

1

Abstract

The primary advantage of visual programming languages is
that they directly represent the structure of algorithms and data,
thereby enhancing the programmer’s ability to build and compre-
hend programs. If the programming domain consists of physical
objects with observable behaviour, such as a robot and its environ-
ment, then incorporating the obvious visual representations of
these objects directly into the programming process may further
increase the programmer’s effectiveness and accuracy.

We propose a robot programming system consisting of two
parts; a definition module with which to describe the structure,
function and visual representation of a specific robot, and a pro-
gramming module that uses this description to enable program-
ming by direct manipulation. We describe the visual editors that
constitute the first of these modules, discuss the underlying struc-
ture generated by it, and briefly show how this structure can be
used in the second module.

1 Introduction

The primary advantage of visual programming languages is
that they provide direct representations of software structures
such as algorithms and data. This is in contrast to traditional
textual programming languages, where such multi-dimen-
sional structures are encoded into one-dimensional strings
according to some intricate syntax. Visual languages remove
this layer of abstraction, allowing the programmer to directly
observe and manipulate complex software structures. Such
directness of representation, termed “closeness of mapping”, is
seen by Green and Petre as an important factor in enhancing
the programmer’s ability to build and comprehend such struc-
tures [10], and is well supported by practical experience, for
example [13, 21].

While some software development systems fully address the
visualisation of algorithms [18], there are many that provide
visual representations of data and processes in specific
domains. One obvious example is the tools some development
systems provide for building graphical user interfaces and
other common application parts [2, 17, 18, 24]. These tools
usually consist of a library of classes that implement the func-
tionality of the domain (e.g. windows, menus), together with

WYSIWYG

 editors for viewing and manipulating concrete repre-
sentations of instances of these classes. Some of these systems
also provide some visual programming capability directed spe-
cifically at the target domain: for example, message-flow pro-
gramming, which is well suited to the kinds of interactions
that occur between interface elements or between interface ele-

ments and data repositories [11]. Another example of domain-
specific visual programming is represented by tools for build-
ing telephony software.

It appears that although visual representation of algorithms
can significantly enhance the coding task, the process of build-
ing domain-specific software is likely to be more efficient and
productive if the programming is done via direct manipulation
of well-understood, concrete representations of domain-spe-
cific entities.

In recent work on visual languages for programming robot
control, we explored this principle in a sequence of experi-
ments moving from general visual programming towards more
direct visualisation [6]. The robot used as the target consists of
a Programmable Brick [20], also referred to as a “handyboard”
embedded in a

LEGO

 car. The handyboard reads signals from
two touch sensors mounted on bumpers at the front of the car,
and five infrared sensors symmetrically placed across the
underside, three grouped together in the centre, and two at the
outside edges. The handyboard controls two motors at either
side of the car. The vehicle runs on a

LEGO

 track made up of
straight sections, curved sections, and crossings, all suitably
coded with black tape to be read by the sensors.

The final system reported in [6], Visual Behaviour-Based
Language (

VBBL

), is based on the subsumption architecture for
robot control due to Brooks [3]. The top level of a subsump-
tion model control specification consists of a network of
behaviours connected by message-flow links, where behaviours
are defined by finite state machines (

FSM

). In

VBBL

 these mes-
sage-flow diagrams and

FSM

s are explicitly represented and
edited. However, even though these constructs are directly
related to robot control, for programming a

particular

 robot

VBBL

 is still too abstract since it supplies no representations of
the actual robot.

As a result of our experiences with

VBBL

, our current goal is
a robot control system which is not only general enough to
apply to any robot, but allows as much of the programming as
possible to be done by directly manipulating representations of
the robot under consideration. Clearly, in order to satisfy these
apparently contradictory criteria, we will need more than just
the traditional programming language embedded in a software
development system. One possibility is a system consisting of
two parts: first, a hardware definition module (

HDM

) for defin-
ing the structure and function of a robot, and a simulated
environment; and second, a software definition module (

SDM

)
which uses the model constructed in

HDM

 to provide various
capabilities, including the building and executing of robot
control programs.

