
Semantic	  Comparison	  of	  Structured	  
Visual	  Dataflow	  Programs	  

	  
	  
	  
	  
	  
by	  
	  
	  
	  
	  

Dang	  Tuan	  Anh	  
	  
	  
	  

Submitted	  in	  partial	  fulfilment	  of	  the	  requirements	  
for	  the	  degree	  of	  Master	  of	  Computer	  Science	  

	  
	  
at	  
	  
	  

Dalhousie	  University	  
Halifax,	  Nova	  Scotia	  
December	  2009	  

	  
	  
	  
	  
	  
	  
	  

©	  Copyright	  by	  Dang	  Tuan	  Anh,	  2009	  
 

 

 



 
 

ii 

DALHOUSIE UNIVERSITY 

FACULTY OF COMPUTER SCIENCE 

 

 

The undersigned hereby certify that they have read and recommend to the Faculty of 

Graduate Studies for acceptance a thesis entitled “Semantic Comparison of Structured 

Visual Dataflow Programs” by Dang Tuan Anh in partial fulfilment of the requirements 

for the degree of Master of Computer Science. 

 

 Dated: December 04, 2009 

Supervisor: _________________________________ 

Readers: _________________________________ 

 _________________________________ 

 _________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iii 

DALHOUSIE UNIVERSITY 

 

 DATE: December 04, 2009 

AUTHOR: Dang Tuan Anh 

TITLE: Semantic Comparison of Structured Dataflow Programs 

DEPARTMENT OR SCHOOL: Computer Science 

DEGREE: MCS CONVOCATION: May YEAR: 2010 

Permission is herewith granted to Dalhousie University to circulate and to have copied 
for non-commercial purposes, at its discretion, the above title upon the request of 
individuals or institutions. 

 _______________________________ 
 Signature of Author 

 
The author reserves other publication rights, and neither the thesis nor extensive extracts 
from it may be printed or otherwise reproduced without the author’s written permission. 
 
The author attests that permission has been obtained for the use of any copyrighted 
material appearing in the thesis (other than the brief excerpts requiring only proper 
acknowledgement in scholarly writing), and that all such use is clearly acknowledged. 

 

 

 

 

 

 

 

 

 

 

 



 
 

iv 

Table	  of	  Content 

LIST OF TABLES................................................................................................. VI 

LIST OF FIGURES..............................................................................................VII 

ABSTRACT ........................................................................................................ VIII 

LIST OF ABBREVIATION AND SYMBOLS USED ....................................... IX 

ACKNOWLEDGEMENT ..................................................................................... X 

CHAPTER 1: INTRODUCTION ............................................................................... 1 

1.1 The evolution of visual languages............................................................... 1 

1.2 The use of visual tools in software engineering.......................................... 2 

1.2.1 CASE tools ......................................................................................... 3 

1.2.2 UML.................................................................................................... 4 

1.2.3 Other tools........................................................................................... 4 

1.3 Visual Programming Languages? ............................................................... 6 

1.3.1 Prograph.............................................................................................. 7 

1.3.2 LabVIEW............................................................................................ 8 

1.3.3 VEE..................................................................................................... 8 

1.3.4 Simulink.............................................................................................. 9 

1.4 Motivation for research ............................................................................. 10 

CHAPTER 2: BACKGROUND ............................................................................... 12 

2.1 Software development support tools for TPLs.......................................... 12 

2.2 Differencing in TPLs................................................................................. 12 

2.3 Differencing in DVPLs ............................................................................. 19 

CHAPTER 3: EQUIVALENCE OF DATA FLOW PROGRAMS .................................. 23 

CHAPTER 4: COMPARISON ALGORITHM ........................................................... 28 

4.1 Counting differences ................................................................................. 28 

4.2 The comparison algorithm ........................................................................ 32 

4.2.1 Further optimisation of the search .................................................... 36 

4.2.2 Practical issues .................................................................................. 37 

4.2.3 Correctness and performance............................................................ 38 



 
 

v 

CHAPTER 5: EXPERIMENTAL RESULTS AND EVALUATION ............................... 42 

5.1 Algorithm performance in deeply-nested structure programs................... 43 

5.2 Using sub-graph isomorphism for methods with large number of 
operations in their diagrams ...................................................................... 44 

CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH ....................................... 46 

6.1 Conclusions ............................................................................................... 46 

6.2 Future work ............................................................................................... 47 

BIBLIOGRAPHY.................................................................................................... 50 

APPENDIX A ....................................................................................................... 54 

APPENDIX B ....................................................................................................... 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vi 

List	  of	  Tables	  

Table 5-1. Two very large programs for experiments................................................... 42 

Table 5-2. Experiment test data..................................................................................... 43 

Table 5-3. Testing non-equivalent methods .................................................................. 44 

Table 5-4. Testing non-equivalent methods with large numbers of operations in their 
cases ............................................................................................................. 44 

	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 

List	  of	  Figures	  

Figure 1-1 Hieroglyphics [1] ............................................................................................. 1 

Figure 1-2 User Registration Data Flow Chart [4] ............................................................ 3 

Figure 1-3 X-Tango animation of the quicksort algorithm [10]........................................ 4 

Figure 1-4 Visualizing the age of program code changes [10].......................................... 5 

Figure 1-5 Prograph method quicksort .............................................................................. 7 

Figure 1-6 A sample program of LabVIEW...................................................................... 8 

Figure 1-7 A VEE program to find maximum elements in an array [23].......................... 9 

Figure 1-8 A Simulink program for simulating the motion of a bouncing ball [2] ........... 9 

Figure 2-1 A simple program with one main procedure and its corresponding PDG ..... 15 

Figure 2-2 A program with two procedures and its corresponding SDG ........................ 17 

Figure 2-3 Prograph comparison tool .............................................................................. 20 

Figure 2-4 LabVIEW VIs comparison............................................................................. 21 

Figure 2-5 SimDiff comparison models [50]................................................................... 22 

Figure 3-1 Isomorphic graphs that violate equivalence conditions ................................. 25 

Figure 4-1 What are the differences?............................................................................... 28 

Figure 4-2 Counting differences between operations ...................................................... 29 

Figure 4-3 Directed acyclic graphs corresponding to the cases in Figure 3-1................. 30 

Figure 4-4 The search tree structure. Counts of square nodes can only decrease during 
search, and Counts of circular ones can only increase................................... 33 

Figure 4-5 (1) Search down a path stops at a node X with no children. (2) Cut-off occurs 
when C(Y) becomes 0.................................................................................... 35 

Figure 4-6 The value alpha(Y) used to cut off search in step 5 is inherited from node Z 
via steps 2 to 4................................................................................................ 36 

Figure 4-7 The search tree structure. Counts of square nodes can only decrease during 
search, and Counts of circular ones can only increase................................... 37 

Figure 4-8 Search below the node consisting of these two cases will terminate since there 
are no subgraph isomorphisms....................................................................... 41 

Figure 4-9 The algorithm determines that methods fact-a and fact-b are semantically 
equivalent ....................................................................................................... 41 

 
 
 
 
 
 



 
 

viii 

Abstract	  

The diff utility is an important basic tool, providing a foundation for many of the 

fundamental practices of software development, such as source code management. While 

there are many file differencing tools for textual programming languages, including some 

that look at more than simple textual variations, there are few for visual programming 

languages. We present an algorithm for comparing programs in structured visual dataflow 

languages; that is, languages in which dataflow diagrams are embedded in control 

structures. Using either subgraph or maximum common subgraph isomorphism for 

matching dataflow diagrams, our algorithm compares programs to determine whether 

they are semantically equivalent, and if not, to discover the differences between them. 

We use the visual language Prograph for illustration; however, the mechanism we are 

proposing could be applied to any controlled dataflow language, such as LabVIEW. 
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Chapter	  1: Introduction	  

1.1 The	  evolution	  of	  visual	  languages	  

A Visual Language (VL) refers to a way of using images and diagrams for 

communication purposes. VLs have been used since the dawn of human history. In 

ancient times, words and images already played an important role in communication 

between people. They often used cave paintings to express their thoughts in simple 

sketches and drawings. The ancients also exploited images in the use of languages, such 

as pictographs, ideograms, phonograms, and hieroglyphics [1]. In these languages, each 

graphic symbol can be referred directly or indirectly. For example, Figure 1-1 shows an 

example of ideogram to represent, “to eat” or “to drink”. 

 
Figure 1-1 Hieroglyphics [1] 

Although VLs have had a long history, they reached their turning point with the 

advent of low-cost graphic computers. In 1983, with the introduction of Macintosh 

computers by Apple Computer Inc., people could communicate with a computer by a 

mouse, keyboard, and graphical user interface instead of a simple command-line 

interface. More importantly, Macintosh computers provided an ability to integrate the use 

of diagrams and images for communication. For computer users, some obvious benefits 

of this innovation were that users could delete a file or folder by dragging to the trash, 

rename files, or move files. 

Although diagrams, such as Goldstine and von Neumann flow diagrams, PERT and 

CPM Charts [1], were already being used at this time, they were mainly paper-based. As 

the popularity of graphic user interfaces (GUI) for personal computers increased, 

researchers began to investigate the benefits of images and diagrams in computer 

software development. Unfortunately, software developers had to continue using text 

languages to write complex software programs and develop GUI programming. In an 

effort to resolve this shortcoming, there was great interest in exploring the direct use of 

diagrams in software development. The advent of graphic computers and the lack of 
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adequate development tools led to intensive research on visual tools for software 

development, such as visual software project management tools, integrated development 

environments (IDEs), and visual tools for software modelling and engineering [2]. 

1.2 The	  use	  of	  visual	  tools	  in	  software	  engineering	  

Today, the demand for software applications is increasing at an astounding rate. 

They are used in many areas, including aerospace, nuclear power generation, financial 

markets and so on. A virtual army of programmers, designers, and project managers are 

employed in the computer industry. However, software development is an intricate 

process requiring the combination of many disciplines from modelling and design to code 

generation, project management, testing, deployment, change management, and beyond 

[3]. In the software design phase, designers need to analyze and understand customer 

requirements from purely textual descriptions. A good design plan helps developers to 

understand project requirements in the coding phase. Nevertheless, not all software 

requirements can be expressed efficiently in textual languages in order, for instance, to 

display the relationship between database elements or draw electronic circuits. 

Additionally, a software project can involve many developers for many years. Over the 

years, such a project can include millions of lines of code. The enormous size of software 

programs, together with a lack of well designed documentation leads to the problem that 

understanding, analyzing, changing, and modifying code is extremely time-consuming 

and costly.  

In order to produce a reliable product at minimum cost, one approach to assist 

software engineers in coping with program complexity and increase programmer 

productivity is the use of visualization tools. Software visualization tools take advantage 

of graphical techniques to build a visual representation of the structure and behaviour of a 

program. Software structure is intricate and challenging to understand, so these 

visualization tools aid both designers and programmers to understand and clarify 

software products. The ultimate goal of visual tools is to aid the comprehension of 

software systems and improve the productivity of the software development process.  

In recent years, as the size and complexity of software projects has increased, 

visualization tools have become very important for the software development process. A 
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wide variety of software visual tools supporting software development in accordance 

with user needs and targets has been developed. 

1.2.1 CASE	  tools	  

Since the beginning of computing, one of the principal efforts to improve the 

software development process has been to alleviate the intervention of the human effort 

in the software development cycle. This aim is achieved by applying computer-aided 

software engineering (CASE) as a visualization tool to ease the specification, design, 

implementation and management of the software process. One typical example of 

visualization CASE tools is VisualCase [4]. Figure 1-2 depicts a user registration process 

by the flow chart diagram. CASE tools can also be used to visualize software 

maintenance processes, data modelling tools, and database relationships. 

 
Figure 1-2 User Registration Data Flow Chart [4] 
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1.2.2 UML	  

Unified Modeling Language (UML) is widely accepted as a standard for the 

general-purpose modeling of software systems in the field of software engineering. UML 

uses a set of graphical notations to visualize all phases of software development. For 

example, EJB and Java™ UML visual editing [5] supports the capacity to visualize class 

diagrams in Java. Visual Paradigm SDE for Visual Studio [6] provides a set of tools to 

build a visualization of database modelling, requirement modelling, and object-relation 

mapping.  

1.2.3 Other	  tools	  

Mili and Steiner [7] discuss two software visualization tools named “Jinsight” and 

“GraphViz”. Jinsight visualizes “the dynamic behaviour of Java programs” and allows 

the user to visualize and analyze the performance and understandability of Java programs 

through an execution view, object histogram view, or table view [8]. Graphviz displays 

structure information through diagrams and graph networks [9].  

