X). Therefore, the children of X should be visited in order

of decreasing Local value, so that the value of C(X) is increased as quickly as possible.

Note that to achieve the second of these two optimisations, when an isomorphism

node X is visited, Local must be calculated for each of its children so they can be visited

in the required order. This leads to a third optimisation. A variable K is initialised to

Local(X), and incremented by each Local value as it is computed. After each addition, if

K is equal to or greater than alpha(X), C(X) is set to K, and done(X) is set to true,

M

C

I

C

I I

M

I

M

C

Y

M

CZ

M

I

X

C = 10 (line 2)
alpha = 10 (line 5)

1

C = 5 (line 1)
alpha = 10 (initialisation)

2

C = 8 (line 1)
alpha = 10 (initialisation)

3

C = 12 (line 2)
alpha = 10 (line 5)

4

C = 15 (line 1)
alpha = 10 (initialisation)
done = true (line 6)

5

M

37

terminating the search below X. For example, regardless of the order in which Local

values are computed for the children of the isomorphism node in Figure 4-7, search

below the isomorphism node will terminate when values have been determined for at

most two of the method nodes, cutting off search below any of the children.

Figure 4-7 The search tree structure. Counts of square nodes can only decrease during

search, and Counts of circular ones can only increase

4.2.2 Practical	 issues	

As we have described it, the algorithm simply computes Count for the method

node X that it starts with, and identifies the subtree of the search space rooted at X that

corresponds to this computation. In addition to this information, the implemented

algorithm produces a catalogue of the differences that contribute to the count computed

for the root node.

To avoid repeating searches, two global structures are maintained; a list of pairs or

methods that have been found to be not equivalent, and a set of equivalence classes of

methods that have been found to be equivalent. During search, if the final value of C(X)

for a method node X is not 0, and no cut-off occurred in the search tree below X, then the

pair of methods is added to the “non-equivalent” list. Similarly, if the final value of C(X)

is 0, the equivalence classes of the two methods are merged. Note that if a C value of 0 is

computed for a method node X, then the two methods are guaranteed to be equivalent,

whether or not cut-off has occurred in the part of the tree rooted at X. As noted earlier,

persistents are a non-declarative feature that we need to deal with specially. In particular,

the algorithm needs to compute the bijection g in Definition 2 on the fly. Accordingly, it

builds a global list G of pairs of persistents that represents g, attempting to add a pair to

I

M M M M

Local = 2 Local = 4 Local = 3 Local = 5

C = 6
alpha = 10

38

this list when it encounters two operations, A and B, that are matched by an isomorphism,

but refer to two different persistents. There are three possibilities.

• If (ref(A),ref(B)) is in G, then A and B are considered to be equivalent.

• If (ref(A),P) is in G and P ≠ ref(B) (or vice versa), then A and B are considered

not to be equivalent.

• If neither ref(A) nor ref(B) occurs in any pair in G, (ref(A),ref(B)) is added to

G.

There is a complication, however. If the isomorphism f that matches A and B turns

out not to be the one which minimises the value of C(Y), where Y is the parent node of

the isomorphism node X corresponding to f, then the addition of (ref(A),ref(B)) to G must

be undone. Hence, when a pair is added to G, it is added provisionally, creating a local

list G(X), the scope of which is the search of the sub-tree rooted at X. When the final

value of C(Y) is determined, G is updated to G(Z), where Z is the selected child of Y.

4.2.3 Correctness	 and	 performance	

If two programs are not equivalent, there is no precise answer to the question of

how they differ semantically [40], so there is little that can be proved about the

correctness of an algorithm such as ours with respect to semantic difference. However, it

does have an important property, as follows. If A and B are operations and P1 and P2, are

programs, the algorithm described above, including the optimisations in Section 4.2.1,

will compute a value of 0 for (ref(A),ref(B)) iff A in P1 is equivalent to B in P2 (Def. 2).

Although the subgraph isomorphism problem, central to our algorithm, is known to

be NP-complete, there are various subgraph isomorphism algorithms available which, in

practice, perform well on large graphs, for example Ullmann’s algorithm [53], VF [54],

and VF2 [55]. Also, Prograph programs tend to have a deep call structure, so even in a

large Prograph program, the number of operations in each case is usually quite small

[56]. For example, in the application framework of Prograph CPX, consisting of 2000+

methods distributed over 300+ classes, diagrams rarely have more than 6 operations.

Hence, subgraph isomorphism is unlikely to be a bottleneck.

39

As discussed in the last section, a set of equivalence classes of methods is

maintained to avoid repeating parts of a search. This set can be maintained by the

UNION-FIND algorithm in near-linear time [51].

Using subgraph isomorphism to match dataflow diagrams can in some

circumstances produce unsatisfactory results. For example, consider the pair (C1,C2) of

cases in Figure 4-8. These cases have the same numbers of operations, datalinks and

synchros, and there are no subgraph isomorphisms between them, so C((C1,C2)) will be

set to 1 and search below the case node (C1,C2) will terminate. Clearly, however, there

are two local differences (mismatched datalinks), and search should continue with the

method node (ref(A),ref(B)).

To solve this limitation, maximum common subgraph (MCS) isomorphism can be

used to find bijections between two graphs when subgraph isomorphism fails. There are

various definitions and algorithms for MCS in the research literature, such as McGregor

[47], Balas and Yu [57], and Durand et al. [58]. In this research, we choose the definition

of MCS implemented by McGregor’s algorithm, because the algorithm is easy to

implement and performs well. Suppose without loss of generality that graph G1 has fewer

vertices than graph G2.

if

• S1 is a subgraph of G1 including all vertices of G1

• S1 is isomorphic to a subgraph S2 of G2

• There is no subgraph of G1 with more edges than S1 satisfying these conditions

then

• S1 and S2 are corresponding maximum common subgraphs of G1 and G2.

Although the counting functions (described in section 4.1) are designed for use with

sub-graph isomorphism, they also apply to McGregor’s algorithm since all vertices in the

smaller graph will be included in the mapping. However, the time complexity of

McGregor’s algorithm in the worst case is factorial [56]. So we decided to implement

both sub-graph isomorphism and MCS isomorphism in the experiments to test their

effects on accuracy and performance.

40

 C1 C2

Figure 4-8 Search below the node consisting of these two cases will terminate since there
are no subgraph isomorphisms.

As we noted in Section 2, the differencing tools currently available in VPLs

perform syntactic comparison, and compare diagrams only at one level. The algorithm we

have proposed searches all levels, and is able to determine equivalences that purely

syntactic tools cannot. For example, it will determine that the methods fact-a and fact-b

in Figure 4-9 are equivalent.