In the following, we explore this idea, concentrating on

HDM

, then show how the model output by

HDM

 could be used
This work was partially supported by NSERC grants OGP0121312
and OGP0000124.

Visual Programming for Robot Control

Philip T. Cox Trevor J. Smedley

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Appearing in

Proceedings of IEEE Visual Lnaguages Symposium

, Halifax (1998)
© 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyright component of this work in other works must be
obtained from the IEEE.

2

in

SDM

 for programming robot control by direct manipula-
tion. First we give a brief survey of robot control, taken from
[6].

2 Robot Control

Robots divide into two categories. The first category is
exemplified by industrial robots such as those used in assem-
bling products, or in analysing samples in a laboratory. Such
robots have effectors but no sensors, perform repetitive and
possibly quite complex sequences of actions, always operate in
a fully defined environment and require no problem-solving
capabilities. They are normally programmed using derivatives
of standard programming languages possibly combined with
direct “recording” of skilled operator movements, for example

RAPL

-3 [8], a derivative of structured Basic.
Robots in the second category have sensors as well as effec-

tors, and operate in environments which are partly unknown
and possibly changing. Such a robot senses various values in its
environment and computes values for its effectors in order to
attain some goal. A simple example is the

LEGO

 car used in our
challenge problem: complex examples are the Mars Rover [23],
and autonomous submarine vehicles [12]. Such robots must
exhibit reactive behaviour coupled with some form of prob-
lem-solving capability. This can be achieved by simply pro-
gramming sensor/effector feedback using an ordinary
programming language: however, such an approach would
require a control program for each new problem-solving activ-
ity to be built “from the ground up.”

Much research has been devoted to problem-solving sys-
tems for robots with feedback. One of the earliest applications
of logic to robot control resulted in the plan-representation
language

STRIPS

 developed for Shakey the Stanford robot [9].
More recently, possibly encouraged by the considerable
progress in efficient execution of logic programs, logics have
been developed that deal with real-time events generally [15],
and robot control specifically [5, 16].

The established logic-based planning approach to the con-
trol of free-ranging robots was challenged in 1986 by Brooks’
subsumption architecture, a control model which attains quite
sophisticated problem-solving behaviour via a hierarchy of
simple, independent but interacting behaviours [3]. Although
subsumption deals with many of the more direct aspects of
robot control, such as avoiding obstacles and following paths,
it is less useful for more sophisticated planning tasks because
the hierarchy of behaviours becomes too complex. Conse-
quently, many hybrid architectures have been proposed com-
bining reactive and planning control. For example [1]
combines subsumption, learning and planning under the
supervision of a central controller. The Saphira architecture
described in [14] uses a local world model to formulate plans
used to supervise and guide reactive behaviour.

Proponents of logic programming also argue that the low-
level reactive control afforded by subsumption can be satisfac-
torily addressed in logic [19], providing a uniform framework
for high-level planning and low-level behaviour.

3 Defining Robot Hardware and Environment

Programming by direct manipulation of images is unlikely
to be useful unless it is applied to a domain of objects with a

well understood visual appearance, subject to well understood
direct manipulations. Rearranging and deforming objects in
space has this property. We will therefore confine our attention
to robots moving and transforming objects in 2

D

 or 3

D

 space.
Although displaying and manipulating representations is sig-
nificantly harder in three dimensions than in two, the princi-
ples behind our proposed approach are independent of the
number of dimension of the domain. For ease of presentation,
therefore, we will consider only examples in two dimensions.

We assume that a physical robot consists of a collection of

parts

, some to gather information from the robot’s environ-
ment, others to act on the environment in some way, and the
remainder to simply provide connecting structure. We call
these parts

sensors

,

effectors

 and

blocks

 respectively. We assume
that a set of primitive

external functions

 are available for read-
ing values from sensors, and sending values to effectors.