 
Figure 1-3 X-Tango animation of the quicksort algorithm [10] 
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Diehl [11] describes StackAnalyzer, X-Tango, and SeeSoft as visualization tools 

for the software development. StackAnalyzer provides the visualisations of the stack 

usage of an application using call graph or control flow graph visualization to help 

programmers to analyze, predict, and optimize the program [12]. X-Tango [13] is a 

general purpose algorithm animation system to visualize the execution of algorithms. 

Figure 1-3 depicts a process of sorting an array with the quicksort algorithm. The pivot 

element is represented by a specific color, while the outline box of the elements 

symbolizes the current recursive calls. 

SeeSoft [14] is a visualization tool that shows the evolution of a software program 

by the use of colour. Red represents the most recently updated code, while blue is the 

least recently changed code. Figure 1-4 shows an example of the visual representation of 

a program history. 

 
Figure 1-4 Visualizing the age of program code changes [10] 
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1.3 Visual	  Programming	  Languages	  

In this section, we give a general overview of what Visual Programming Languages 

(VPLs), explain briefly how they function and give brief descriptions of some 

contemporary VPLs, both general-purpose and domain-specific. Although visual tools 

already play a crucial role in software development, in the coding phase, developers still 

need to deal with the complexity of programs coded in textual programming languages 

(TPLs). In an effort to alleviate the complexity of programming tasks, researchers have 

investigated the direct use of graphics in programming tasks called “Visual 

Programming” or “Graphical Programming” [15]. There has been a recent explosion of 

interest in VPLs, and some visual programming systems have been remarkably successful 

in both the software industry and academic research [16,17]. The main difference 

between VPLs and software visualization is their intended goal: VPLs aim to make 

programming tasks easier by using graphical notation to build programs, while software 

visualization strives to help programmers cope with program complexity.  

A VPL is a programming language that uses a wide variety of visual symbols, such 

as “spatial relationship”, icons, or shading to represent the structure of a program, so that 

the programmer can have a better understanding of the program he or she is building. In 

VPLs, text does not play an important role except for comments, names of entities, or 

variable values. A VPL program is not necessarily translated into text at any time, 

including when compiling or debugging [2], as translating to text is redundant since the 

VPL by itself provides all the necessary expressive power. Research have shown that for 

many tasks VPLs outperform TPLs because a visual representation of program structure 

helps software developers to analyze, code, debug, and manage programs [2,18]. 

Although some programming languages, like Visual C++ [19] or Visual J++ [20], appear 

to be similar to VPLs, they are, in fact, not VPLs. Those TPLs only take advantage of 

graphical techniques and visualization to ease programmer programming tasks, not to use 

visual notations to construct programs directly [10]. Some examples of VPLs are 

Prograph	  [21], LabVIEW [16], Simulink [22] and VEE [23].  
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1.3.1 Prograph	  

Prograph is an object-oriented, dataflow VPL (DVPL) intended for general-purpose 

application development [24]. The concept of dataflow programming is commonly used 

in many VPLs. In dataflow programming, each program is a directed graph where the 

nodes are operations and edges are datalinks representing the flow of data between 

operations [25]. Figure 1-5 illustrates a Prograph program to sort an array by the 

quicksort algorithm. A detailed explanation of Prograph will be provided in Chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5 Prograph method quicksort 
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1.3.2 LabVIEW	  

LabVIEW, a DVPL that provides libraries and a programming environment for 

hardware devices, has achieved great industrial success [16]. Like Prograph, LabVIEW 

can be used to program any algorithm, but the product itself is domain-specific, for 

example, providing extensive support for accessing instrumentation hardware. Figure 1-6 

depicts a LabVIEW program that computes the factorial of an integer. The icon “I32” at 

the upper left represents the user interface control that provides the input integer, while 

the constant 1 initialises the result variable.  The block diagram in the centre is a “for 

loop” iteration. The “for loop” variable “i” counts iterations.  It begins at 0 so it will go 

through the range of 0 to N-1 where N is the number of iterations. 

 
Figure 1-6 A sample program of LabVIEW 

1.3.3 VEE	  

VEE is another DVPL and development environment used with data acquisition 

devices, such as digital voltmeters and oscilloscopes, and source devices like arbitrary 

waveform generators and power suppliers. Figure 1-7 is a VEE program to find the 

maximum number in an array. The “Random_Number” function generates ten random 

numbers and adds them to the “Collector-Create Array”. Then the function “max(x)” 

finds the maximum value in the array and displays the “Max Value” [23]. 
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Figure 1-7 A VEE program to find maximum elements in an array [23] 

1.3.4 Simulink	  

Simulink is a domain-specific dataflow visual programming environment for 

simulating dynamic and embedded systems [22]. Figure 1-8 depicts a Simulink program 

that simulates “the motion of a bouncing ball by continuously re-computing its velocity 

and position” [2]. 

 
Figure 1-8 A Simulink program for simulating the motion of a bouncing ball [2] 

Most VPLs that have achieved some level of industrial success are based on the 

data flow model, and are either domain-specific or general purpose, and structured or un-
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structured, where a structured DVPL (SVPL), is one in which the data flow diagrams are 

acyclic, enclosed in control structures of some kind, and have the single-assignment 

property. Some examples are as follows.  

Although Simulink, a DVPL for simulation of physical systems, provides some 

control structures, it is primarily unstructured, allowing feedback loops appropriate to its 

application domain [26]. LabVIEW and VEE are structured and domain-specific, 

designed for data acquisition and virtual instrument control [16,23]. Prograph is 

structured and general purpose [24]. During its commercial life, Prograph CPX was used 

in a range of projects in which C++ would have been the usual choice [17]. At present, to 

our best knowledge, it is the only visual programming environment that has been used in 

this way for industrial software development, as a replacement for traditional text-based 

tools. Hence, in considering software development support tools, we have focussed on 

SVPLs. 

1.4 Motivation	  for	  research	  

Although VPLs have been the subject of continuing research for at least the last 25 

years, they, unlike their textual counterparts, have made few inroads into the world of 

industrial software development and are not considered a part of mainstream software 

engineering. While it has become the norm to use visual representations to specify the 

architecture of software systems, visual representation of algorithms has not caught on as 

a replacement for or a supplement to standard, imperative, TPLs. This lack of success is 

at least partly due to the reluctance of professional developers to invest in learning about 

a new technology [27]. However, unless the new technology satisfies certain criteria, the 

professional developer should be wary of adopting it, as participants noted in a focus 

group study conducted by Apple to determine the viability of Prograph CPX as a devel-

opment environment for Windows applications [28]. In particular, to become a viable 

alternative to textual programming, a VPL should interoperate with standard textual 

languages, by, for example, providing a robust, reversible translation between visual and 

textual programs [29]; include modern language features such as exception handling [30]; 

and include visual counterparts of the many code management and analysis tools 

available for textual languages, which is the focus of the work reported here. 
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One of the mainstays of many of the code management tools used by software de-

velopers is differencing, exemplified in its simplest form by the UNIX diff command 

which finds the lexical differences between two text files or source programs. Among 

other things, it is used, to manage modifications and rollback changes, reveal anomalies 

during debugging, manage concurrent changes made by several people, and merge 

changes from different versions of programs. Differencing underpins many source code 

control systems such as CVS [31] and SVN [32]. Although there has been extensive 

research on differencing algorithms for TPLs, a lack of good differencing tools is one of 

the main obstacles preventing the popular use of VPLs for professional developers. 

Here, we propose a differencing algorithm in VPLs to eliminate one of the 

impediments to their industrial adoption. In Chapter 2, we discuss differencing in textual 

software development and briefly review the existing differencing tools in VPLs. In 

Chapter 3, we define semantic equivalence, an equivalence relation on program elements 

in an SVPL, while in Chapter 4 we present an algorithm for finding semantic 

equivalence, or discovering semantic differences. Experimental results and an evaluation 

are discussed in Chapter 5. Finally, we make some concluding remarks and discuss future 

work in Chapter 6. 
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Chapter	  2: Background	  

2.1 Software	  development	  support	  tools	  for	  TPLs	  

Software development support tools, such as developing tools, analyzing tools, 

testing tools, debugging tools, and maintaining tools, are programs or applications 

devised to ease the tasks of software developers. When the size and complexity of 

software projects increases, there is a need to develop some source-code control tools to 

manage the huge amount of code. For example, the purpose of testing tools is to find 

software bugs when executing programs, while debugging tools assist programmers to 

locate a bug in a large program. Initially, these tools were very simplistic, but they have 

since become quite complex and have been incorporated into a powerful IDE. IDEs help 

to increase programmer productivity and ease programming tasks. They include some 

valuable features, such as, a source-code editor, a compiler, and a debugger. Some typical 

commercial IDEs are Visual Studio 2008 for .NET development and Eclipse for Java. 

One other indispensable integrated feature in IDEs is differencing tools. Differencing 

tools locate all the differences between two files or programs and provide information 

which can then be used by other source code management tools to generate a change 

history. Differencing tools also allow programmers to see the history of changes between 

different versions of a program made by many developers. In the next section, we present 

a brief overview of differencing tools for TPLs. 

2.2 Differencing	  in	  TPLs	  

In TPLs, differencing tools play a vital role in finding differences between two 

programs. When a software project is large and involves many software developers, the 

complexity of the software program also increases. As time goes by, and new 

programmers join this project to fix bugs, find discrepancies, or reveal underlying flaws 

between two versions of a program, they need to analyze and understand a large amount 

of code made by previous developers. This task can be very frustrating and time-

consuming. There is thus a need not only to know the changes made by other 

programmers but to ease program understanding and maintenance tasks. 
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File differencing first appeared in the UNIX operating system in the early 1970s, 

using an algorithm reported in Hunt and Mcllroy [33]. The seminal algorithms for the diff 

command were first proposed in Miller and Myer [34,35] and Ekkonen [36]. The 

traditional UNIX utility diff is designed to discover differences between text files rather 

than programs. This utility is too simple to present accurate results for the differences 

between two programs. Moreover, this comparison tool often produces irrelevant results; 

for example, a minor difference, such as an extra space or line break can contribute sig-

nificantly to the result of a comparison, since diff looks for physical differences rather 

than syntactic ones. 

In response to these limitations, many syntactic diff algorithms have been 

developed that build syntax trees representing the structure of programs. Comparing two 

programs is equivalent to comparing their trees [37]. For instance, Cdiff uses a tree-

matching algorithm to compare syntactic differences between two programs in the C 

language [38]. Syntactic algorithms can more accurately locate differences, such that 

extra spaces or line breaks can be eliminated. However, syntactic comparison utilities 

also have a critical shortcoming: they cannot find the semantic differences between two 

programs because the comparison is entirely based on the program text and syntactic 

structure [37]. One syntactic difference between two programs can result in many 

semantic differences which a syntactic differencing algorithm cannot locate. 

To overcome this limitation, various comparison methods have been proposed that 

build structural representations of programs, allowing semantics to be taken into account. 

Two such representations are program dependence graphs (PDGs) and system 

dependence graphs (SDGs) which include both control and data flow information. 

Binkley [39] presents an empirical study to justify the helpfulness and usefulness of 

semantic differencing algorithms for the tasks of program comprehension. Semantic 

differencing tools based on applying graph isomorphism to subgraphs have achieved 

some level of success [40,41]. In the next paragraph, we will present some definitions of 

PDGs and SDGs as discussed in Horwitz [42]. 

The PDG of a program is a directed graph the vertices of which represent the 

assignment statements and the predicate statements, such as “if-else” or “while”. Each 

PDG starts with an “ENTRY” vertex representing entrance into the procedure. The edges 
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between vertices represent either control or data dependence. Control dependence 

edges, which are labelled either true or false, represent the conditional structures of 

programs in TPLs, such as if-else or while structures. The source of a control dependence 

edge can be the ENTRY vertex or a predicate vertex containing a condition to be tested, 

while the destination of a control dependence edge can be an assignment statement that is 

dependent on the source. Figure 2-1 depicts a program for computing the factorial of 10, 

together with the PDG of the program. In the diagram, the bold arrow edge from the 

vertex “while i<10” to the vertex “fact=fact*i” is a control dependence edge, indicating 

that the condition “while i<10” determines whether or not the assignment statement 

“fact=fact*i” is executed. 