41

Figure 4-9 The algorithm determines that methods fact-a and fact-b are semantically

equivalent

42

Chapter	 5: Experimental	 results	 and	 evaluation	

In this chapter, we report on experiments with a prototype implementation to test

the accuracy and usefulness of the comparison algorithm. The current prototype of the

algorithm described here is a simple proof-of-concept that reads and processes XML files

containing representations of Prograph code. To compare Prograph dataflow diagrams,

we tested both the VF [8] and the McGregor [58] algorithms to find a bijection between

two dataflow diagrams efficiently. VF is an algorithm for finding subgraph isomorphisms

between two graphs, while the McGregor algorithm finds MCS isomorphisms between

two graphs based on the definition of maximal common subgraph provided in section

4.3.3. In the following experiments, we concentrate on the accuracy and performance of

the algorithm when applied to realistically large bodies of code, using as our example, the

application framework (ABC classes) and associated editors (ABE classes) of Prograph

CPX which were built and maintained by a team of professional programmers. The

purpose of our experiments is to show that the algorithm provides useful information and

that the search is fast. There are two important parameters for the experiments, the

number of levels of programs and the number of operations in each diagram. Table 5-1

provides information about the two projects used in the experiments. It is clear that

although the two sets of classes have a large number of methods, the average number of

operations per case is quite small.

 Number of
methods

Number of
cases

Average
number of
operations per
case

ABCs 2286 6510 5
ABEs 550 2394 6

Table 5-1. Two very large programs for experiments

The experiments demonstrate that:

1. Both subgraph and MCS isomorphism produce results with no noticeable delay

when the number of operations per diagram is less than 10.

43

2. When the number of operations in a case is larger than 10, using a sub-graph

isomorphism algorithm is still acceptably fast, but using an MCS isomorphism

algorithm takes significantly long time.

3. Using the VF subgraph isomorphism algorithm increases performance, but in

some cases produces unsatisfactory results. Using McGregor’s MCS algorithm

produces more accurate results, but takes significantly longer.

5.1 Algorithm	 performance	 in	 deeply-nested	 programs	

As the performance of the algorithm depends on the structure of the data-flow

diagrams, two methods from the test code were randomly selected to test accuracy and

performance. In addition, the algorithm was tested on examples with increasing numbers

of method levels. To guarantee returned results in a reasonable time for deeply nested

programs in these experiments, the maximum number of operations in each diagram is

restricted to 10. The results show that when the algorithm is applied to equivalent

methods, then for all examples with up to 20 levels, and 61 methods and locals with 72

total cases, the response time for both subgraph isomorphism and MCS was less than one

second.

Next, we tested the performance when detecting differences in deeply nested

programs where differences were arbitrarily generated to break the conditions of

Definition 1 in some levels. Table 5-2 shows the experiment data in the four experiments.

The first seven columns contain counts of the violations of the conditions of Definition 1,

and the last column contains the total number of violations. Note that the algorithm using

MCS isomorphism produces the correct number of differences in all four experiments.

See Appendix B for a detail of differences in these four experiments.

 Con. 1 Con. 2 Con. 3.2 Extra
nodes

Extra
datalinks

Mismatched
datalinks

Extra
cases

Total

Test 1 1 1 1 0 0 2 0 5

Test 2 2 2 0 2 2 4 0 12

Test 3 4 2 1 2 3 4 1 17

Test 4 2 2 0 2 2 2 2 12

Table 5-2. Experiment test data

Table 5-3 shows the results returned in detecting semantic differences between two

programs using subgraph and MCS isomorphism. All the experiments were completed

44

without noticeable delay. In the first two experiments, the algorithm using both subgraph

isomorphism and MCS isomorphism produces accurate results because if there are

subgraph isomorphisms between cases, they will be found by both subgraph isomorphism

and MCS isomorphism. However, in the last two experiments, the algorithm using MCS

isomorphism produces differences much more accurately than the algorithm using sub-

graph isomorphism, because there is no sub-graph isomorphism between two cases in the

first level, preventing the algorithm using subgraph isomorphism from detecting

differences in the underlying levels.

 Number
of levels

Number of
methods
and locals

Total
number of
cases

Difference
Count

Subgraph (MCS) 5 11 20 5 (5)

Subgraph (MCS) 10 16 27 12 (12)
Subgraph (MCS) 15 7 10 2 (17)
Subgraph (MCS) 20 25 37 5 (12)

Table 5-3. Testing non-equivalent methods

5.2 Using	 sub-graph	 isomorphism	 for	 methods	 with	 large	

numbers	 of	 operations	 in	 their	 diagrams	

During the experiments, we found that using the MCS algorithm to find a match

between two cases with more than 10 operations takes significantly longer. However,

using subgraph isomorphism on a large number of operations and deep structure call still

performs well. In Table 5-4, the algorithm using subgraph isomorphism executes in less

than one second for programs having both large number of operations and deep call

structure.

Number
of levels

Maximum number of
operations in a case

Number of
methods
and locals

Total number
of cases

5 10 11 20
10 15 16 27
15 20 7 10
20 25 25 37

Table 5-4. Testing non-equivalent methods with large numbers of operations in their cases

The experimental results show that the algorithm using either subgraph

isomorphism or an MCS isomorphism algorithm produces reasonable results and

45

performance in programs with small numbers of operations. However, the algorithm

using sub-graph isomorphism algorithm scales up with the number of operations in each

diagram considerably better than the algorithm using the MCS algorithm.

46

Chapter	 6: Conclusions	 and	 future	 research	

6.1 Conclusions	

In this work, we have summarized and analyzed existing differencing tools for both

TPLs and DVPLs. In TPLs, syntactic and semantic differencing tools have been

intensively researched for use in software development tools since the introduction of

PDGs, SDGs, and program slicing. On the other hand, we found that differencing tools in

DVPLs are quite primitive compared with those available for TPLs. This in itself is

sufficient to hinder the successful entrance of DVPLs into the world of industrial

software development and mainstream software engineering.

Based on an investigation of the three differencing tools in DVPLs, as discussed

above, we concluded that they are all syntactic and therefore cannot find important

differences in many cases. Consequently, we have proposed a definition of semantic

equivalence of program elements in SVPLs and presented an algorithm to detect semantic

differences between SVPL program elements. To compare two dataflow diagrams, each

is considered as a directed acyclic graph and sub-graph isomorphism or MCS

isomorphism algorithms are applied to detect the differences between them. The problem

of comparing two program elements was modelled as a search tree, each vertex of which

is a pair of compared items or an isomorphism. Our differencing algorithm uses depth-

first search, guided by heuristics based on estimates of the numbers of differences

between the items being compared, to traverse the search tree and enumerate semantic

differences. Some of important features of the algorithm deal with recursions and side-

effects of persistents (global variables) and apply semantic equivalence and pruning

conditions to reduce the search space. The experimental results show that our algorithm

can produce the differences accurately in a reasonable time in most cases. When the

number of operations per case of programs is less than 10, the algorithm using both sub-

graph isomorphism and MCS isomorphism produces reasonably accurate results and a

reasonable time. When the number of operations per case of programs is larger, however,

the algorithm using subgraph isomorphism still performs reasonably, while the

performance using MCS rapidly degrades. Also, the algorithm using MCS isomorphism

47

can produce results more accurately in many cases. So MCS isomorphism can be used to

find a match between two graphs when sub-graph isomorphism fails. In conclusion, our

algorithm is superior to existing differencing tools for DVPLs.