We confine our attention here to the problem of program-
ming reactive control. We do not address other aspects of con-
trol programming such as deductive problem solving, vision or
the low-level computational problems arising from mechanics
of the robot hardware.

3.1 Hardware Definition Module (HDM)

H

DM

 is intended to be an extension to the application
framework of an existing application development system, so
that the underlying programming language and tools are
always available. This is because even seemingly trivial robot
control tasks usually require some symbolic computation.
Clearly, this also gives expert programmers access to the robot
control structures at any level from the hardware external func-
tions to the structures built by

HDM

. As a basis for discussion
we assume the underlying system to be Prograph

CPX

, and will
use some Prograph constructs in

HDM

. We therefore expect the
reader to have some familiarity with the Prograph language,
described briefly in [7] and fully in [18].

With

HDM

, the programmer defines

classes that capture the
function and appearance of the parts of a robot, then builds a
representation of the robot from instances of these classes. We
will use the

LEGO

 car example to illustrate this process. In the
discussion, we will frequently refer to familiar user interface
items such as menus, dialogues and drawing tools, but for sim-
plicity will not show them in figures or discuss in detail how
they operate.

On starting

HDM

, a single empty window called

untitled
workspace

is displayed, together with a floating

component pal-
ette

consisting of a revolving sequence of panels, each contain-
ing some category of available classes. The workspace window
can be populated with various kinds of objects each of which
has at least one visual representation or

icon

. For example drag-
ging a class from the palette creates an instance of the class.
Graphic objects are created in

HDM

 using drawing tools simi-
lar to those found in any object-based drawing software, or can
be pasted from elsewhere.

Each graphic object has one or more

published attributes

.
On receipt of an appropriate message, an object can send the
value of an attribute to the message sender. Similarly, in
response to a message it can change the value of a published
attribute, which may alter its icon. We use this message-flow

3

mechanism in defining properties
of the robot and its environment.

3.2 The robot environment

In building a robot control pro-
gram, a programmer specifies pro-
cedures which use information
about the robot’s environment to
compute values used to change the
environment. Since our aim is to
make it possible to do at least part
of this programming by direct
manipulation of a representation of
the robot, we must also provide a
representation of the environment
in which the robot operates. What
we need is a way to define values at
points in space for properties the
robot will measure or attempt to
change. To this end, we consider
that the environment consists of a
set of

tiles

. A tile has an icon of any
shape, and has associated with it a

property

 and a function that maps
any point on the tile to a value for
the property. This function could
simply be a constant, or arbitrarily
complex, with parameters other
than just the point, such as time.
The

LEGO

 car requires functions
which depend only on location and
have a small number of values, so
we will restrict our attention to
building such tiles.

Suppose we have started

HDM

and saved the workspace as

LEGO

Car

. The item

New Tile

in the component palette represents
the root class of the tiles class hierarchy in the underlying
framework. Dragging this into the workspace as in Figure 1
creates an instance and opens the

Tile Editor

 window (shown
in Figure 2). In this editor we define the characteristics of the
newly created tile: that is, we assign it a property and define
the function that computes the value of the property at points
on the tile.

The

Property

 popup is used to assign a property to the tile
being edited. This popup lists all properties defined in the
workspace, and also includes an item

Add new property...

which can be used to create and name a new property, adding
it to the workspace and assigning it to the tile under consider-
ation.

The function that determines values for the property asso-
ciated with the tile we are editing, is defined by assembling a
collection of regions in the lower part of the

Tile Editor

 win-
dow, where each region is associated with a value for the prop-
erty.

Any number of regions in the window can be simulta-
neously selected. The popup

Value of Selected Regions

 in
the

Selection

 control group is used to assign a value to all

selected regions.
In our example, we will create a

tile corresponding to a straight
section of

LEGO

 track. First we
select the property

colour

 for the
tile, then paste an image of the
grey plastic part of the track sec-
tion into the lower part of the win-
dow. We choose the value

grey

from the

Selection

 popup to
assign it to the region.