Data dependence edges include flow dependence edges and def-order 

dependence edges. The flow dependence edges represent the flow of values through a 

program. There is a flow dependence edge from vertex v to vertex w if: 

• v defines variable x 

• w uses variable x 

• There is no execution path from v to w passing through a vertex that defines x. 

There are two sub-types of flow dependence edges: loop independent and loop 

carried edges. A flow dependence edge from v to w is carried by a loop L if: 

• There is an execution path from v to w that includes a flow dependence edge 

from a statement to the predicate statement of loop L. 

• The statements corresponding to v and w are in the body of the loop L. 

For example, in the diagram of Figure 2-1,”i= i+1” defines the value of i, while 

“fact= fact*i” uses the value of i; both statements are enclosed in the loop “while i<=10”, 

and there is a flow dependence edge from “i=i+1” to the predicate “while i<10”; thus, 

there is a loop carried edge from “i=i+1” to “fact=fact*i”.  

In contrast, if there is no flow dependence edge to the predicate statement, the data 

dependence edge is called loop independent. In the diagram of Figure 2-1, statement 

“fact=1” defines the variable fact, while “fact=fact*i” uses the variable fact and there is 

no flow dependence edge from w or v to any predicate statement. Hence, there is a loop 

independence edge from “fact=1” to “fact=fact*i”. 
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Def-order dependence edges exist to guarantee that the PDG of each program is 

unique and the PDGs of two different programs are not isomorphic. In a program, there is 

a def-order dependence edge from v to w if: 

• Both v and w define the same variable x and are in the same branch of a 

conditional statement. 

• There are flow dependence edges from both v and w to a vertex s. 

For example, in the diagram of Figure 2-1, both “i=2” and “i=i+1” define the value 

of i and there are flow dependence edges from each of them to “while i<10”, so there is a 

def-order dependence edge from “i=2” to “i=i+1”. 
void Factorial10() 
{ 

fact=1; 
i=2; 
while (i< 10) 
{ 

fact = fact * i; 
i=i+1; 

} 
} 

 
 

Figure 2-1 A simple program with one main procedure and its corresponding PDG 

An SDG is a graph consisting of all the PDGs of a program, including one main 

procedure and other secondary procedures. Figure 2-2 depicts a program with two 

procedures, together with the SDG of the program including the two PDGs of the main 

procedure and the Factorial procedure. The white nodes belong to the PDG of the main 

fact=1 i=2

fact=fact*i

while(i<10)

i=i+1

ENTRY

FinalUse(i) FinalUse(i)

T T T T T

T
T

Control dependence edge
Loop independence edge
Loop carried  dependence edge
Def-order dependence edge
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procedure, while the black nodes represent the PDG of the Factorial procedure. The grey 

nodes are introduced to represent the passing of parameters between the PDG containing 

the call and the PDG of the corresponding procedure. Note that the ENTRY vertex of the 

PDG of a procedure now becomes the ENTER vertex, plus the procedure name. 

The SDG includes two new vertices called formal-in (formal parameters inputs) 

and formal-out (formal parameters outputs) vertices, which are control dependent on the 

Enter vertex of the procedure, as well as new vertices called actual-in (actual parameter 

inputs) and actual-out (actual parameters outputs) vertices, which are control dependent 

on a call vertex representing a procedure call. 

To connect the PDGs of a program to create its SDG, three new kinds of edges are 

established: call edge connects a call vertex to the corresponding procedure definition 

site; parameter-in edges connect between actual-in and formal-in; and parameter-out 

edges connect between formal-out and actual-out. In addition, SDGs include a new kind 

of edge called summary edges which connect some actual-in vertices and actual-out 

vertices when the values of actual-in vertices may potentially affect the values of the 

actual-out vertices. In the diagram of Figure 2-2, the four vertices: “xln:=x”, “rln:=r1”, 

“xln:=y”, and “rln:=r2”are actual-in vertices, while “r1:= rOut” and “r2:=rOut” are 

actual-out vertices. The two new vertices “x:=xln” and “r:= rln” are formal-in vertices, 

while “rOut := r” is a formal-out vertex. There are also two summary edges from 

“xln:=x” to “r1:=rOut” and from “xln:=y” to “r2:=rOut” because the values of x and y 

affect the output of the function. Also, the actual-in vertices and the formal-in vertices are 

connected by parameter-in edges, and there are two parameter-out edges from the formal-

out vertex “rOut:=r” to two actual-out vertices “r1:=rOut” and “r2:=rOut”. 
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void main() 
{ 

x = 10; 
y = 20; 
Factorial(x,r1); 
Factorial(y,r2); 
Print (r1); 
Print (r2); 

} 

void Factorial(int x, int r) 
{ 

r = 1; 
i = 2; 
while (i<=x){ 

r = r * i; 
i=i+1; 

} 
} 
 

 
Figure 2-2 A program with two procedures and its corresponding SDG 

 

These graphs capture some of the semantic properties of programs, and, together 

with a technique called slicing, can be used to find semantic differences between 

programs [43]. A slice of a program with respect to some criterion is the set of all 

r=1 i=2
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i=i+1
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statements that satisfy the criterion. For example, a criterion might be specified as a 

subset of the program variables, in which case the slice would be the set of all statements 

that could affect the value of any of these variables. Slices can be categorized as: static or 

dynamic slice, backward or forward, and interprocedural or intraprocedural. A static slice 

is computed without considering the program inputs, while a dynamic slice is calculated 

with respect to a specific test case. A backward slice is a program slice the statements of 

which are discovered by a backward traversal of PDGs starting at the statements affected 

by the slicing criterion and a forward slice is similar to a backward slice, but the 

statements are determined in the forward direction starting at the statements affected by 

the slicing criterion. Finally, an intraprocedural consists of statements from only one 

procedure and is computed from the corresponding PDG, while an interprocedural slice 

consists of statements from several procedures and is computed from the SDG derived 

from the program which includes these procedures. PDGs, SDGs and program slicing are 

used widely in many applications, such as program debugging, program differencing, 

program integration, software maintenance, and software testing. Various slicing 

techniques are discussed in Tip [43] and Xu et al. [44]. Here, we focus on the use of these 

techniques for finding semantic differences. 

The use of PDGs and graph isomorphism to detect semantic differences has been 

intensively researched. Horwitz et al. [45] state that if two PDGs of two programs are 

isomorphic, the programs are strongly equivalent. Strong equivalence means that with the 

same inputs, two programs will produce the same outputs. 

Yang et al. [46] propose the Sequence-Congruence Algorithm using program 

representation graphs (PRGs), a variant of PDGs in which extra variables are introduced 

to obtain the single assignment property, for discovering program components that have 

identical execution behaviours. This algorithm will detect larger equivalence classes than 

those discovered by comparing slices. 

Horwitz [42] proposes three algorithms to calculate both semantic and textual 

differences. This technique uses PRGs and a partitioning algorithm to separate program 

components into partitions so that two program components will produce equivalent 

behaviours, if they are in the same partition. These algorithms have been proved to be 
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more accurate than the algorithms using program slicing because they deal with smaller 

components of code than the algorithm using program slicing [43]. 

Horwitz et al. [45] and Binkley et al. [48] present a technique using PRGs to 

determine semantic differences for integrating two versions of a program based on 

comparing their intraprocedural slices for the program integration algorithm. The 

algorithm integrates two modified versions A, B from a program Base by merging their 

PDGs with respect to their semantic differences. 

Binkley [49] proposes two algorithms using PDGs and SDGs to reduce the cost 

regression testing. The cost of regression testing between two versions of programs can 

be reduced by detecting the semantic differences and applying incremental regression 

testing. This paper also provides an empirical study to support that semantic difference 

can be used as an aid for detecting errors during debugging and regression testing. 

Anderson and Teitelbaum [41] present CodeSurfer, one of the most advanced 

commercial analysis tools for detecting flaws in software programs based on the 

dependence–graph representation of a program. CodeSurfer uses PDGs, SDGs and 

program slicing to provide a graph library for accessing to and querying on SDGs for the 

purpose of software investigation and maintenance, for example, finding the dependency 

between two selected statements or locating where a variable was assigned its value. 

2.3 Differencing	  in	  DVPLs	  

One important improvement of semantic differencing tools over syntactic 

differencing tools in TPLs is that the differences are defined based on program input-

output behaviours rather than syntactic changes [40]. From the perspective of structure 

reflecting semantics, DVPLs have an inherent advantage over TPLs. To apply semantic 

differencing techniques to programs written in the standard imperative TPLs on which 

the software industry relies, the graphs that represent the semantics must first be 

constructed as described above. SVPLs are functional, however, so their semantics, like 

those of a functional language, are closely aligned with their syntax, a dataflow graph at 

the lowest level [25]. Hence no construction phase is necessary: to compare DVPL 

programs at the lowest level, we need only compare dataflow graphs. Differencing tools 

are available for Prograph, LabVIEW and Simulink.  
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The Windows version of Prograph provides a simple file comparison tool. 

However, the results show only some physical information, such as names, positions, in-

arities, out-arities, and method types. As an illustration, Figure 2-3 shows a comparison 

between Prograph methods. The two windows on the top show the methods for 

evaluation as highlighted, while the two windows on the bottom show the differences 

between them. It is clear that these two methods have different names, positions, and in-

arity. This comparison produces only superficial syntactic differences, and does not 

provide any useful information about the structural (and therefore semantic) differences 

between dataflow diagrams. 

 
Figure 2-3 Prograph comparison tool 

LabVIEW provides a graphical comparison tool to manage different versions of 

Virtual Instruments (VIs). This tool compares two VIs and shows the differences between 

them by looking for a maximal pair of isomorphic subgraphs. However, it matches 

vertices only if they are syntactically identical, ignoring semantic equivalence that might 
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be determined by comparing the diagrams that implement the vertices. Hence, although it 

is more sophisticated than the mechanism provided by Prograph, it is still essentially a 

syntactic rather than semantic tool [16]. When the two VIs in Figure 2-4 are selected for 

comparison, LabVIEW starts finding a list of differences. Figure 2-4 shows a list of 

differences and their descriptions between two VIs. 

 
Figure 2-4 LabVIEW VIs comparison 

The first box lists the differences, while the second shows the details of each 

difference. When we click on the “show difference” button, the selected difference detail 

will be shown graphically. The diagrams of the two VIs are displayed side-by-side and 

the items in the diagrams corresponding to the difference selected in the “Difference” 

panel are outlined with circles as illustrated in the figure.  

SimDiff [50], a model comparison tool for Simulink has functionality similar to 

that of the LabVIEW utility, providing a single-level syntactic match between data flow 

graphs. It provides a graphical display of differences between two Simulink models, 

which can be additions, updates, deletions, and so on. Each type of change is highlighted 

in a specific colour. Figure 2-5 depicts an example in which two Simulink models are 
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compared. SimDiff detects both cosmetic changes, for example, a simple layout change 

of the two icons “Random aircraft motion” in the left of both diagrams, and syntactic 

changes, for example, the kind of changes, such as inserts, deletes, updates that must be 

made to transform the icon “Filter1” to the icon “Filter2”. 

 

 
Figure 2-5 SimDiff comparison models [50] 

Although differencing tools already play a role to some extent in VPLs, the existing 

ones, described above, are quite primitive compared with those that are available for 

TPLs. In the following chapters, we present a definition of equivalence for SVPLs and an 

algorithm for comparing two visual dataflow programs. The relationships between 

“strong equivalence”, “semantic difference” and Horwitz’s [42] algorithm, discussed 

above, are analogous to the relationships between our definition of equivalence for 

SVPLs, our notion of semantic difference, and the algorithm for semantic comparison of 

SVPL programs. 
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Chapter	  3: Equivalence	  of	  data	  flow	  programs	  

We use Prograph as the sample language on which to base our discussion of com-

parison in SVPLs. Although we assume the reader is familiar with Prograph, we will 

briefly review the example in Figure 1-5 in order to introduce some notation and 

terminology. A detailed description of Prograph can be found in [24]. 