6.2 Future	 work	

There are many directions for furthering this work, including the following.

Object-oriented support: Our current algorithm does not account for the object-

oriented features of Prograph. Some features of object-oriented programming, such as

data abstraction, encapsulation, polymorphism, and inheritance, need to be dealt

differently with the current algorithm, for example, considering object-oriented

operations in Prograph as a global variable and treating them similar to the way of

treating persistents in the current algorithm. In the future, we can extend our algorithm to

define semantic equivalence on object-oriented classes in SVPLs.

Diagram matching: As we have pointed out, subgraph isomorphism can, in many

circumstances, produce results that are not helpful. Although MCS produces satisfactory

results, it does not scale up well as the number of operations per case increases. We

intend to investigate more discriminating ways of matching dataflow diagrams, such as a

variation that is sensitive to some dataflow-specific characteristics. For example, in

Prograph, we could build from a diagram a directed graph such that every operation,

terminal and root is represented as a vertex, the root and terminal vertices are numbered

to indicate the position at which the corresponding terminal or root is attached to its

operation, and an edge either represents a datalink or associates a terminal or root with its

operation. This graph would capture the structure of a Prograph case more accurately

than the graph used in the current version of the algorithm. Other graph matching

techniques, such as using genetic programming or approximation algorithms can also be

used.

Graphical interface: In Prograph, and other SVPLs, programming, testing and

debugging is done in highly interactive, visual environments that include visualisations of

execution state and progress. Clearly, an SVPL differencing tool should integrate into

such an environment, providing a visual representation, at various levels of detail, of the

trouble spots where differences are found, and helping the user to navigate through the

48

program structure in a methodical way. For example, two programs might be displayed as

two trees (similar to the LabVIEW comparison tool), with differences highlighted. First,

users could see the overall picture for the differences between two programs and know

the total number of differences. After that, they could select which differences they want

to fix. Since fixing errors in one level can reduce errors in many other levels, the tool

could guide programmers to a level where fixing differences would be likely to reduce

the number of steps for program testing and debugging. An incremental version of the

algorithm with a graphical interface would be developed in the future.

Pilot evaluation study for professional developers: After developing a graphical

interface for the algorithm, more user testing should be conducted with professional

software developers to find out whether a differencing tool based on our algorithm might

actually be of use to programmers in practice.

Counting function: Although the counting functions we have used to guide the

heuristic search seem to do a reasonable job on the examples we have tried, they can

produce misleading results. We intend to conduct a series of experiments on large

programs to pinpoint their weaknesses in order to fine-tune them.

Extending to other DVPLs: In this thesis, we have used Prograph as the language

on which to base our algorithm. However, with minor changes the algorithm could be

applied to other SVPLs, such as LabVIEW, where control structures enclose acyclic data

flow diagrams, consisting of operations with input terminals and output roots connected

by data flow links, and annotations can be applied to program elements to modify their

behaviours. More major changes are likely to be necessary in order to apply the algorithm

to unstructured DVPLs such as Simulink, where data flow diagram may be cyclic.

Other applications: Semantic difference is very important for software

development tools, such as program integration, program debugging, software

maintenance, and software testing. We can use this semantic differencing algorithm for

the purpose of program integration. For example, a merge tool integrates two versions of

an SVPL program by identifying the semantic differences and the un-affected code.

Detecting semantic changed behaviour will help to integrate two versions of a program

more accurately. Semantic difference is also useful to reduce the cost of regression

49

testing by discovering the semantic changes to decrease the number of test cases. These

tools would be very useful for accelerating the industrial adoption of SVPLs.

50

Bibliography

[1] R. E. Horn, Visual Language: Global Communication for the 21st Century.

MacroVU, Inc. Bain bridge Island, WA, 1998.

[2] P. T. Cox, “Visual Programming Languages,” Encyclopedia of Computer Science

and Engineering, B.W. Wah (Ed.) John Wiley & Sons Inc., Hoboken, Jun. 2008.

[3] M. Burnett, “Software Engineering For Visual Programming Languages,”

Handbook of Software Engineering and Knowledge, vol. 2, World Scientific

Publishing Company, Jun. 2001.

[4] Visual Case - UML & E/R Database Design Tool. Internet:

http://www.visualcase.com/ [Jul. 23, 2009].

[5] EJB and Java™ UML visual editing. Internet:

http://publib.boulder.ibm.com/infocenter/wsadhelp/v5r1m2/index.jsp?topic=/com

.rational.xtools.umlvisualizer.doc/topics/rlimitations.html [Jul. 23, 2009].

[6] Visual Paradigm SDE for Visual Studio. Internet:

http://www.visual-paradigm.com/product/sde/vs/demos/ [Jul. 23, 2009].

[7] R. Mili and R. Steiner, “Software Engineering,” in Software Visualization.

Springer Berlin / Heidelberg, 2002, ch. 2, pp. 622-624.

[8] IBM. Jinsight 2.1. Internet: http://www.research.ibm.com/jinsight/docs/ [Jul. 23,

2009].

[9] GraphViz. Internet: http://www.graphviz.org/ [Jul. 23, 2009].

[10] J. T. Stasko, J. T. Stasko, J. T. Stasko, and B. A. Price, Software visualization.

The MIT Press, Jan. 1998.

[11] S. Diehl, Software visualization: Visualizing the Structure, Behaviour, and

Evolution of Software. New York: Springer Berlin Heidelberg, 1998.

[12] StackAnalyzer. Internet: http://www.absint.com/stackanalyzer/ [Jul. 23, 2009].

[13] X-Tango: Algorithm Animation. Internet:

http://www.cc.gatech.edu/gvu/softviz/algoanim/xtango.html [Jul. 23, 2009].

51

Line Oriented Software Statistics,” IEEE Transactions on Software Engineering,

vol. 18, no. 11, pp. 957-968, Nov. 1992.

[15] B. A. Myers, “Visual programming, programming by example, and program

visualization: a taxonomy,” in Proceedings of the SIGCHI conference on Human

factors in computing systems, Boston, Massachusetts, United States , 1986, pp.

59-66.

[16] R. Bitter, T. Mohiuddin, and M. Nawrocki, LabVIEW: Advanced Programming

Techniques, 2e. CRC Press, 2001.

[17] Prograph CPX User guide, Halifax, Canada: Pictorius Inc., 1996.