Each

LEGO

 track section has
white and green stripes along the
edges of the roadway section, so
we add graphics for these and
assign them the values

white

and

green

. Finally, our track also has
an added strip of black tape down
the centre plus crosswise strips at
the ends for the infrared sensors to
detect. We add graphics for these,
select them all and assign

black

 to
them, as shown in Figure 2.

Both the popups displaying
property values in this window can
be used for adding a value to a
property, in which case the popup
is set to the new value, thereby
affecting either the set of displayed
graphics or the value associated
with each of the currently selected
graphic items.

Clicking. the

OK

 button closes
the tile editor, returning to the
workspace which contains our

new tile instance. So that we can repeat straight sections when
building tracks, we use this tile as a prototype to create a class,
by dragging it into the component palette. This results in a
dialogue where we name the new tile class

Straight

. When this
dialogue is closed, the new track class is added to the

Tiles

panel of the palette, represented by a reduced form of its icon.
After creating four tile classes corresponding to the four kinds
of

LEGO

 track sections, the palette appears as in Figure 3.
We did not name the tile we created in

Tile Editor

. Most

HDM

 entities can be named, but since these names are mainly
required for locating structures in the
underlying model if one is program-
ming at a low level, we will not
bother to name them in our exam-
ples.

To build a robot environment in
the workspace, instances of tile
classes are created and arranged. Tiles
may be butted or overlaid. If two
tiles for the same property overlap,
the upper tile defines the property in
the overlap region. If overlapping
tiles correspond to different proper-

 Figure 1: HDM workspace window

Figure 2: Setting the value of a region

 Figure 3: New tile
classes in the com-

ponent palette

4

ties, they do not affect each other.
By default, in every robot environment there is a value

defined everywhere for the property

location

. There is also a
property called

velocity

 defined at every point by a function
of two parameters, the point itself and a point on the robot:
this function computes the relative velocity of the two input
points.

3.3 Sensors

Depending on how a robot’s on-board controller operates,
it may not be possible to directly access a single physical sensor,
as is the case with the five infrared sensors on the

LEGO

 car. We
therefore recursively define a

sensor

 to be either a simple sensor
or a compound sensor, which is a collection of sensors. This is
important only in

HDM

 where the connection to the physical
robot is defined, and does not affect the view of the robot that

SDM

 presents to the user.

3.3.1 Simple sensors

Creating a simple sensor is similar to creating a tile, that is,

New Sensor

is dragged into the workspace from the

Sensors

panel of the component palette. This opens a

Sensor Editor

window (shown in Figure 4) with three panels; from top to
bottom, the

specifications

,

head

 and

body

 panels. In the specifi-
cations panel the

Function

 popup menu in the

External Map-
ping

 area can be used to choose the external function with
which to read the value of the corresponding hardware sensor.
The sensor we build will be used as a prototype for a class, so
we will not select an external function for it since then every
instance of the class would refer to the same physical sensor.

The head and body panels are used to define two mappings;
a function from the sensor value received from the hardware
sensor to the visual representation, and an inverse. Note that
since the first mapping is not necessarily 1-1, the second can-
not be a true inverse. It is used to compute a plausible sensor
value in situations where the user sets the sensor icon manu-
ally. This is necessary since the sensor value is stored in the
internal model of the sensor built by

HDM

, and can be accessed
for lower-level programming. These functions are defined by a
sequence of cases, similar to the definition of a method in
Prograph, arranged hori-
zontally in each of the
panels. The head panel
shows “thumbnails” con-
sisting of an icon for each
case, while the body panel
consists of panes contain-
ing the “bodies” of the
cases. The head panel is
used for easily locating a
case in the sequence.
Selecting a case in the
head panel also selects the
corresponding item in the
body panel, and scrolls it
into view.