In Prograph, a program is a set of methods together with a set of persistents, which 

are globally accessible storage locations. A persistent always has an associated value. The 

initial value of a persistent is called its static value. A method in Prograph consists of a 

sequence of cases, each of which is a data flow diagram of operations connected by 

datalinks. For example, the two cases of a method quicksort are shown on the top of 

Figure 1-5. Every operation has a type, which is one of input bar, output bar, primitive, 

match, constant, persistent or defined. A defined operation can be a call or a local. Each 

case has exactly one input bar, usually adorned with little circles denoting roots (data 

sources), and exactly one output bar, adorned with terminals (data sinks), which respec-

tively pass values into and out of the diagram. In the first case of quicksort there is a 

match operation, named (), which tests the value flowing into it from the input bar, and a 

constant () which passes its value to the output bar. In the second case of quicksort, de-

tach-l, attach-l, and (join) are primitive operations, which invoke built-in functions; the 

two quicksort operations are calls, which initiate executions of the quicksort method; 

and partition is a local operation which represents a sequence of cases, in the two 

windows at the bottom of the figure. 

Each operation has a sequence of terminals along the top, where data flows in, and 

a sequence of roots along the bottom where results flow out. Each terminal and root has a 

type, which can be simple, list or loop. All terminals and roots in the example are simple, 

except for the roots and the rightmost terminal of the partition operation, which are of 

type list. Each operation also has a control associated with it. In Figure 1-5, the match () 

in the first case of quicksort, and the primitive > in the first case of partition both have 

the control next-case-on-failure , while all other operations have the control continue-

on-success, which has no visual representation. When quicksort is invoked, its first case 

is attempted. If the incoming value is the empty list, the match succeeds, the empty list is 
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passed to the output bar and execution of quicksort concludes. Otherwise, the first case 

is abandoned, and the second case tried. The head is removed from the list, and the tail 

partitioned into elements that are less than the head, and those that are not. The two lists 

are then sorted, and the resulting sorted list assembled and passed to the output bar. 

The only operation type not represented in Figure 1-5 is persistent. A persistent 

operation refers to a persistent by name, and may have one at most one terminal, and at 

most one root for, respectively, setting and getting the value of the associated persistent. 

The example also does not include a synchro, which is a link of the form  

from one operation to another that enforces order of execution, an example of which can 

be found in Figure 3-1. 

To streamline the definitions below, we introduce some notation as follows. If P is 

a program, opers(P) denotes the set of all operations occurring in P. If C is a case, 

opers(C) denotes the set of operations that are the nodes of the data flow diagram of C. If 

M is an operation, terminal or root, type(M) denotes the type of M. 

If M is a call, ref(M) denotes the sequence of cases of the corresponding method. If 

M is a local, ref(M) denotes its sequence of cases. If M is a simple or persistent opera-

tion, ref(M) denotes its name. Note that input and output bars behave like primitives in 

the sense that they invoke built-in functions that perform common tasks; so, for the pur-

poses of the definition that follows, we can assume that all input bars have the same 

name, and all output bars have the same name. 

If M is an operation, then roots(M), terms(M) and arity(M) denote, respectively, 

the sequence of roots of M, the sequence of terminals of M, and the pair of integers 

(|terms(M)|,|roots(M)|). 

 If X is a sequence, Xi denotes its ith element. 

Definition 1: If P is a program and ≡ is an equivalence relation on opers(P), then ≡ is 

called a semantic equivalence iff ∀B,C ∈ opers(P), if B ≡ C then 

(1)  arity(B) = arity(C), and 

for each i (1 ≤ i ≤ |terms(B)|), type(terms(B)i) = type(terms(C)i), and 

for each i (1 ≤ i ≤ |roots(B)|), type(roots(B)i = type(roots(C)i). 

(2)  B and C have the same control. 

(3)  3.1  type(B) = type(C), and 
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      3.2   if B is simple then ref(B) = ref(C) 

      3.3   else |ref(B)| = |ref(C)|, and ∀i (1 ≤ i ≤ |ref(B)|), there is  

a bijection f: opers(ref(B)i) → opers(ref(C) i) such that 

3.3.1. ∀A∈ opers(ref(B)i), A ≡ f(A), and 

3.3.2. ∀D,E ∈ oper(ref(B)i): 

(a) if there is a datalink from roots(D)j to terms(E)k for some j and k  

then there is a datalink from roots(f(D))j to terms(f(E))k 

(b)  if there is a synchro from D to E  

then there is a synchro from f(D) to f(E). 

Two operations M1 and M2 in a program P are said to be semantically equivalent iff 

there exists a semantic equivalence on opers(P) such that M1≡M2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Isomorphic graphs that violate equivalence conditions 

Semantic equivalence classifies operations according to what they compute. For 

simple operations, this is easily determined, and depends only on the names of the op-

erations. Functionality of a defined operation is determined by the structure of the 

sequence of cases to which it corresponds. The bijection between data flow diagrams 

defined in 3.3 is a more constrained form of graph isomorphism. For example, condition 

3.3.2(a) requires that datalinks not only connect corresponding operations in two graphs 

as required for isomorphism, but also connect corresponding terminals and roots on those 

operations. So although the two graphs in Figure 3-1 are isomorphic, they violate several 
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of these extra conditions: specifically, the roots of detach-l are connected to the terminals 

of div in a different order, violating 3.3.2(a); the () operations have different controls, 

violating 2; the operations div and div have different types, violating 3.1, and different 

arities, violating 1; the show and display operations have different references, violating 

3.2; and the terminals of show and display have different types, violating 1. 

As noted above, the semantics of structured data flow programs, like the semantics 

of functional programs and unlike those of imperative languages, is closely aligned with 

the syntax. Hence, although the above definition of semantic equivalence appears to be 

purely syntactic, it captures the notion of identical input/output behaviour, as does 

semantic equivalence of textual programs [40]. Specifically, the relationship between 

semantic equivalence and the execution functions of Prograph program elements (defined 

in [17]) is characterised as follows. If P is a program A, B ∈ opers(P) and arity(A) = 

arity(B) = (m,k), then A and B are semantically equivalent iff fA(w) = fB(w) for every m-

tuple w of values, where fA and fB are the execution functions of A and B, respectively. 

While it can be useful to compare two operations in one program, programmers 

frequently want to compare two different versions of a program. Accordingly, we need to 

extend the definition of semantic equivalence. First, we note that if the two programs we 

wish to compare have disjoint name spaces, and we simply combine the two programs 

into one, the above relationship between semantic equivalence and Prograph execution 

functions will still hold in the absence of persistents. If persistents are involved, however, 

we need to ensure that there is a one-to-one correspondence between appropriate subsets 

of the persistents of the two programs. Accordingly, we extend Definition 1, obtaining 

the following definition, in which pers(P) denotes the set of persistents of a program P, 

and value(p) and name(p) denote static value and name of a persistent p. 

Definition 2: If P1 and P2 are two programs, which we can assume without loss of 

generality to have no names in common, A ∈ opers(P1) and B ∈ opers(P2), then A in P1 

is semantically equivalent to B in P2, denoted A[P1] ≡ B[P2] iff for some V1∈pers(P1) and 

V2∈pers(P2), there is a bijection g:V1→V2 such that ∀X∈V1, value(X) = value(g(X)) 

and A≡B, where 

• ≡ is a semantic equivalence relation on opers(P'), 

• P' is the program obtained by combining P1 and P2', and  
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• P2' is obtained by renaming persistent operations in P2 as follows: 

if A is a persistent operation in P2 and ref(A) = G for some G∈pers(P2) 

then rename A to name(g(G)) iff G∈V2. 

Note that the relationship between semantic equivalence and Prograph execution 

functions also holds for this extended definition of semantic equivalence. 
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Chapter	  4: Comparison	  algorithm	  

In this section, we present and discuss an algorithm, that determines whether two 

methods in two programs are semantically equivalent, and if not, finds differences 

between them. Note that, although Definition 1 defines semantic equivalence for 

operations, it embodies as a by-product, the definition of semantic equivalence for 

methods. 

 
Figure 4-1 What are the differences? 

The algorithm uses depth-first search to traverse the two programs, guided by 

heuristics based on estimates of the numbers of differences between the items being 

compared. We say “estimates”, because there may be more than one way to account for 

the differences between two programs. For example, we might decide that the difference 

between the two operations in Figure 4-1 resulted from changing the types of the second 

and third terminals. Alternatively, we might conclude that the difference arose from 

dragging the second terminal to the right of the third. Although this ambiguity might be 

resolved by, for example, looking to see what roots the terminals are connected to, it is 

generally not possible to provide a precise account of semantic differences [40]. 

4.1 Counting	  differences	  

To count differences, we define two functions, Count and Local. Local applies to 

pairs of operations, methods or cases, as well as to subgraph isomorphisms between 

cases, producing an estimate of the number differences which can be observed locally, 

that is, by examining only the structure of its argument. Count applies to isomorphisms, 

and to pairs of operations or methods, producing a count that includes differences 

contributed by other parts of the program. 

Operations: Local((A,B)), the number of differences between two operations A and B, is 

computed according to conditions 1, 2, 3.1, and 3.2 of Definition 1. In view of the 

bijection required by Definition 2, however, condition 3.2 is not applied to persistents, 
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which are discussed later. To illustrate, consider the two operations in Figure 4-2. The 

numbers of roots of these operations differ by 1, violating 1; their first terminals have 

different types, as do their second terminals, violating 1; and the operations have different 

controls and types, violating 2 and 3.1. Hence, in this example Local is 5. Note that we 

have chosen not to compare types of roots (or terminals) if the numbers of roots (or 

terminals) differ.  

 
Figure 4-2 Counting differences between operations 

Comparing methods: If M is a method, we will use |M| as an abbreviation for |ref(M)|. 

When two methods M1 and M2 are compared, the local difference count is computed as: 

   Local((M1,M2))  = ||M1|-|M2|| 

and the total difference count as: 

 Count((M1,M2)) = sum{Count(C1i,C2i) | 1≤i≤n,  

C1i  and C2i are the ith cases of M1 and M2,  

and n = min(|M1|,|M2|}  

+ Local((M1,M2)) 

where Count for pairs of cases is computed as discussed below. Note that we have 

assumed that if one method has more cases than the other, then we should match cases in 

sequence, starting at the beginning, and treat the extra cases at the end of the longer 

sequence as “differences”, that is, items that have been added, and do not correspond 

with anything in the smaller sequence. This is an arbitrary choice, but is cheap to 

compute compared to alternatives involving a search for the best match. 

Cases and isomorphisms: Comparing two cases C1 and C2 is somewhat more 

complicated. First, each case is considered as a directed acyclic graph where the vertices 

are the operations, and there is an edge from A to B iff there is a datalink or a synchro 

from A to B. See, for example, the graphs in Figure 4-3. The set S(C1,C2) of subgraph 

isomorphisms between the two graphs is computed [8], and for each function f in this set, 

several counts are computed, according to conditions in Definition 1, as follows. Note 

that because of their special status as transmitters of values into and out of a case, the 
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input and output bars of one case must be mapped to the input and output bars of the 

other. Hence S(C1, C2) excludes any function which violates this condition. 

 
Figure 4-3 Directed acyclic graphs corresponding to the cases in Figure 3-1 

Condition 3.3 requires a bijection between the cases, but although f∈S(C1,C2) is 

injective, it is not necessarily surjective. A measure of the extent to which f is not 

surjective is provided by 

xoCount(f) = ||opers(C2)|-|opers(C1)|| 

the number of extra operations in the larger case. 

Condition 3.3.2(a) requires that the bijection preserves each datalink in C1. The 

number of mismatched datalinks, dCount, is computed by counting the terminals in C1 

which have datalinks attached that comply with the condition, and subtracting this 

number from the total number of terminals in C1. 

dCount(f) = |{ T | T is a terminal of some A∈opers(C1)}| 

− |{ T | for some A∈opers(C1) and some i, 

T = terms(A)i, |terms(A)| = |terms(f(A))| and  

either there is no datalink 

attached to T and no datalink  

attached to terms(f(A))i  

or for some B∈opers(C1),  

|roots(B)|=|roots(f(B))|, and  

for some j there are datalinks from roots(B)j to T and 

from roots(f(B))j to terms(A)i }| 

detach-l ()

div show

detach-l ()

div display
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The computation of dCount considers all the datalinks in C1 and any datalink in C2 

attached to a terminal of some operation B such that B=f(A) for some operation A of C1. 