[18] M. M. Burnett, “Visual Programming,”, Wiley Encyclopedia of Electrical and

Electronics Engineering, J. Webster (ed.), John Wiley&Sons Inc., pp. 275-283,

1999.

[19] Microsoft Visual C++. Internet: http://msdn.microsoft.com/en-

ca/visualc/default.aspx [Jul. 23, 2009].

[20] Microsoft Visual J++. Internet: http://msdn.microsoft.com/en-

us/vjsharp/default.aspx [Jul. 23, 2009].

[21] Prograph CPX Reference Manual. Halifax: Pictorius Inc., 1996.

[22] Simulink. Internet: http://www.mathworks.com/products/simulink/ [Jul. 23,

2009].

[23] R. B. Angus and T. E. Hulbert, “VEE Pro: Practical Graphical Programming,”

Springer-Verlag, London, 2005.

[24] P. T. Cox, F.R. Giles, and Pietrzykowski T., “Prograph: a step towards liberating

programming from textual conditioning,” in 1989 IEEE Workshop on Visual

Programming, Rome, Oct. 1989, pp. 150-156.

[25] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow

programming languages,” ACM Computing Surveys (CSUR), vol. 36, no. 1, pp.

1-34, Mar. 2004.

[26] S. T. Karris, Introduction to Simulink with Engineering Applications, 2e,. Orchard

52

Publications, 2008.

[27] A. F. Blackwell, “First steps in programming: A rationale for Attention

Investment models,” in Proceedings of the IEEE Symposia on Human-Centric

Computing Languages and Environments, Washington DC, Sep. 2002, pp. 2-10.

[28] R. Rowe and J. Burns, Prograph CPX Qualitative Research. Riley Rowe and

Associates, 1995.

[29] P. T. Cox and L. Dong, “Obstacles to the industrial use of visual programming,”

in 2004 International Conference on Visual Languages and Computing, San

Francisco CA, Sep. 2004, pp. 304-311.

[30] P. T. Cox and S. Gauvin, “Exceptions in Visual Data Flow Programming

Languages,” in 2003 International Conference on Visual Languages and

Computing, Miami FL, Sep. 2003, pp. 360-367.

[31] J. Vesperman, Essential CVS, 2e. Sebastopol CA: O’Reilly Media Inc., 2007.

[32] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version Control with

Subversion. Sebastopol CA: O'Reilly Media Inc., 2004.

[33] J. W. Hunt and M. D. McIlroy, “An algorithm for differential file comparison,”

Technical Memo 75-1271-11, Bell Laboratories, Oct. 1975.

[34] W. Miller and E. W. Myers, “A file comparison program,”, Software Practice &

Experience, vol. 15, no. 11, pp. 1025-1040, Nov. 1985.

[35] E. W. Myers, “An O(ND) difference algorithm and its variations,”, Algorithmica,

vol. 1, no. 2, p. 251–266, 1986.

[36] E. Ukkonen, “Algorithms for Approximate String Matching,” Information and

Control, vol. 64, no. 1-3, pp. 100-118, 1985.

[37] W. Yang, “Identifying Syntactic Differences Between Two Programs,” Software

Practice And Experience, vol. 21, no. 7, pp. 739-755, Jul. 1991.

[38] J. E. Grass, “Cdiff: A Syntax Directed Diff for C++ Programs,” in USENlX C++

Conference, Portland, 1992, pp. 181-193.

[39] D. Binkley, “An empirical study of the effect of semantic differences on

53

programmer comprehension,” in 10th International Workshop on Program

Comprehension (IWPC'02), Paris, France, Jun. 2002, pp. 97-106.

[40] D. Jackson and D. A. Ladd, “Semantic Diff: A tool for summarizing the effects of

modifications,” in Proceedings of the International Conference on Software

Maintenance, Victoria, BC, Canada, 1994, pp. 243-252.

[41] P. Anderson and T. Teitelbaum, “Software inspection using codesurfer,” in

Workshop on Inspection in Software Engineering, 2001.

[42] S. Horwitz, “Identifying the semantic and textual differences between two

versions of a program,”, ACM SIGPLAN Notices, vol. 25, no. 6, pp. 234-245, Jun.

1990.

[43] F. Tip, “A Survey of Program Slicing Techniques,” CWI (Centre for Mathematics

and Computer Science) , Amsterdam, The Netherlands, The Netherlands,

Technical Report CS-R9438 , 1994.

[44] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A Brief Survey Of Program

Slicing,” A Brief Survey Of Program Slicing, vol. 30, no. 2, p. 1, Mar. 2005.

[45] S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions of

programs,”, ACM Transactions on Programming Languages and Systems, vol.

13, no. 3, pp. 345-387, Jul. 1989.

[46] W. Yang, S. Horwitz, and T. Reps, “Detecting program components with

equivalent behaviors,” Department of Computer Sciences, University of

Wisconsin, Madison, WI, Technical Report 840, Apr. 1989.

[47] J. McGregor, “Backtrack search algorithms and the maximal common subgraph

problem,” Software Practice and Experience, vol. 12, pp. 23-34, 1982.

[48] D. Binkley, S. Horwitz, and T. Reps, “Program Integration for Languages with

Procedure Calls,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 4, no. 1, pp. 3-35, Jan. 1995.

[49] D. Binkley, “Semantics guided regression test cost reduction,” IEEE Transactions

on Software Engineering, vol. 23, no. 8, pp. 498-516, Aug. 1997.

54

[51] R. E. Tarjan, “Efficiency of a Good But Not Linear Set Union Algorithm,”,

Journal of the ACM, vol. 22, no. 2, pp. 215-225, Apr. 1975.

[52] G.M. Baudet, “An analysis of the full alpha-beta pruning algorithm,” in

Proceedings of the tenth annual ACM Smposium on Theory of Computing, 1978,

pp. 296-313.

[53] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism,” Journal of the ACM,

vol. 23, no. 1, pp. 31-42, Jan. 1976.

[54] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “Performance evaluation of

the VF graph matching algorithm,” in Proceedings of the 10th International

Conference on Image Analysis, Venice, Italy, 1999, pp. 1172-1177.

[55] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An Improved Algorithm

for Matching Large Graphs,” in 3rd IAPRTC15 Workshop on Graph-based

Representations in Pattern Recognition, Cuen, Italy, 2001, pp. 149-159.

[56]

T. R. G. Green and M. Petre, “Usability analysis of visual programming

environments: a ‘cognitive dimensions’ framework,” Journal of Visual

Languages and Computing, vol. 7, no. 2, pp. 131-174, Jun. 1996.

 [57] E. Balas and C. S. Yu, “Finding a maximum clique in an arbitrary graph,”
SIAM J. Computing, vol. 15, no.4, 1986.