The editor initially
displays one case, at the

left end of each of the two panels. The body of a case contains
a

graphic origin

consisting of a pair of crosshairs, and a network

of icons including one occurrence of , representing the
sensor value. The graphic origin provides a reference to ensure
proper registration of the graphics that will be constructed in
each case. Aside from graphic representations corresponding to
values, each sensor also has a “don’t care” representation, used
when we define rules for robot behaviour, constructed in a
pane to the right of the last case. Note that the

Don’t care

pane has a graphic origin for this purpose. Dragging the
graphic origin in one case will not move those in other cases,
however, all graphic objects in the same case will move with it.

The physical infrared sensors of our

LEGO

 car return integer
values from 0 to 255: however, for the purposes of this exam-
ple, we want to partition the 256 possible values into two,
indicating whether or not the sensor is over a black strip on the
track. We therefore want to map sensor values on to two repre-
sentations for the sensor. First, we modify the body of the
existing case as shown on the lower left of Figure 4, building a

network of icons and adding the graphic .The icon labelled

off?

 is a

local

 operation, defined by a sequence of cases.
Clicking in the head panel between the first case and the

grey trailer creates a new case like the initial case. The second-
case and “don’t care” graphics are created, and after further
editing, we obtain the sensor definition and associated icon
definitions in Figure 4.

The semantics of sensor definitions and local operations is a
logic/dataflow hybrid. Links normally represent unification,
but may be marked with an arrow to indicate dataflow. To
illustrate, let us suppose that a sensor value of 200 is being
mapped to an icon by the definition in Figure 4. The first case
is tried, which leads to execution of the local

off?

. The first
case of

off?

 applies since the arrow on its input indicates that
data must flow in. The operation

≤

 fails, however, so the sec-
ond case is attempted, but also fails because data is expected to
flow out. This leads to the failure of the first case of the sensor,
and thence to the execution of the second case. The first case of
the local

on?

 succeeds immediately because it requires only

Figure 4: Completed sensor definition and
associated icon definitions

5

that data flows in. As a result, the
icon , is selected.

The sensor definition is com-
pleted by defining its reaction to
a simulated environment, assum-
ing that a simple sensor computes
a simulated sensor value from the
value of one property of the envi-
ronment. First, we create a region
in the

Sense Points

 area of the
body panel defining exactly
which points of the environment
the sensor collects values from.
Since the infrared sensor reads all
the values under its rectangle, we
simply copy the graphic from any
case, thereby defining a region
consisting of all points in this
rectangle. The

Sense Points

graphic consists only of black pix-
els, indicating the points that are read by the sensor.

Finally, using the two popup menus in the group of con-
trols labelled

Environment Mapping

, we choose the property

colour

 and the function with which to compute the sensor
value as shown in Figure 4. The

Function

 popup lists existing
functions for the chosen property, as well as an option

Add
new function...

 which can be used to add a new environment
mapping function.

Clicking the

OK

 button dismisses the

Sensor Editor

,
returning to the workspace. As mentioned above, we need sev-
eral sensors like the one we have built, so we use it as a proto-
type for a new class

Infrared Sensor.
 In this example, each case of the sensor corresponds to

exactly one graphic representation, and the sensor value con-
sists of simple data. This may be insufficient for some applica-
tions. In such a situation, the
appropriate correspondence
between sensor value and icon
would be maintained by two
message-flow links attached to
the two graphic elements as dis-
cussed at the end of Section 3.1.