However, we need to account for the remaining datalinks in C2, which are counted as 

follows: 

xdCount(f) = |{T | T is a terminal of some  

A∈opers(C2)−{ f(B) | B∈opers(C1)} 

and there is a datalink attached to A }| 

Finally, by condition 3.3.2(b), it is necessary to count mismatched synchros, 

accomplished as the formula as follows: 

xsCount(f) = number of synchros in C1 

+ number of synchros in C2 

− 2|{ A | A,B∈opers(C1) and 

there is a synchro from A to B 

and a synchro from f(A) to f(B) }| 

Using these functions, a count of the local differences between cases that arise from 

subgraph isomorphism f is calculated as follows: 

Local(f) = sum{Count((A,f(A))) | A∈opers(C1)} 

+ xoCount(f) + dCount(f) 

+ xdCount(f) + xsCount(f) 

and the total difference count is computed as: 

Count(f) = Local(f) 

+ sum{ Count(ref(A),ref(f(A))) | A∈opers(C1) and both A 

 and f(A) are defined } 

+ sum{ pCount(ref(A),ref(f(A))) | A∈opers(C1) and both A 

 and f(A) are persistent } 

The function pCount occurring in the last expression, cannot be described in the 

same neat declarative fashion as the others since it deals with persistents, the non-

functional feature of Prograph, similar to non-functional features frequently found in 

other functional languages. According to Definition 2, two persistent operations are the 

same if the persistents they refer to are related by a bijection. This bijection, however, is 
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not known in advance, and must be computed by the algorithm on the fly, as discussed 

below. 

Finally, the local and total difference counts for the cases C1 and C2 are computed 

as follows: 

€ 

Local((C1,C2)) =

1+ ||opers(C1) | − |opers(C2) ||
 + | no. of datalinks in C1 -  no. of datalinks in C2 |
 + | no. of synchros in C1 -  no. of synchros in C2 |
                         if S(C1,C2) =  ∅
∞                      otherwise

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪  

 

 Count((C1, C2)) = min({ Count(f) | f ∈ S(C1, C2) } ∪ {Local((C1, C2))}) 

Note that if there are no isomorphisms between the cases, there is no reasonable 

way to compare them in detail, so we have chosen a formula which gives a rough 

estimate of the difference in size, and is cheap to compute. The 1 in this formula is 

necessary to ensure correctness (Section 4.2.3).  

4.2 The	  comparison	  algorithm	  

Since the structure of the comparison algorithm is a standard depth-first search, we 

will describe it informally first, concentrating instead on its unique features and provide a 

listing later (see Appendix A). For simplicity, we will assume that the programs being 

examined have no persistents, and will discuss later how they are dealt with. Also, since 

local operations can be replaced by operations that call methods, we treat them as such. 

The algorithm traverses a search tree, each vertex of which is either a pair of 

methods, a pair of cases, or an isomorphism between cases. We refer to these as method 

nodes, case nodes and isomorphism nodes, respectively, indicated by M, C and I in 

Figure 4-4, which illustrates the structure of a search tree. The pair of methods or cases in 

a node indicates program elements to be compared, while the structure of the sub-tree 

descending from a node results from propagating this comparison through the calling 

structure of the program, as required by the definitions of the counting functions above. 
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Figure 4-4 The search tree structure. Counts of square nodes can only decrease during 

search, and Counts of circular ones can only increase 

In general, the children of a method node are the case nodes (C11,C21),…,(C1n,C2n) 

where n=min(|M1|,|M2|) and for each i, C1i  and C2i are the ith cases of M1 and M2. 

However, if the method node is a descendent of another method node consisting of the 

same pair of methods, then it has no children. The children of a case node (C1,C2) are the 

nodes consisting of the functions in S(C1,C2), so if there are no isomorphisms between 

the two cases, the case node has no children. The children of an isomorphism node f are 

the method nodes of the form (ref(A),ref(f(A))) where A is a defined operation in the 

domain of f and ref(f(A)) is also defined. The isomorphism node will have no children if 

there is no defined operation A in the domain of f such that ref(f(A)) is defined. Figure 4-

4 shows the structure of a search tree. 

The algorithm applies depth-first, left-to-right search to the search tree, guided by 

heuristics based on estimates of the number of differences between items being 

compared, to compute the Count value for the root node, and find, for each case node it 

visits, the child (isomorphism) node that minimises the number of differences between 

the cases. 
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As search proceeds, the Count value for each node is incrementally computed as 

the search tree below it is explored. The Count value of a case node is the minimum of 

the Count values of its child nodes, while the Count value of each of the other nodes is 

its Local value, plus the sum of the Counts of its children plus their local differences. 

Hence the Counts of case nodes can only decrease during search while the Counts of 

other nodes can only increase. We exploit this fact to reduce the number of nodes visited 

by a technique similar to alpha-beta pruning [52]. 

When a node X is visited, three associated values are initialised, as follows. 

 

As described below, these values change as the search proceeds in such a way that, 

for each node X that is visited, the value of C(X) tends towards Count(X). As soon as 

done(X) becomes true, further search in the subtree rooted at X is abandoned to avoid 

exploring parts of the search tree that cannot affect the value of C that will be computed 

for the root.  

If node Y is the parent of a node X, and done(X) is assigned, or updated to, true, 

then the values associated with Y are updated as follows. 

if (Y is a method or isomorphism node) 

1. then C(Y) = C(Y)+C(X) 

2. else C(Y)  = min(C(Y),C(X)) ; 

if (done(Z) = true for every child Z of Y) 

3. then done(Y) = true ; 

if (Y is a case node and C(Y)=0) 

4. then done(Y) = true ; 

if (Y is a case node) 

5. then alpha(Y) = min(alpha(Y),C(Y)); 

if (Y is a method or isomorphism node and C(Y) ≥ alpha(Y)) 

6. then done(Y) = true ; 
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Figure 4-5 illustrates two conditions under which search terminates. In this and 

following figures, a node is drawn black, grey or white to indicate, respectively, that it 

has been visited, will not be visited because of cut-off, or may yet be visited as search 

proceeds. In this figure, the isomorphism node labelled X has no children, so done is set 

to true (line 3), terminating search below this node. Its C value remains 0. The C value 

of its parent node Y set to 0 (line 2), and its done value to true (line 4), terminating 

search below Y, and cutting off the grey-shaded parts of the tree. 

 
Figure 4-5 (1) Search down a path stops at a node X with no children. (2) Cut-off occurs 

when C(Y) becomes 0 

The value used for determining when to terminate search beneath a method or 

isomorphism node Y, is the minimum value of C(Z) among all case-node ancestors of Y. 

This is illustrated in Figure 4-6. In this figure, the value of alpha(Y) is inherited from 

node Z in steps 2 to 4. When the search below node X terminates, update of the values 

associated with node Y is triggered, and because the updated value of C(Y) is greater 

than alpha(Y), search below Y is terminated (line 6). 
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Figure 4-6 The value alpha(Y) used to cut off search in step 5 is inherited from node Z via 

steps 2 to 4 

4.2.1 Further	  optimisation	  of	  the	  search	  

Clearly, if search below a node will be cut off, the sooner this can be discovered the 

better. Hence, since search below a case node X will stop as soon as the value of C(X) is 

reduced to 0, the children of X should be visited in order of ascending value of Local, 

assuming that nodes with lower Local values will have lower Count values.  

Similarly, the search below an isomorphism or method node X will be cut off as 

soon as C(X) exceeds alpha(X). Therefore, the children of X should be visited in order 

of decreasing Local value, so that the value of C(X) is increased as quickly as possible. 

Note that to achieve the second of these two optimisations, when an isomorphism 

node X is visited, Local must be calculated for each of its children so they can be visited 

in the required order. This leads to a third optimisation. A variable K is initialised to 

Local(X), and incremented by each Local value as it is computed. After each addition, if 

K is equal to or greater than alpha(X), C(X) is set to K, and done(X) is set to true, 
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terminating the search below X. For example, regardless of the order in which Local 

values are computed for the children of the isomorphism node in Figure 4-7, search 

below the isomorphism node will terminate when values have been determined for at 

most two of the method nodes, cutting off search below any of the children. 

 
Figure 4-7 The search tree structure. Counts of square nodes can only decrease during 

search, and Counts of circular ones can only increase 

4.2.2 Practical	  issues	  

As we have described it, the algorithm simply computes Count for the method 

node X that it starts with, and identifies the subtree of the search space rooted at X that 

corresponds to this computation. In addition to this information, the implemented 

algorithm produces a catalogue of the differences that contribute to the count computed 

for the root node. 

To avoid repeating searches, two global structures are maintained; a list of pairs or 

methods that have been found to be not equivalent, and a set of equivalence classes of 

methods that have been found to be equivalent. During search, if the final value of C(X) 

for a method node X is not 0, and no cut-off occurred in the search tree below X, then the 

pair of methods is added to the “non-equivalent” list. Similarly, if the final value of C(X) 

is 0, the equivalence classes of the two methods are merged. Note that if a C value of 0 is 

computed for a method node X, then the two methods are guaranteed to be equivalent, 

whether or not cut-off has occurred in the part of the tree rooted at X. As noted earlier, 

persistents are a non-declarative feature that we need to deal with specially. In particular, 

the algorithm needs to compute the bijection g in Definition 2 on the fly. Accordingly, it 

builds a global list G of pairs of persistents that represents g, attempting to add a pair to 
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this list when it encounters two operations, A and B, that are matched by an isomorphism, 

but refer to two different persistents. There are three possibilities.  

• If (ref(A),ref(B)) is in G, then A and B are considered to be equivalent.  

• If (ref(A),P) is in G and P ≠ ref(B) (or vice versa), then A and B are considered 

not to be equivalent.  

• If neither ref(A) nor ref(B) occurs in any pair in G, (ref(A),ref(B)) is added to 

G.  

There is a complication, however. If the isomorphism f that matches A and B turns 

out not to be the one which minimises the value of C(Y), where Y is the parent node of 

the isomorphism node X corresponding to f, then the addition of (ref(A),ref(B)) to G must 

be undone. Hence, when a pair is added to G, it is added provisionally, creating a local 

list G(X), the scope of which is the search of the sub-tree rooted at X. When the final 

value of C(Y) is determined, G is updated to G(Z), where Z is the selected child of Y. 

4.2.3 Correctness	  and	  performance	  

If two programs are not equivalent, there is no precise answer to the question of 

how they differ semantically [40], so there is little that can be proved about the 

correctness of an algorithm such as ours with respect to semantic difference. However, it 

does have an important property, as follows. If A and B are operations and P1 and P2, are 

programs, the algorithm described above, including the optimisations in Section 4.2.1, 

will compute a value of 0 for (ref(A),ref(B)) iff A in P1 is equivalent to B in P2 (Def. 2).  

Although the subgraph isomorphism problem, central to our algorithm, is known to 

be NP-complete, there are various subgraph isomorphism algorithms available which, in 

practice, perform well on large graphs, for example Ullmann’s algorithm [53], VF [54], 

and VF2 [55]. Also, Prograph programs tend to have a deep call structure, so even in a 

large Prograph program, the number of operations in each case is usually quite small 

[56]. For example, in the application framework of Prograph CPX, consisting of 2000+ 

methods distributed over 300+ classes, diagrams rarely have more than 6 operations. 

Hence, subgraph isomorphism is unlikely to be a bottleneck. 
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As discussed in the last section, a set of equivalence classes of methods is 

maintained to avoid repeating parts of a search. This set can be maintained by the 

UNION-FIND algorithm in near-linear time [51]. 

Using subgraph isomorphism to match dataflow diagrams can in some 

circumstances produce unsatisfactory results. For example, consider the pair (C1,C2) of 

cases in Figure 4-8. These cases have the same numbers of operations, datalinks and 

synchros, and there are no subgraph isomorphisms between them, so C((C1,C2)) will be 

set to 1 and search below the case node (C1,C2) will terminate. Clearly, however, there 

are two local differences (mismatched datalinks), and search should continue with the 

method node (ref(A),ref(B)).  

To solve this limitation, maximum common subgraph (MCS) isomorphism can be 

used to find bijections between two graphs when subgraph isomorphism fails. There are 

various definitions and algorithms for MCS in the research literature, such as McGregor 

[47], Balas and Yu [57], and Durand et al. [58]. In this research, we choose the definition 

of MCS implemented by McGregor’s algorithm, because the algorithm is easy to 

implement and performs well. Suppose without loss of generality that graph G1 has fewer 

vertices than graph G2.  

if 

• S1 is a subgraph of G1 including all vertices of G1 

• S1 is isomorphic to a subgraph S2 of G2 

• There is no subgraph of G1 with more edges than S1 satisfying these conditions  

then  

• S1 and S2 are corresponding maximum common subgraphs of G1 and G2. 