 [58]

P. J. Durand, R. Pasari, J. W. Baker, and C. Tsai, “An efficient algorithm
for similarity analysis of molecules,” Internet Journal of Chemistry, vol. 2, 1999.

55

Appendix A: Difference Algorithm Prototype Code

56

Diff_Algorithm.java

33 	 	{
34 	 	 	Diff_Return min = new Diff_Return();
35 	 	 	n_min = -1;
36 	 	 	// mapping[i] is the node in graph2 which corresponds to
37 	 	 	// node i in graph1...
38 	 	 	for (i=0;i<result.size();i++)
39 	 	 	{
40 	 	 	 	int number_of_persistent = 0;
41 	 	 	 	MCSState temp = (MCSState) result.get(i);
42 	 	 	 	//Check input & output nodes
43 	 	 	 	PairNodes input = (PairNodes)temp.mapping.get(0);
44 	 	 	 	PairNodes output = (PairNodes)temp.mapping.get

(temp.mapping.size()-1);
45 	 	 	 	int [] mapping = new int[100];
46 	 	 	 	for (int k=0;k<graph1.vertexSet().size();k++)
47 	 	 	 	{
48 	 	 	 	 	PairNodes current_pair = (PairNodes)

temp.mapping.get(k);
49 	 	 	 	 	mapping[k] = current_pair.To;
50 	 	 	 	}
51 	 	 	 	persistent_list_temp.clear();
52 	 	 	 	T_diff.clear();
53 	 	 	 	int linksinC2 = 0;
54 	 	 	 	for (int e=0;e<graph2.vertexSet().size();e++)
55 	 	 	 	{
56 	 	 	 	 	Boolean exists = false;
57 	 	 	 	 	for (int l=0;l<graph1.vertexSet().size();l++)
58 	 	 	 	 	{
59 	 	 	 	 	 	if (e == mapping[l])
60 	 	 	 	 	 	{
61 	 	 	 	 	 	 	exists = true;
62 	 	 	 	 	 	}
63 	 	 	 	 	}
64 	 	 	 	 	if (exists == false)
65 	 	 	 	 	{
66 	 	 	 	 	 	ModelComposite graph2_notmatched_node =

(ModelComposite) dest.children.get(e);
67 	 	 	 	 	 	//calculate connected root

Page 2

57

Diff_Algorithm.java

68 	 	 	 	 	 	for (int
h=0;h<graph2_notmatched_node.children.size();h++)

69 	 	 	 	 	 	{
70 	 	 	 	 	 	 	ModelComponent component =

(ModelComponent) graph2_notmatched_node.children.get(h);
71 	 	 	 	 	 	 	if (component.getType() == 6)
72 	 	 	 	 	 	 	{
73 	 	 	 	 	 	 	 	//oper_roots.add(oper.children.get

(i));
74 	 	 	 	 	 	 	 	String rr = component.getAttribute

("connectedroot").getStringValue().toString();
75 	 	 	 	 	 	 	 	if (! rr.equals(""))
76 	 	 	 	 	 	 	 	{
77 	 	 	 	 	 	 	 	 	linksinC2++;
78 	 	 	 	 	 	 	 	}
79 	 	 	 	 	 	 	}
80
81 	 	 	 	 	 	}
82 	 	 	 	 	}
83 	 	 	 	}
84
85 	 	 	 	min.n = countLocalDifferences(mapping,

src,dest,hashMap,hashMap2, Math.abs(graph1.vertexSet().size() -
graph2.vertexSet().size()),linksinC2,graph1);

86 	 	 	 	for (j=0;j<graph1.vertexSet().size();j++)
87 	 	 	 	{
88 	 	 	 	 	try
89 	 	 	 	 	{
90 	 	 	 	 	 	ModelComposite oper = (ModelComposite)

src.children.get(j);
91 	 	 	 	 	 	if (mapping[j] != -1)
92 	 	 	 	 	 	{
93 	 	 	 	 	 	 	ModelComposite oper_compare =

(ModelComposite) dest.children.get(mapping[j]);
94 	 	 	 	 	 	 	T_diff.put(oper,oper_compare);
95 	 	 	 	 	 	 	//Calculate persistent differences
96 	 	 	 	 	 	 	if (oper.getAttribute

("type").getStringValue().equals("Persistent") &&
oper_compare.getAttribute("type").getStringValue().equals
("Persistent")) Page 3

58

Diff_Algorithm.java96 	 	 	 	 	 	 	if (oper.getAttribute
("type").getStringValue().equals("Persistent") &&
oper_compare.getAttribute("type").getStringValue().equals
("Persistent"))

97 	 	 	 	 	 	 	{
98 	 	 	 	 	 	 	 	Boolean p_ret = isConsistent

(oper,oper_compare);
99 	 	 	 	 	 	 	 	if (p_ret == true)

100 	 	 	 	 	 	 	 	{
101 	 	 	 	 	 	 	 	 	number_of_persistent++;
102 	 	 	 	 	 	 	 	 	Equivalent_List per = new

Equivalent_List();
103 	 	 	 	 	 	 	 	 	per.src = oper;
104 	 	 	 	 	 	 	 	 	per.dest = oper_compare;
105 	 	 	 	 	 	 	 	 	persistent_list.add(per);
106 	 	 	 	 	 	 	 	}
107 	 	 	 	 	 	 	 	else
108 	 	 	 	 	 	 	 	{
109 	 	 	 	 	 	 	 	 	min.n ++;
110 	 	 	 	 	 	 	 	}
111 	 	 	 	 	 	 	}
112 	 	 	 	 	 	 	if (min.n >= alpha)
113 	 	 	 	 	 	 	{
114 	 	 	 	 	 	 	 	final_ret.n = alpha;
115 	 	 	 	 	 	 	 	F_T_list list = new F_T_list

(graph1.vertexSet().size());
116 	 	 	 	 	 	 	 	list.f = mapping;
117 	 	 	 	 	 	 	 	list.T = T_diff;
118 	 	 	 	 	 	 	 	final_ret.f_T.add(list);
119 	 	 	 	 	 	 	 	return final_ret;
120 	 	 	 	 	 	 	}
121
122 	 	 	 	 	 	 	if (oper.getAttribute

("type").getStringValue().equals("method") &&
oper_compare.getAttribute("type").getStringValue().equals("method"))

123 	 	 	 	 	 	 	{
124
125 	 	 	 	 	 	 	 	ModelComposite method_1 = null;
126 	 	 	 	 	 	 	 	ModelComposite method_2 = null;
127 	 	 	 	 	 	 	 	method_1 = (ModelComposite)

hashMap.get(oper.getName());

Page 4

59

Diff_Algorithm.java
127 	 	 	 	 	 	 	 	method_1 = (ModelComposite)

hashMap.get(oper.getName());
128
129 	 	 	 	 	 	 	 	method_2 = (ModelComposite)

hashMap2.get(oper_compare.getName());
130 	 	 	 	 	 	 	 	Boolean ret = isProcessing