The concept of icons which
change their appearance depend-
ing on some internal state has
been used in various other visual
programming systems, for exam-
ple [4, 22].
3.3.2 Compound Sensors

To construct the compound
sensor corresponding to the five
infrared sensors on the LEGO car,
we again invoke the sensor editor by dragging New Sensor
into the workspace. We then drag five instances of Infrared
Sensor into the first case body, positioning and orienting them
appropriately. As each of the constituent sensors is deposited, it
becomes part of the graphic in the case, and a terminal appears

above it corresponding to its sen-
sor value

Next we select read_IR as the
external function that will deliver
values to the sensor, and complete
the case as shown in Figure 5. The
local operation parse byte
string maps the sensor value to
the values of the individual sensors
and vice versa. In the forward
direction of the mapping, each of
the constituent sensors receives a
value with which it determines its
own icon. Note that we have
rotated two of the Infrared Sensor
instances 90°. This matches their
orientation on the physical robot.
3.4 Building Effectors
An effector is similar to a sensor in
that it has an iconic representation

defined as a collection of graphic items that varies depending
on an underlying value (effector value), and is associated with
an external function. Not surprisingly, editing an effector is
similar to editing a simple sensor as in Section 3.3. The Effec-
tor Editor window in Figure 6 shows the definition for the
right drive effector of our LEGO car. In this example, the icon
consists of three parts; a text box representing the motor, a
rectangle for the driveshaft, and a rounded rectangle for the

wheel. The effector value is represented by the icon .The
exact representations of the motor and wheel depend on the
speed and direction components of the effector value. The first
case defines the correspondence for a stopped drive, while the
other cases define it for forward and reverse movement. Each
of the locals stopped?, forwards? and reverse? either
checks that the direction component of the effector value is

correct, or sets it correctly,
depending on whether the defini-
tion is used to choose a graphic
representation for an effector
value or vice versa. These locals
also ensure that the speed compo-
nent of the effector value matches
the display in the motor text box.
During construction of these dia-
grams, whenever a terminal is cre-
ated on a graphic, a popup
appears from which the appropri-
ate published attribute is selected.

To define the relationship
between the effector and the envi-
ronment, we choose the property
velocity in the Environment

Mapping section. In the popup of functions available for this
property is the special item Direct which, rather than defining
a function, allows us to define one directly. Choosing this item
adds small banners labelled velocity to each of the cases of the
definition.

EE

Figure 5: Definition of compound sensor

Figure 6: The Effector Editor

6

Switching to the environment mapping view preserves the
graphic from the regular view, and adds a velocity control and
two attribute indicators. The control consists of a vector and a
reference axis meeting at a point called the origin. The indica-
tors display the current values of the length of the vector
(speed) and the angle between the vector and the axis (angle).
We drag the origin of the control to a point at the centre of the
wheel; then drag the arrowhead, changing the angle and mag-
nitude of the vector; and finally, wire the speed indicator to the
motor icon, as shown in Figure 7. This last action constrains
the magnitude of the vector to 0.

In a similar fashion we edit the envi-
ronment mapping view in each of the
other cases, obtaining the definition
shown in Figure 8. When the speed
indicator is wired to the motor icon in
the second and third cases, its value
display disappears since the motor
icon display is empty.
Just as a sensor has a set of sense
points defining which points of the
environment it observes, an effector
has a set of effect points defining the

points in the environment it acts on. The effect points can be
defined in the Effector Editor in the same way as sense points
are defined (see Figure 4), or as a consequence of directly pro-
gramming the environment mapping as in Figure 7, which
defines a single effect point as the point on the effector that
coincides with the origin of the velocity control.

The left drive effector is defined by horizontally inverting a
copy of the right drive effector and changing the external func-
tion, horizontally inverting each of the icons in the definition.
3.5 Components

In Section 3.3 we took a hierarchical view of sensors since
control programs may group simple sensors for communica-
tion. For different reasons, it is important to consider a robot
as a hierarchical structure. For example, in an assembly-line
robot consisting of a chassis and an articulated arm, the arm is
not just a rigid item, but consists of parts that move in relation
to each other. For this reason we will view a robot as a compo-

nent, where a component is recursively defined as either a basic
part or a set of components together with a constraint that
specifies how the constituent components are related to each
other. A part is either a sensor, an effector or a block, where a
block is a maximal collection of graphic objects rigidly con-
strained together. The assembly-line robot, therefore, is a com-
ponent consisting of one part, a fixed chassis, and one
component, an arm, one end of which is constrained to a spe-
cific point on the chassis. The arm in turn is made up of other
parts and components constrained together in such a way that
the arm can pivot at its joints.