Although the counting functions (described in section 4.1) are designed for use with 

sub-graph isomorphism, they also apply to McGregor’s algorithm since all vertices in the 

smaller graph will be included in the mapping. However, the time complexity of 

McGregor’s algorithm in the worst case is factorial [56]. So we decided to implement 

both sub-graph isomorphism and MCS isomorphism in the experiments to test their 

effects on accuracy and performance. 
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                      C1                   C2 

Figure 4-8 Search below the node consisting of these two cases will terminate since there 
are no subgraph isomorphisms. 

As we noted in Section 2, the differencing tools currently available in VPLs 

perform syntactic comparison, and compare diagrams only at one level. The algorithm we 

have proposed searches all levels, and is able to determine equivalences that purely 

syntactic tools cannot. For example, it will determine that the methods fact-a and fact-b 

in Figure 4-9 are equivalent. 
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Figure 4-9 The algorithm determines that methods fact-a and fact-b are semantically 

equivalent 
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Chapter	  5: Experimental	  results	  and	  evaluation	  

In this chapter, we report on experiments with a prototype implementation to test 

the accuracy and usefulness of the comparison algorithm. The current prototype of the 

algorithm described here is a simple proof-of-concept that reads and processes XML files 

containing representations of Prograph code. To compare Prograph dataflow diagrams, 

we tested both the VF [8] and the McGregor [58] algorithms to find a bijection between 

two dataflow diagrams efficiently. VF is an algorithm for finding subgraph isomorphisms 

between two graphs, while the McGregor algorithm finds MCS isomorphisms between 

two graphs based on the definition of maximal common subgraph provided in section 

4.3.3. In the following experiments, we concentrate on the accuracy and performance of 

the algorithm when applied to realistically large bodies of code, using as our example, the 

application framework (ABC classes) and associated editors (ABE classes) of Prograph 

CPX which were built and maintained by a team of professional programmers. The 

purpose of our experiments is to show that the algorithm provides useful information and 

that the search is fast. There are two important parameters for the experiments, the 

number of levels of programs and the number of operations in each diagram. Table 5-1 

provides information about the two projects used in the experiments. It is clear that 

although the two sets of classes have a large number of methods, the average number of 

operations per case is quite small. 

 Number of 
methods 

Number of 
cases 

Average 
number of 
operations per 
case 

ABCs 2286 6510 5 
ABEs 550 2394 6 

Table 5-1. Two very large programs for experiments 

The experiments demonstrate that: 

1. Both subgraph and MCS isomorphism produce results with no noticeable delay 

when the number of operations per diagram is less than 10. 
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2. When the number of operations in a case is larger than 10, using a sub-graph 

isomorphism algorithm is still acceptably fast, but using an MCS isomorphism 

algorithm takes significantly long time. 

3. Using the VF subgraph isomorphism algorithm increases performance, but in 

some cases produces unsatisfactory results. Using McGregor’s MCS algorithm 

produces more accurate results, but takes significantly longer. 

5.1 Algorithm	  performance	  in	  deeply-nested	  programs	  

As the performance of the algorithm depends on the structure of the data-flow 

diagrams, two methods from the test code were randomly selected to test accuracy and 

performance. In addition, the algorithm was tested on examples with increasing numbers 

of method levels. To guarantee returned results in a reasonable time for deeply nested 

programs in these experiments, the maximum number of operations in each diagram is 

restricted to 10. The results show that when the algorithm is applied to equivalent 

methods, then for all examples with up to 20 levels, and 61 methods and locals with 72 

total cases, the response time for both subgraph isomorphism and MCS was less than one 

second.  

Next, we tested the performance when detecting differences in deeply nested 

programs where differences were arbitrarily generated to break the conditions of 

Definition 1 in some levels. Table 5-2 shows the experiment data in the four experiments. 

The first seven columns contain counts of the violations of the conditions of Definition 1, 

and the last column contains the total number of violations. Note that the algorithm using 

MCS isomorphism produces the correct number of differences in all four experiments. 

See Appendix B for a detail of differences in these four experiments. 

 Con. 1 Con. 2 Con. 3.2 Extra 
nodes 

Extra 
datalinks 

Mismatched 
datalinks 

Extra 
cases 

Total 

Test 1 1 1 1 0 0 2 0 5 

Test 2  2 2 0 2 2 4 0 12 

Test 3  4 2 1 2 3 4 1 17 

Test 4  2 2 0 2 2 2 2 12 

Table 5-2. Experiment test data 

Table 5-3 shows the results returned in detecting semantic differences between two 

programs using subgraph and MCS isomorphism. All the experiments were completed 
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without noticeable delay. In the first two experiments, the algorithm using both subgraph 

isomorphism and MCS isomorphism produces accurate results because if there are 

subgraph isomorphisms between cases, they will be found by both subgraph isomorphism 

and MCS isomorphism. However, in the last two experiments, the algorithm using MCS 

isomorphism produces differences much more accurately than the algorithm using sub-

graph isomorphism, because there is no sub-graph isomorphism between two cases in the 

first level, preventing the algorithm using subgraph isomorphism from detecting 

differences in the underlying levels.  

 Number 
of levels 

Number of 
methods 
and locals 

Total 
number of 
cases 

Difference 
Count 

Subgraph (MCS)  5 11 20 5 (5) 

Subgraph (MCS)  10 16 27 12 (12) 
Subgraph (MCS)  15 7 10 2 (17) 
Subgraph (MCS)  20 25 37 5 (12) 

Table 5-3. Testing non-equivalent methods 

5.2 Using	  sub-graph	  isomorphism	  for	  methods	  with	  large	  

numbers	  of	  operations	  in	  their	  diagrams	  

During the experiments, we found that using the MCS algorithm to find a match 

between two cases with more than 10 operations takes significantly longer. However, 

using subgraph isomorphism on a large number of operations and deep structure call still 

performs well. In Table 5-4, the algorithm using subgraph isomorphism executes in less 

than one second for programs having both large number of operations and deep call 

structure. 

Number 
of levels 

Maximum number of 
operations in a case 

Number of 
methods 
and locals 

Total number 
of cases 

5 10 11 20 
10 15 16 27 
15 20 7 10 
20 25 25 37 

Table 5-4. Testing non-equivalent methods with large numbers of operations in their cases 

The experimental results show that the algorithm using either subgraph 

isomorphism or an MCS isomorphism algorithm produces reasonable results and 



 
 

45 

performance in programs with small numbers of operations. However, the algorithm 

using sub-graph isomorphism algorithm scales up with the number of operations in each 

diagram considerably better than the algorithm using the MCS algorithm. 
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Chapter	  6: Conclusions	  and	  future	  research	  

6.1 Conclusions	  

In this work, we have summarized and analyzed existing differencing tools for both 

TPLs and DVPLs. In TPLs, syntactic and semantic differencing tools have been 

intensively researched for use in software development tools since the introduction of 

PDGs, SDGs, and program slicing. On the other hand, we found that differencing tools in 

DVPLs are quite primitive compared with those available for TPLs. This in itself is 

sufficient to hinder the successful entrance of DVPLs into the world of industrial 

software development and mainstream software engineering.  

Based on an investigation of the three differencing tools in DVPLs, as discussed 

above, we concluded that they are all syntactic and therefore cannot find important 

differences in many cases. Consequently, we have proposed a definition of semantic 

equivalence of program elements in SVPLs and presented an algorithm to detect semantic 

differences between SVPL program elements. To compare two dataflow diagrams, each 

is considered as a directed acyclic graph and sub-graph isomorphism or MCS 

isomorphism algorithms are applied to detect the differences between them. The problem 

of comparing two program elements was modelled as a search tree, each vertex of which 

is a pair of compared items or an isomorphism. Our differencing algorithm uses depth-

first search, guided by heuristics based on estimates of the numbers of differences 

between the items being compared, to traverse the search tree and enumerate semantic 

differences. Some of important features of the algorithm deal with recursions and side-

effects of persistents (global variables) and apply semantic equivalence and pruning 

conditions to reduce the search space. The experimental results show that our algorithm 

can produce the differences accurately in a reasonable time in most cases. When the 

number of operations per case of programs is less than 10, the algorithm using both sub-

graph isomorphism and MCS isomorphism produces reasonably accurate results and a 

reasonable time. When the number of operations per case of programs is larger, however, 

the algorithm using subgraph isomorphism still performs reasonably, while the 

performance using MCS rapidly degrades. Also, the algorithm using MCS isomorphism 
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can produce results more accurately in many cases. So MCS isomorphism can be used to 

find a match between two graphs when sub-graph isomorphism fails. In conclusion, our 

algorithm is superior to existing differencing tools for DVPLs. 

6.2 Future	  work	  

There are many directions for furthering this work, including the following.  

Object-oriented support: Our current algorithm does not account for the object-

oriented features of Prograph. Some features of object-oriented programming, such as 

data abstraction, encapsulation, polymorphism, and inheritance, need to be dealt 

differently with the current algorithm, for example, considering object-oriented 

operations in Prograph as a global variable and treating them similar to the way of 

treating persistents in the current algorithm. In the future, we can extend our algorithm to 

define semantic equivalence on object-oriented classes in SVPLs. 

Diagram matching: As we have pointed out, subgraph isomorphism can, in many 

circumstances, produce results that are not helpful. Although MCS produces satisfactory 

results, it does not scale up well as the number of operations per case increases. We 

intend to investigate more discriminating ways of matching dataflow diagrams, such as a 

variation that is sensitive to some dataflow-specific characteristics. For example, in 

Prograph, we could build from a diagram a directed graph such that every operation, 

terminal and root is represented as a vertex, the root and terminal vertices are numbered 

to indicate the position at which the corresponding terminal or root is attached to its 

operation, and an edge either represents a datalink or associates a terminal or root with its 

operation. This graph would capture the structure of a Prograph case more accurately 

than the graph used in the current version of the algorithm. Other graph matching 

techniques, such as using genetic programming or approximation algorithms can also be 

used.  

Graphical interface: In Prograph, and other SVPLs, programming, testing and 

debugging is done in highly interactive, visual environments that include visualisations of 

execution state and progress. Clearly, an SVPL differencing tool should integrate into 

such an environment, providing a visual representation, at various levels of detail, of the 

trouble spots where differences are found, and helping the user to navigate through the 
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program structure in a methodical way. For example, two programs might be displayed as 

two trees (similar to the LabVIEW comparison tool), with differences highlighted. First, 

users could see the overall picture for the differences between two programs and know 

the total number of differences. After that, they could select which differences they want 

to fix. Since fixing errors in one level can reduce errors in many other levels, the tool 

could guide programmers to a level where fixing differences would be likely to reduce 

the number of steps for program testing and debugging. An incremental version of the 

algorithm with a graphical interface would be developed in the future. 

Pilot evaluation study for professional developers: After developing a graphical 

interface for the algorithm, more user testing should be conducted with professional 

software developers to find out whether a differencing tool based on our algorithm might 

actually be of use to programmers in practice.  

Counting function: Although the counting functions we have used to guide the 

heuristic search seem to do a reasonable job on the examples we have tried, they can 

produce misleading results. We intend to conduct a series of experiments on large 

programs to pinpoint their weaknesses in order to fine-tune them. 

Extending to other DVPLs: In this thesis, we have used Prograph as the language 

on which to base our algorithm. However, with minor changes the algorithm could be 

applied to other SVPLs, such as LabVIEW, where control structures enclose acyclic data 

flow diagrams, consisting of operations with input terminals and output roots connected 

by data flow links, and annotations can be applied to program elements to modify their 

behaviours. More major changes are likely to be necessary in order to apply the algorithm 

to unstructured DVPLs such as Simulink, where data flow diagram may be cyclic. 

Other applications: Semantic difference is very important for software 

development tools, such as program integration, program debugging, software 

maintenance, and software testing. We can use this semantic differencing algorithm for 

the purpose of program integration. For example, a merge tool integrates two versions of 

an SVPL program by identifying the semantic differences and the un-affected code. 