(method_1, method_2);
131 	 	 	 	 	 	 	 	if (ret == false)
132 	 	 	 	 	 	 	 	{
133 	 	 	 	 	 	 	 	 	Diff_Return ret1 = Classify

(root, method_1, method_2, S,alpha);
134 	 	 	 	 	 	 	 	 	min.n += ret1.n;
135 	 	 	 	 	 	 	 	 	min.f_T.add(ret1.f_T);
136 	 	 	 	 	 	 	 	 	if (min.n >= alpha)
137 	 	 	 	 	 	 	 	 	{
138 	 	 	 	 	 	 	 	 	 	final_ret.n = alpha;
139 	 	 	 	 	 	 	 	 	 	F_T_list list = new F_T_list

(graph1.vertexSet().size());
140 	 	 	 	 	 	 	 	 	 	list.f = mapping;
141 	 	 	 	 	 	 	 	 	 	list.T = T_diff;
142 	 	 	 	 	 	 	 	 	 	final_ret.f_T.add(list);
143 	 	 	 	 	 	 	 	 	 	return final_ret;
144 	 	 	 	 	 	 	 	 	}
145 	 	 	 	 	 	 	 	}
146 	 	 	 	 	 	 	}
147 	 	 	 	 	 	}
148 	 	 	 	 	}
149 	 	 	 	 	catch (Exception ex)
150 	 	 	 	 	{
151
152 	 	 	 	 	}
153
154 	 	 	 	}
155
156 	 	 	 	if (n_min == -1 || min.n < n_min)
157 	 	 	 	{
158 	 	 	 	 	n_min = min.n;
159 	 	 	 	 	mapping_diff = mapping;
160 	 	 	 	 	T_diff_min = T_diff;

Page 5

60

Diff_Algorithm.java

161 	 	 	 	}
162
163 	 	 	 	if (min.n == 0)
164 	 	 	 	{
165 	 	 	 	 	n_min = min.n;
166 	 	 	 	 	mapping_diff = mapping;
167 	 	 	 	 	T_diff_min = T_diff;
168 	 	 	 	 	break;
169 	 	 	 	}
170 	 	 	 	
171 	 	 	}
172 	 	 	//Return case value
173 	 	 	final_ret.n = n_min;
174 	 	 	F_T_list list = new F_T_list(graph1.vertexSet().size());
175 	 	 	list.f = mapping_diff;
176 	 	 	list.T = T_diff_min;
177 	 	 	final_ret.f_T.add(list);
178 	 	 	return final_ret;
179 	 	}
180 	 	else
181 	 	{
182 	 	 	Diff_Return ret = new Diff_Return();
183 	 	 	ret.n = 1 + Math.abs(graph1.vertexSet().size() -

graph2.vertexSet().size()) + Math.abs(graph1.edgeSet().size()-
graph2.edgeSet().size());

184 	 	 	return ret;
185 	 	}
186 	}
187 	else
188 	{
189 	}
190 	//Process method level. Use HashMap for methods' call
191 	if ((src.getType() == 2 && dest.getType() == 2) || (src.getType

() == 20 && dest.getType() == 20))
192 	{
193 	 	//Check if method already exists in the list S
194 	 	Boolean ret = isProcessing(src, dest);
195 	 	if (ret == true)

Page 6

61

Diff_Algorithm.java

196 	 	{
197 	 	 	return final_ret;
198 	 	}
199 	 	else
200 	 	{
201 	 	 	Equivalent_List method = new Equivalent_List();
202 	 	 	method.src = src;
203 	 	 	method.dest = dest;
204 	 	 	processing_oper.push(method);
205 	 	}
206 	 	//Check if method already exists in the list E
207 	 	ret = isEquivalent(src, dest);
208 	 	if (ret == true)
209 	 	{
210 	 	 	return final_ret;
211 	 	}
212 	 	//Check if method already exists in the list N
213 	 	Equivalent_List e_list = new Equivalent_List();
214 	 	e_list = isNotEquivalent(src, dest);
215 	 	if (e_list.n != 0)
216 	 	{
217 	 	 	final_ret.n = e_list.n;
218 	 	 	final_ret.f_T = e_list.f_T;
219 	 	 	return final_ret;
220 	 	}
221 	 	//Loop each case
222 	 	//Extra cases
223 	 	final_ret.n += Math.abs(src.children.size() -

dest.children.size());
224 	 	if (final_ret.n >= alpha)
225 	 	{
226 	 	 	//Cut-off 3
227 	 	}
228 	 	else
229 	 	{
230 	 	 	for (i = 0;i < src.children.size();i++)
231 	 	 	{
232 	 	 	 	ModelComposite m_case = (ModelComposite)

src.children.get(i);

Page 7

62

Diff_Algorithm.java
232 	 	 	 	ModelComposite m_case = (ModelComposite)

src.children.get(i);
233 	 	 	 	ModelComposite m_case_comp = (ModelComposite)

dest.children.get(i);
234 	 	 	 	//Add up all the differences
235 	 	 	 	Diff_Return c_ret = new Diff_Return();
236 	 	 	 	c_ret = Classify(root,m_case,m_case_comp,S,alpha);
237 	 	 	 	final_ret.n += c_ret.n;
238 	 	 	 	final_ret.f_T.add(c_ret.f_T);
239 	 	 	 	//cut-off
240 	 	 	 	if (final_ret.n >= alpha)
241 	 	 	 	{
242 	 	 	 	 	break;
243 	 	 	 	}
244 	 	 	}
245
246 	 	}
247 	 	//Remove from Stack
248 	 	processing_oper.pop();
249 	 	//Put in the equivalent list
250 	 	if (final_ret.n == 0)
251 	 	{
252 	 	 	Equivalent_List list = new Equivalent_List();
253 	 	 	list.dest = dest;
254 	 	 	list.src = src;
255 	 	 	equivalent_call_list.add(list);
256 	 	 	return final_ret;
257 	 	}
258 	 	else //put in the not-equivalent list (n,a,b,F)
259 	 	{
260 	 	 	Equivalent_List list = new Equivalent_List();
261 	 	 	list.dest = dest;
262 	 	 	list.src = src;
263 	 	 	list.n = final_ret.n;
264 	 	 	list.f_T.add(final_ret.f_T);
265 	 	 	nonequivalent_call_list.add(list);
266
267 	 	 	return final_ret;
268 	 	}

Page 8

63

Diff_Algorithm.java

269 	}
270 	return null;
271 }
272 private int countLocalDifferences(int[] mapping, ModelComposite src,
273
274 	 	ModelComposite dest, HashMap hashMap, HashMap hashMap2, int

node_difference, int linkinC2, DirectedGraph g1) {
275
276 	// TODO Auto-generated method stub
277 	int n = 0,i,j;
278 	int n_min = -1;
279 	//Count local differences
280 	for (j=0;j<g1.vertexSet().size();j++)
281 	{
282 	 	try
283 	 	{
284 	 	 	ModelComposite oper = (ModelComposite) src.children.get