Detecting semantic changed behaviour will help to integrate two versions of a program 

more accurately. Semantic difference is also useful to reduce the cost of regression 
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testing by discovering the semantic changes to decrease the number of test cases. These 

tools would be very useful for accelerating the industrial adoption of SVPLs. 
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Diff_Algorithm.java

33  	 	{
34  	 	 	Diff_Return min = new Diff_Return();
35  	 	 	n_min = -1;
36  	 	 	// mapping[i] is the node in graph2 which corresponds to
37  	 	 	// node i in graph1...
38  	 	 	for (i=0;i<result.size();i++)
39  	 	 	{
40  	 	 	 	int number_of_persistent = 0; 
41  	 	 	 	MCSState temp = (MCSState) result.get(i);
42  	 	 	 	//Check input & output nodes
43  	 	 	 	PairNodes input = (PairNodes)temp.mapping.get(0);
44  	 	 	 	PairNodes output = (PairNodes)temp.mapping.get

(temp.mapping.size()-1);
45  	 	 	 	int [] mapping = new int[100];
46  	 	 	 	for (int k=0;k<graph1.vertexSet().size();k++)
47  	 	 	 	{
48  	 	 	 	 	PairNodes current_pair = (PairNodes)

temp.mapping.get(k);
49  	 	 	 	 	mapping[k] = current_pair.To;   
50  	 	 	 	}
51  	 	 	 	persistent_list_temp.clear();
52  	 	 	 	T_diff.clear();
53  	 	 	 	int linksinC2 = 0;
54  	 	 	 	for (int e=0;e<graph2.vertexSet().size();e++)
55  	 	 	 	{
56  	 	 	 	 	Boolean exists = false;
57  	 	 	 	 	for (int l=0;l<graph1.vertexSet().size();l++)
58  	 	 	 	 	{
59  	 	 	 	 	 	if (e == mapping[l])
60  	 	 	 	 	 	{
61  	 	 	 	 	 	 	exists = true;
62  	 	 	 	 	 	}
63  	 	 	 	 	}
64  	 	 	 	 	if (exists == false)
65  	 	 	 	 	{
66  	 	 	 	 	 	ModelComposite graph2_notmatched_node = 

(ModelComposite) dest.children.get(e);
67  	 	 	 	 	 	//calculate connected root
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68  	 	 	 	 	 	for (int 
h=0;h<graph2_notmatched_node.children.size();h++)

69  	 	 	 	 	 	{
70  	 	 	 	 	 	 	ModelComponent component = 

(ModelComponent) graph2_notmatched_node.children.get(h);
71  	 	 	 	 	 	 	if (component.getType() == 6)
72  	 	 	 	 	 	 	{
73  	 	 	 	 	 	 	 	//oper_roots.add(oper.children.get

(i));
74  	 	 	 	 	 	 	 	String rr = component.getAttribute

("connectedroot").getStringValue().toString();
75  	 	 	 	 	 	 	 	if (! rr.equals(""))
76  	 	 	 	 	 	 	 	{
77  	 	 	 	 	 	 	 	 	linksinC2++;
78  	 	 	 	 	 	 	 	}
79  	 	 	 	 	 	 	}
80 
81  	 	 	 	 	 	}
82  	 	 	 	 	}
83  	 	 	 	}
84 
85  	 	 	 	min.n = countLocalDifferences(mapping, 

src,dest,hashMap,hashMap2, Math.abs(graph1.vertexSet().size() - 
graph2.vertexSet().size()),linksinC2,graph1);

86  	 	 	 	for (j=0;j<graph1.vertexSet().size();j++)
87  	 	 	 	{
88  	 	 	 	 	try
89  	 	 	 	 	{
90  	 	 	 	 	 	ModelComposite oper  = (ModelComposite) 

src.children.get(j);  
91  	 	 	 	 	 	if (mapping[j] != -1)
92  	 	 	 	 	 	{
93  	 	 	 	 	 	 	ModelComposite oper_compare = 

(ModelComposite) dest.children.get(mapping[j]);
94  	 	 	 	 	 	 	T_diff.put(oper,oper_compare);
95  	 	 	 	 	 	 	//Calculate persistent differences
96  	 	 	 	 	 	 	if (oper.getAttribute

("type").getStringValue().equals("Persistent") && 
oper_compare.getAttribute("type").getStringValue().equals
("Persistent")) Page 3
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Diff_Algorithm.java96  	 	 	 	 	 	 	if (oper.getAttribute
("type").getStringValue().equals("Persistent") && 
oper_compare.getAttribute("type").getStringValue().equals
("Persistent"))

97  	 	 	 	 	 	 	{
98  	 	 	 	 	 	 	 	Boolean p_ret = isConsistent

(oper,oper_compare);  
99  	 	 	 	 	 	 	 	if (p_ret == true)

100  	 	 	 	 	 	 	 	{
101  	 	 	 	 	 	 	 	 	number_of_persistent++;
102  	 	 	 	 	 	 	 	 	Equivalent_List per = new 

Equivalent_List();
103  	 	 	 	 	 	 	 	 	per.src = oper;
104  	 	 	 	 	 	 	 	 	per.dest = oper_compare;
105  	 	 	 	 	 	 	 	 	persistent_list.add(per);
106  	 	 	 	 	 	 	 	}
107  	 	 	 	 	 	 	 	else
108  	 	 	 	 	 	 	 	{
109  	 	 	 	 	 	 	 	 	min.n ++;
110  	 	 	 	 	 	 	 	}
111  	 	 	 	 	 	 	}
112  	 	 	 	 	 	 	if (min.n >= alpha)
113  	 	 	 	 	 	 	{
114  	 	 	 	 	 	 	 	final_ret.n = alpha;
115  	 	 	 	 	 	 	 	F_T_list list = new F_T_list

(graph1.vertexSet().size());
116  	 	 	 	 	 	 	 	list.f = mapping;
117  	 	 	 	 	 	 	 	list.T = T_diff;
118  	 	 	 	 	 	 	 	final_ret.f_T.add(list);
119  	 	 	 	 	 	 	 	return final_ret;
120  	 	 	 	 	 	 	}
121 
122  	 	 	 	 	 	 	if (oper.getAttribute

("type").getStringValue().equals("method") && 
oper_compare.getAttribute("type").getStringValue().equals("method"))

123  	 	 	 	 	 	 	{
124 
125  	 	 	 	 	 	 	 	ModelComposite method_1 = null;
126  	 	 	 	 	 	 	 	ModelComposite method_2 = null;
127  	 	 	 	 	 	 	 	method_1 = (ModelComposite) 

hashMap.get(oper.getName());
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127  	 	 	 	 	 	 	 	method_1 = (ModelComposite) 

hashMap.get(oper.getName());
128 
129  	 	 	 	 	 	 	 	method_2 = (ModelComposite) 

hashMap2.get(oper_compare.getName());
130  	 	 	 	 	 	 	 	Boolean ret = isProcessing

(method_1, method_2);
131  	 	 	 	 	 	 	 	if (ret == false)
132  	 	 	 	 	 	 	 	{
133  	 	 	 	 	 	 	 	 	Diff_Return ret1 = Classify

(root, method_1, method_2, S,alpha);
134  	 	 	 	 	 	 	 	 	min.n += ret1.n;
135  	 	 	 	 	 	 	 	 	min.f_T.add(ret1.f_T);
136  	 	 	 	 	 	 	 	 	if (min.n >= alpha)
137  	 	 	 	 	 	 	 	 	{
138  	 	 	 	 	 	 	 	 	 	final_ret.n = alpha;
139  	 	 	 	 	 	 	 	 	 	F_T_list list = new F_T_list

(graph1.vertexSet().size());
140  	 	 	 	 	 	 	 	 	 	list.f = mapping;
141  	 	 	 	 	 	 	 	 	 	list.T = T_diff;
142  	 	 	 	 	 	 	 	 	 	final_ret.f_T.add(list);
143  	 	 	 	 	 	 	 	 	 	return final_ret;
144  	 	 	 	 	 	 	 	 	}
145  	 	 	 	 	 	 	 	}
146  	 	 	 	 	 	 	}
147  	 	 	 	 	 	}
148  	 	 	 	 	}
149  	 	 	 	 	catch (Exception ex)
150  	 	 	 	 	{
151 
152  	 	 	 	 	}
153 
154  	 	 	 	}
155 
156  	 	 	 	if (n_min == -1 || min.n < n_min)
157  	 	 	 	{
158  	 	 	 	 	n_min = min.n;
159  	 	 	 	 	mapping_diff = mapping;
160  	 	 	 	 	T_diff_min = T_diff;
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161  	 	 	 	}
162 
163  	 	 	 	if (min.n == 0)
164  	 	 	 	{
165  	 	 	 	 	n_min = min.n;
166  	 	 	 	 	mapping_diff = mapping;
167  	 	 	 	 	T_diff_min = T_diff;
168  	 	 	 	 	break;
169  	 	 	 	}
170  	 	 	 	
171  	 	 	}
172  	 	 	//Return case value
173  	 	 	final_ret.n = n_min;
174  	 	 	F_T_list list = new F_T_list(graph1.vertexSet().size());
175  	 	 	list.f = mapping_diff;
176  	 	 	list.T = T_diff_min;
177  	 	 	final_ret.f_T.add(list);
178  	 	 	return final_ret;
179  	 	}
180  	 	else
181  	 	{
182  	 	 	Diff_Return ret = new Diff_Return();
183  	 	 	ret.n = 1 + Math.abs(graph1.vertexSet().size() - 

graph2.vertexSet().size()) + Math.abs(graph1.edgeSet().size()-
graph2.edgeSet().size());

184  	 	 	return ret;
185  	 	}
186  	}
187  	else
188  	{
189  	}
190  	//Process method level. Use HashMap for methods' call
191  	if ((src.getType() == 2 && dest.getType() == 2) || (src.getType

() == 20 && dest.getType() == 20))
192  	{
193  	 	//Check if method already exists in the list S
194  	 	Boolean ret = isProcessing(src, dest);
195  	 	if (ret == true)
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196  	 	{
197  	 	 	return final_ret;
198  	 	}
199  	 	else
200  	 	{
201  	 	 	Equivalent_List method = new Equivalent_List();
202  	 	 	method.src = src;
203  	 	 	method.dest = dest;
204  	 	 	processing_oper.push(method);
205  	 	}
206  	 	//Check if method already exists in the list E
207  	 	ret = isEquivalent(src, dest);
208  	 	if (ret == true)
209  	 	{
210  	 	 	return final_ret;
211  	 	}
212  	 	//Check if method already exists in the list N
213  	 	Equivalent_List e_list = new Equivalent_List();
214  	 	e_list = isNotEquivalent(src, dest);
215  	 	if (e_list.n != 0)
216  	 	{
217  	 	 	final_ret.n = e_list.n;
218  	 	 	final_ret.f_T = e_list.f_T;
219  	 	 	return final_ret;
220  	 	}
221  	 	//Loop each case
222  	 	//Extra cases
223  	 	final_ret.n += Math.abs(src.children.size() - 

dest.children.size());
224  	 	if (final_ret.n >= alpha)
225  	 	{
226  	 	 	//Cut-off 3
227  	 	}
228  	 	else
229  	 	{
230  	 	 	for (i = 0;i < src.children.size();i++)
231  	 	 	{
232  	 	 	 	ModelComposite m_case = (ModelComposite) 

src.children.get(i);
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232  	 	 	 	ModelComposite m_case = (ModelComposite) 

src.children.get(i);
233  	 	 	 	ModelComposite m_case_comp = (ModelComposite) 

dest.children.get(i);
234  	 	 	 	//Add up all the differences
235  	 	 	 	Diff_Return c_ret = new Diff_Return();
236  	 	 	 	c_ret = Classify(root,m_case,m_case_comp,S,alpha);
237  	 	 	 	final_ret.n += c_ret.n;
238  	 	 	 	final_ret.f_T.add(c_ret.f_T);
239  	 	 	 	//cut-off
240  	 	 	 	if (final_ret.n >= alpha)
241  	 	 	 	{
242  	 	 	 	 	break;
243  	 	 	 	}
244  	 	 	}
245 
246  	 	}
247  	 	//Remove from Stack
248  	 	processing_oper.pop();
249  	 	//Put in the equivalent list
250  	 	if (final_ret.n == 0)
251  	 	{
252  	 	 	Equivalent_List list = new Equivalent_List();
253  	 	 	list.dest = dest;
254  	 	 	list.src = src;
255  	 	 	equivalent_call_list.add(list);
256  	 	 	return final_ret;
257  	 	}
258  	 	else //put in the not-equivalent list (n,a,b,F)
259  	 	{
260  	 	 	Equivalent_List list = new Equivalent_List();
261  	 	 	list.dest = dest;
262  	 	 	list.src = src;
263  	 	 	list.n = final_ret.n;
264  	 	 	list.f_T.add(final_ret.f_T);
265  	 	 	nonequivalent_call_list.add(list);
266 
267  	 	 	return final_ret;
268  	 	}
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269  	}
270  	return null;
271 }
272 private int countLocalDifferences(int[] mapping, ModelComposite src,
273 
274  	 	ModelComposite dest, HashMap hashMap, HashMap hashMap2, int 

node_difference, int linkinC2, DirectedGraph g1) {
275 
276  	// TODO Auto-generated method stub
277  	int n = 0,i,j;
278  	int n_min = -1;
279  	//Count local differences
280  	for (j=0;j<g1.vertexSet().size();j++)
281  	{
282  	 	try
283  	 	{
284  	 	 	ModelComposite oper = (ModelComposite) src.children.get

(j);
285  	 	 	if (mapping[j] != -1)
286  	 	 	{
287  	 	 	 	ModelComposite oper_compare = (ModelComposite) 

dest.children.get(mapping[j]);
288  	 	 	 	n += GetDifferences(oper, oper_compare); //

Calculate operation differences
289  	 	 	}
290  	 	}
291  	 	catch (Exception ex)
292  	 	{
293  	 	}
294  	}
295  	////CALCULATION LINKS IN C2 NOT IN C1
296  	n += linkinC2;
297  	int correct_datalinks=0;
298  	//Calculate mismatch data-links
299  	Set set = h_relation.entrySet();
300  	Iterator itr = set.iterator();
301  	while (itr.hasNext())
302  	{
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303  	 	Map.Entry me = (Map.Entry)itr.next();
304  	 	ModelRelation current = (ModelRelation)me.getValue();
305  	 	ModelComponent from = current.from;
306  	 	ModelComponent to = current.to;
307  	 	ModelComposite m_from = (ModelComposite) from.getParent();
308  	 	ModelComposite m_to = (ModelComposite) to.getParent();
309  	 	String k = item_id.get(m_from.getID()).toString();
310  	 	String l = item_id.get(m_to.getID()).toString();
311  	 	if (mapping[Integer.parseInt(k)] != -1 && mapping

[Integer.parseInt(l)] != -1)
312  	 	{
313  	 	 	ModelComposite m_from_comp = (ModelComposite) 

dest.children.get(mapping[Integer.parseInt(k)]);
314  	 	 	ModelComposite m_to_comp = (ModelComposite) 

dest.children.get(mapping[Integer.parseInt(l)]);
315  	 	 	correct_datalinks += GetMismatchDatalinks(m_from, m_to, 

m_from_comp, m_to_comp);
316  	 	}
317  	}
318  	//fINAL CALCULATION
319  	int num_of_terminals = 0;
320  	for (j=0;j< src.children.size();j++)
321  	{
322  	 	try
323  	 	{
324  	 	 	ModelComposite current = (ModelComposite)

src.children.get(j);
325  	 	 	for (int m=0;m<current.size();m++)
326  	 	 	{
327  	 	 	 	ModelComponent model = (ModelComponent)

current.children.get(m);
328  	 	 	 	if (model.getType() == 7)
329  	 	 	 	{
330  	 	 	 	 	num_of_terminals++;
331  	 	 	 	}
332  	 	 	}
333  	 	}
334  	 	catch(Exception ex)
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335  	 	{
336  	 	}
337  	}
338  	n +=  num_of_terminals  - correct_datalinks;
339  	//Calculate the number of nodes
340  	n += node_difference; 
341  	//Calculate persistent differences
342 }
343 private static int GetMismatchDatalinks(ModelComposite m_from,
344  	 	ModelComposite m_to, ModelComposite m_from_comp,
345  	 	ModelComposite m_to_comp) {
346  	// TODO Auto-generated method stub
347  	int n = 0,i,j;
348  	ArrayList oper_roots = new ArrayList();
349  	ArrayList oper_terms = new ArrayList();
350  	ArrayList oper_compare_roots = new ArrayList();
351  	ArrayList oper_compare_terms = new ArrayList();
352  	for (i=0;i<m_from.children.size();i++)
353  	{
354  	 	ModelComponent component = (ModelComponent) 

m_from.children.get(i);
355  	 	if (component.getType() == 6)
356  	 	{
357  	 	 	oper_roots.add(m_from.children.get(i));
358  	 	}
359  	}
360  	for (i=0;i<m_to.children.size();i++)
361  	{
362  	 	ModelComponent component = (ModelComponent) 

m_to.children.get(i);
363  	 	if (component.getType() == 7)
364  	 	{
365  	 	 	oper_terms.add(m_to.children.get(i));
366  	 	}
367  	}
368  	for (i=0;i<m_from_comp.children.size();i++)
369  	{
370  	 	ModelComponent component = (ModelComponent) 

m_from_comp.children.get(i);
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370  	 	ModelComponent component = (ModelComponent) 

m_from_comp.children.get(i);
371 
372  	 	if (component.getType() == 6)
373  	 	{
374  	 	 	oper_compare_roots.add(m_from_comp.children.get(i));
375  	 	}
376  	}
377 
378  	for (i=0;i<m_to_comp.children.size();i++)
379  	{
380  	 	ModelComponent component = (ModelComponent) 

m_to_comp.children.get(i);
381  	 	if (component.getType() == 7)
382  	 	{
383  	 	 	oper_compare_terms.add(m_to_comp.children.get(i));
384  	 	}
385  	}
386 
387  	if (oper_terms.size() == oper_compare_terms.size() && 

oper_roots.size() == oper_compare_roots.size())
388  	{
389  	 	//If( roots(a)j has datalink to terms(b)k for some j and k 

and roots(f(a))j don�t have datalink terms(f(b))k)
390  	 	for (i=0;i<oper_terms.size();i++)
391  	 	{
392  	 	 	ModelComponent c_terms = (ModelComponent) oper_terms.get

(i);
393  	 	 	ModelComponent c_terms_comp = (ModelComponent) 

oper_compare_terms.get(i);
394  	 	 	String root = c_terms.getAttribute

("connectedroot").getStringValue().toString();
395  	 	 	String root_compare = c_terms_comp.getAttribute

("connectedroot").getStringValue().toString();
396 
397  	 	 	//First condition: Compare their roots equivalent
398  	 	 	for (j=0;j<oper_roots.size();j++)
399  	 	 	{
400  	 	 	 	ModelComponent c_root = (ModelComponent) 

oper_roots.get(j);
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400  	 	 	 	ModelComponent c_root = (ModelComponent) 

oper_roots.get(j);
401  	 	 	 	if (c_root.getID().equals(root))
402  	 	 	 	{
403  	 	 	 	 	ModelComponent c_root_compare = 

(ModelComponent) oper_compare_roots.get(j);
404  	 	 	 	 	if (c_root_compare.getID().equals(root_compare))
405  	 	 	 	 	{
406  	 	 	 	 	 	n++;
407  	 	 	 	 	}
408  	 	 	 	}
409  	 	 	}
410  	 	 	if (root.equals("") && root_compare.equals(""))
411  	 	 	{
412  	 	 	 	n++;
413  	 	 	}
414  	 	}
415  	}
416  	return n;
417 }
418 
419 private static int GetDifferences(ModelComposite oper, 

ModelComposite oper_compare) {
420  	// TODO Auto-generated method stub
421  	int n = 0,i,j;
422  	ArrayList oper_roots = new ArrayList();
423  	ArrayList oper_terms = new ArrayList();
424  	ArrayList oper_compare_roots = new ArrayList();
425  	ArrayList oper_compare_terms = new ArrayList();
426  	for (i=0;i<oper.children.size();i++)
427  	{
428  	 	ModelComponent component = (ModelComponent) 

oper.children.get(i);
429  	 	if (component.getType() == 6)
430  	 	{
431  	 	 	oper_roots.add(oper.children.get(i));
432  	 	}
433  	 	else if (component.getType() == 7)
434  	 	{
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435  	 	 	oper_terms.add(oper.children.get(i));
436  	 	}
437  	}
438 
439  	for (i=0;i<oper_compare.children.size();i++)
440  	{
441  	 	ModelComponent component = (ModelComponent) 

oper_compare.children.get(i);
442  	 	if (component.getType() == 6)
443  	 	{
444  	 	 	oper_compare_roots.add(oper_compare.children.get(i));
445  	 	}
446  	 	else if (component.getType() == 7)
447  	 	{
448  	 	 	oper_compare_terms.add(oper_compare.children.get(i));
449  	 	}
450  	}
451 
452  	if (oper_terms.size() == oper_compare_terms.size())
453  	{
454  	 	for (i=0;i<oper_terms.size();i++)
455  	 	{
456  	 	 	ModelComponent oper_comp = (ModelComponent) 

oper_terms.get(i);
457  	 	 	ModelComponent oper_compare_comp = (ModelComponent) 

oper_compare_terms.get(i);
458  	 	 	if (! oper_comp.getAttribute("behavior").getStringValue

().equals(oper_compare_comp.getAttribute("behavior").getStringValue
().toString()))

459  	 	 	{
460  	 	 	 	n++;
461  	 	 	}
462  	 	}
463  	}
464  	else
465  	{
466  	 	n = n + Math.abs(oper_terms.size() - oper_compare_terms.size

());
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467  	}
468 
469  	if (oper_roots.size() == oper_compare_roots.size())
470  	{
471  	 	for (i=0;i<oper_roots.size();i++)
472  	 	{
473  	 	 	ModelComponent oper_comp = (ModelComponent) 

oper_roots.get(i);
474  	 	 	ModelComponent oper_compare_comp = (ModelComponent) 

oper_compare_roots.get(i);
475  	 	 	if (! oper_comp.getAttribute("behavior").getStringValue

().toString().equals(oper_compare_comp.getAttribute
("behavior").getStringValue().toString()))

476  	 	 	{
477  	 	 	 	n++;
478  	 	 	}
479  	 	}
480  	}
481  	else
482  	{
483  	 	n = n + Math.abs(oper_roots.size() - oper_compare_roots.size

());
484  	}
485  	//Compare opers name
486  	if (! oper.getName().equals(oper_compare.getName()) && ! 

oper.getAttribute("type").getStringValue().equals("method") )
487  	{
488  	 	n++;
489  	}
490 
491  	//Compare control
492  	if (oper.children.size() ==0 || oper_compare.children.size() == 

0)
493  	{
494  	}
495  	else
496  	{
497  	 	ModelComponent control = (ModelComponent) oper.children.get

(0);
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497  	 	ModelComponent control = (ModelComponent) oper.children.get

(0);
498  	 	ModelComponent control_comp = (ModelComponent) 

oper_compare.children.get(0);
499  	 	if (! control.getName().equals(control_comp.getName()))
500  	 	{
501  	 	 	n++;
502  	 	}
503  	}
504  	//Compare type
505  	if (oper.getType() == 0)
506  	{
507  	 	if (oper.getName().equals(oper_compare.getName()))
508  	 	{
509  	 	 	n++;
510  	 	}
511  	}
512  	return n;
513 }
514 
515 
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Appendix	  B:	  Detailed	  differences	  in	  Table	  5-2	  

 

Test	  1	  

 
Figure B-1    The tree structure of Test 1. Each C node on a path is considered as one 

level. 
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Figure B-2    Differences in level 1 of test 1 

 
Figure B-3    Differences in level 5 of test 1 
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Test	  2	  

 
Figure B-4    The tree structure of Test 2. Each C node on a path is considered as one 

level. 
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Figure B-5    Differences in level 1 of test 2 

 
Figure B-6    Differences in level 5 of test 2 
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Figure B-7    Differences in level 6 of test 2 

 
Figure B-8    Differences in level 10 of test 2 
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Test	  3

	  

Figure B-9    The tree structure of test 3. Each C node on a path is considered as one 

level. 
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Figure B-10    Differences in level 1 of test 3 

 
Figure B-11    Differences in level 2 of test 3 
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Figure B-12    Differences in level 8 of test 3 

 
Figure B-13    Differences in level 13 of test 3 
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Test	  4	  

 
Figure B-14    The tree structure of test 4. Each C node on a path is considered as one 

level. 
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Figure B-15    Differences in level 1 of test 4 

 
Figure B-16    Differences in level 3 of test 4 
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Figure B-17    Differences in level 5 of test 4 

 
Figure B-18    Differences in level 7 of test 4 
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 Figure B-19   Differences in level 9 of test 4 (no subgraph isomorphism) 

 
Figure B-20   Differences in level 11 of test 4 
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Figure B-21   Differences in level 13 of test 4 

 
Figure B-22   Differences in level 15 of test 4 
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Figure B-23   Differences in level 17 of test 4 

 