(j);
285 	 	 	if (mapping[j] != -1)
286 	 	 	{
287 	 	 	 	ModelComposite oper_compare = (ModelComposite)

dest.children.get(mapping[j]);
288 	 	 	 	n += GetDifferences(oper, oper_compare); //

Calculate operation differences
289 	 	 	}
290 	 	}
291 	 	catch (Exception ex)
292 	 	{
293 	 	}
294 	}
295 	////CALCULATION LINKS IN C2 NOT IN C1
296 	n += linkinC2;
297 	int correct_datalinks=0;
298 	//Calculate mismatch data-links
299 	Set set = h_relation.entrySet();
300 	Iterator itr = set.iterator();
301 	while (itr.hasNext())
302 	{

Page 9

64

Diff_Algorithm.java

303 	 	Map.Entry me = (Map.Entry)itr.next();
304 	 	ModelRelation current = (ModelRelation)me.getValue();
305 	 	ModelComponent from = current.from;
306 	 	ModelComponent to = current.to;
307 	 	ModelComposite m_from = (ModelComposite) from.getParent();
308 	 	ModelComposite m_to = (ModelComposite) to.getParent();
309 	 	String k = item_id.get(m_from.getID()).toString();
310 	 	String l = item_id.get(m_to.getID()).toString();
311 	 	if (mapping[Integer.parseInt(k)] != -1 && mapping

[Integer.parseInt(l)] != -1)
312 	 	{
313 	 	 	ModelComposite m_from_comp = (ModelComposite)

dest.children.get(mapping[Integer.parseInt(k)]);
314 	 	 	ModelComposite m_to_comp = (ModelComposite)

dest.children.get(mapping[Integer.parseInt(l)]);
315 	 	 	correct_datalinks += GetMismatchDatalinks(m_from, m_to,

m_from_comp, m_to_comp);
316 	 	}
317 	}
318 	//fINAL CALCULATION
319 	int num_of_terminals = 0;
320 	for (j=0;j< src.children.size();j++)
321 	{
322 	 	try
323 	 	{
324 	 	 	ModelComposite current = (ModelComposite)

src.children.get(j);
325 	 	 	for (int m=0;m<current.size();m++)
326 	 	 	{
327 	 	 	 	ModelComponent model = (ModelComponent)

current.children.get(m);
328 	 	 	 	if (model.getType() == 7)
329 	 	 	 	{
330 	 	 	 	 	num_of_terminals++;
331 	 	 	 	}
332 	 	 	}
333 	 	}
334 	 	catch(Exception ex)

Page 10

65

Diff_Algorithm.java

335 	 	{
336 	 	}
337 	}
338 	n += num_of_terminals - correct_datalinks;
339 	//Calculate the number of nodes
340 	n += node_difference;
341 	//Calculate persistent differences
342 }
343 private static int GetMismatchDatalinks(ModelComposite m_from,
344 	 	ModelComposite m_to, ModelComposite m_from_comp,
345 	 	ModelComposite m_to_comp) {
346 	// TODO Auto-generated method stub
347 	int n = 0,i,j;
348 	ArrayList oper_roots = new ArrayList();
349 	ArrayList oper_terms = new ArrayList();
350 	ArrayList oper_compare_roots = new ArrayList();
351 	ArrayList oper_compare_terms = new ArrayList();
352 	for (i=0;i<m_from.children.size();i++)
353 	{
354 	 	ModelComponent component = (ModelComponent)

m_from.children.get(i);
355 	 	if (component.getType() == 6)
356 	 	{
357 	 	 	oper_roots.add(m_from.children.get(i));
358 	 	}
359 	}
360 	for (i=0;i<m_to.children.size();i++)
361 	{
362 	 	ModelComponent component = (ModelComponent)

m_to.children.get(i);
363 	 	if (component.getType() == 7)
364 	 	{
365 	 	 	oper_terms.add(m_to.children.get(i));
366 	 	}
367 	}
368 	for (i=0;i<m_from_comp.children.size();i++)
369 	{
370 	 	ModelComponent component = (ModelComponent)

m_from_comp.children.get(i);

Page 11

66

Diff_Algorithm.java
370 	 	ModelComponent component = (ModelComponent)

m_from_comp.children.get(i);
371
372 	 	if (component.getType() == 6)
373 	 	{
374 	 	 	oper_compare_roots.add(m_from_comp.children.get(i));
375 	 	}
376 	}
377
378 	for (i=0;i<m_to_comp.children.size();i++)
379 	{
380 	 	ModelComponent component = (ModelComponent)

m_to_comp.children.get(i);
381 	 	if (component.getType() == 7)
382 	 	{
383 	 	 	oper_compare_terms.add(m_to_comp.children.get(i));
384 	 	}
385 	}
386
387 	if (oper_terms.size() == oper_compare_terms.size() &&

oper_roots.size() == oper_compare_roots.size())
388 	{
389 	 	//If(roots(a)j has datalink to terms(b)k for some j and k

and roots(f(a))j don�t have datalink terms(f(b))k)
390 	 	for (i=0;i<oper_terms.size();i++)
391 	 	{
392 	 	 	ModelComponent c_terms = (ModelComponent) oper_terms.get

(i);
393 	 	 	ModelComponent c_terms_comp = (ModelComponent)

oper_compare_terms.get(i);
394 	 	 	String root = c_terms.getAttribute

("connectedroot").getStringValue().toString();
395 	 	 	String root_compare = c_terms_comp.getAttribute

("connectedroot").getStringValue().toString();
396
397 	 	 	//First condition: Compare their roots equivalent
398 	 	 	for (j=0;j<oper_roots.size();j++)
399 	 	 	{
400 	 	 	 	ModelComponent c_root = (ModelComponent)

oper_roots.get(j);

Page 12

67

Diff_Algorithm.java
400 	 	 	 	ModelComponent c_root = (ModelComponent)

oper_roots.get(j);
401 	 	 	 	if (c_root.getID().equals(root))
402 	 	 	 	{
403 	 	 	 	 	ModelComponent c_root_compare =

(ModelComponent) oper_compare_roots.get(j);
404 	 	 	 	 	if (c_root_compare.getID().equals(root_compare))
405 	 	 	 	 	{
406 	 	 	 	 	 	n++;
407 	 	 	 	 	}
408 	 	 	 	}
409 	 	 	}
410 	 	 	if (root.equals("") && root_compare.equals(""))
411 	 	 	{
412 	 	 	 	n++;
413 	 	 	}
414 	 	}
415 	}
416 	return n;
417 }
418
419 private static int GetDifferences(ModelComposite oper,

ModelComposite oper_compare) {
420 	// TODO Auto-generated method stub
421 	int n = 0,i,j;
422 	ArrayList oper_roots = new ArrayList();
423 	ArrayList oper_terms = new ArrayList();
424 	ArrayList oper_compare_roots = new ArrayList();
425 	ArrayList oper_compare_terms = new ArrayList();
426 	for (i=0;i<oper.children.size();i++)
427 	{
428 	 	ModelComponent component = (ModelComponent)

oper.children.get(i);
429 	 	if (component.getType() == 6)
430 	 	{
431 	 	 	oper_roots.add(oper.children.get(i));
432 	 	}
433 	 	else if (component.getType() == 7)
434 	 	{

Page 13

68

Diff_Algorithm.java

435 	 	 	oper_terms.add(oper.children.get(i));
436 	 	}
437 	}
438
439 	for (i=0;i<oper_compare.children.size();i++)
440 	{
441 	 	ModelComponent component = (ModelComponent)

oper_compare.children.get(i);
442 	 	if (component.getType() == 6)
443 	 	{
444 	 	 	oper_compare_roots.add(oper_compare.children.get(i));
445 	 	}
446 	 	else if (component.getType() == 7)
447 	 	{
448 	 	 	oper_compare_terms.add(oper_compare.children.get(i));
449 	 	}
450 	}
451
452 	if (oper_terms.size() == oper_compare_terms.size())
453 	{
454 	 	for (i=0;i<oper_terms.size();i++)
455 	 	{
456 	 	 	ModelComponent oper_comp = (ModelComponent)

oper_terms.get(i);
457 	 	 	ModelComponent oper_compare_comp = (ModelComponent)

oper_compare_terms.get(i);
458 	 	 	if (! oper_comp.getAttribute("behavior").getStringValue

().equals(oper_compare_comp.getAttribute("behavior").getStringValue
().toString()))

459 	 	 	{
460 	 	 	 	n++;
461 	 	 	}
462 	 	}
463 	}
464 	else
465 	{
466 	 	n = n + Math.abs(oper_terms.size() - oper_compare_terms.size

());

Page 14

69

Diff_Algorithm.java

467 	}
468
469 	if (oper_roots.size() == oper_compare_roots.size())
470 	{
471 	 	for (i=0;i<oper_roots.size();i++)
472 	 	{
473 	 	 	ModelComponent oper_comp = (ModelComponent)

oper_roots.get(i);
474 	 	 	ModelComponent oper_compare_comp = (ModelComponent)

oper_compare_roots.get(i);
475 	 	 	if (! oper_comp.getAttribute("behavior").getStringValue

().toString().equals(oper_compare_comp.getAttribute
("behavior").getStringValue().toString()))

476 	 	 	{
477 	 	 	 	n++;
478 	 	 	}
479 	 	}
480 	}
481 	else
482 	{
483 	 	n = n + Math.abs(oper_roots.size() - oper_compare_roots.size

());
484 	}
485 	//Compare opers name
486 	if (! oper.getName().equals(oper_compare.getName()) && !

oper.getAttribute("type").getStringValue().equals("method"))
487 	{
488 	 	n++;
489 	}
490
491 	//Compare control
492 	if (oper.children.size() ==0 || oper_compare.children.size() ==

0)
493 	{
494 	}
495 	else
496 	{
497 	 	ModelComponent control = (ModelComponent) oper.children.get

(0);

Page 15

70

Diff_Algorithm.java
497 	 	ModelComponent control = (ModelComponent) oper.children.get

(0);
498 	 	ModelComponent control_comp = (ModelComponent)

oper_compare.children.get(0);
499 	 	if (! control.getName().equals(control_comp.getName()))
500 	 	{
501 	 	 	n++;
502 	 	}
503 	}
504 	//Compare type
505 	if (oper.getType() == 0)
506 	{
507 	 	if (oper.getName().equals(oper_compare.getName()))
508 	 	{
509 	 	 	n++;
510 	 	}
511 	}
512 	return n;
513 }
514
515

Page 16

71

Appendix	 B:	 Detailed	 differences	 in	 Table	 5-2	

Test	 1	

Figure B-1 The tree structure of Test 1. Each C node on a path is considered as one

level.

I

CC
level=1
differences=3 (see Figure B-2)

level=5
differences: 2 (see Figure B-3)

M

C

72

Figure B-2 Differences in level 1 of test 1

Figure B-3 Differences in level 5 of test 1

73

Test	 2	

Figure B-4 The tree structure of Test 2. Each C node on a path is considered as one

level.

I

C level=1
differences=3 (see Figure B-5)

level=5
differences: 3 (see Figure B-6)C

C
level=6
differences: 4 (see Figure B-7)

C
level=10
differences: 2 (see Figure B-8)

M

M

M

74

Figure B-5 Differences in level 1 of test 2

Figure B-6 Differences in level 5 of test 2

75

Figure B-7 Differences in level 6 of test 2

Figure B-8 Differences in level 10 of test 2

76

Test	 3

	

Figure B-9 The tree structure of test 3. Each C node on a path is considered as one

level.

I I

C

I

M

C

level=1
differences=2 (see Figure B-10)

C
level=8
differences: 1 (see Figure B-12)

C level=13
differences: 3 (see Figure B-13)

level=2
differences=11 (see Figure B-11)

M

M

M

77

Figure B-10 Differences in level 1 of test 3

Figure B-11 Differences in level 2 of test 3

78

Figure B-12 Differences in level 8 of test 3

Figure B-13 Differences in level 13 of test 3

	
	
	
	
	
	

79

Test	 4	

Figure B-14 The tree structure of test 4. Each C node on a path is considered as one

level.

C

M
CC

level=1
differences=1 (see Figure B-15)

M

M

C
level=5
differences: 1 (see Figure B-17)

M
C

level=7
differences: 1 (see Figure B-18)

level=3
differences=1 (see Figure B-16)

C level=9 (no subgraph isomorphism)
differences: 2 (see Figure B-19)

M

C
level=11
differences: 2 (see Figure B-20)

M

C
level=13
differences: 1 (see Figure B-21)

M

C
level=15
differences: 2 (see Figure B-22)

M

C
level=17
differences: 1 (see Figure B-23)

M

M

M

M

M

M

M

M

M

80

Figure B-15 Differences in level 1 of test 4

Figure B-16 Differences in level 3 of test 4

81

Figure B-17 Differences in level 5 of test 4

Figure B-18 Differences in level 7 of test 4

82

 Figure B-19 Differences in level 9 of test 4 (no subgraph isomorphism)

Figure B-20 Differences in level 11 of test 4

83

Figure B-21 Differences in level 13 of test 4

Figure B-22 Differences in level 15 of test 4

84

Figure B-23 Differences in level 17 of test 4