In above definition of component, the intention of the def-
inition of “block” is to eliminate irrelevant detail. For example,
a definition of the LEGO car need not deal with the individual
plastic bricks that make up the chassis. Our definition of block
suppresses such detail. The car does, however, have a single,
centre-mounted, swivelling back wheel which the definition
would treat as a block separate from the chassis, even though it
contributes nothing to modelling the functionality of the vehi-
cle. We will omit it from our description.

In drawing applications the “group” operation fixes the rel-
ative positions a set of graphical objects. In HDM grouping is
generalised to constraining, where any constraint is applied to a
set of objects. For example, one can select two overlapping
objects, choose the constraint pivot, then click the cursor at a
point in the intersection of the objects to define the pivot
point. The LEGO car is a simple structure which we build by
arranging in the workspace the compound sensor from Section
3.3.2, the right and left drive effectors from Section 3.4, and a
graphic representing the chassis, as shown in Figure 9. With all
these items selected, we choose the constraint lock, which spec-
ifies that the four components must remain in the same rela-
tive positions and orientations.

We now save the LEGO Car workspace, which saves to a file
the components in the workspace window, and all the classes
and properties we have defined.
3.6 Programming the Robot

In this section we give a simple example to illustrate how
the model produced by HDM can be used to program the
robot. First we load the LEGO Car workspace into SDM. Next
we assemble an environment by dragging track sections from
the palette, and place the robot as shown in Figure 10.

In this window we define a behaviour for our robot as a
finite state machine (FSM), following the subsumption archi-
tecture [3]. First we select the behaviour we are going to edit
using the popup menu labelled Behaviour. Since we are about
to define a new behaviour, we select the item New behav-
iour… which we can use to create and name a new behaviour.
To name the starting state for the behaviour, we type straight
ahead into the Current text box in the State control group.
This text box appends the character • to the beginning of the
name to indicate that this is the start state for the behaviour.

When the robot is placed in an environment in SDM, its
effectors are all set to “don’t care,” and its sensors display what-
ever icons they compute from the environment. The final pre-
paratory task is setting effectors to whatever values they should
have as long as the robot is in the straight ahead state, and

Figure 7: Defin-
ing environment

mappings

Figure 8: Final definition of environment mapping

7

selecting the sensors significant in
implementing the behaviour. We
set the two motors to “forwards at
speed 5,” and set to “don’t care”
any sensors we are not interested
in. Effectors not involved in
implementing the behaviour
remain in the “don’t care” state.
We refer to the sensors and effec-
tors that we are interested in as
active. SDM provides appropriate
tools for setting sensors and effec-
tors. For example, the representation of a drive wheel is tog-
gled by clicking it, and clicking a motor pops up a slider for
choosing a speed value.

To begin building the FSM for the behaviour, we click the
Run button. Simulation begins and the robot moves forwards
at a constant speed 5 until the value of an active sensor
changes, halting the simulation. This will occur when the
robot reaches the curved track section as in Figure 11(a). The
robot should now turn right, so we create a new state veer
right by selecting New state… from the Next popup. The
popup is set to this new state. For
this state we set the left and right
drives to “forwards at speed 5”
and “stopped,” respectively.

Now we click Run to resume
the simulation, which stops again
as soon as the sensors change, as
shown in Figure 11(b), at which
time we select the existing state
straight ahead from the Next
popup, which sets the drive val-
ues defined for that state, causing
the robot to continue straight.

The next change in sensor
values is to the configuration

 (left to right). Because this
configuration was previously
encountered in the state
straight ahead, there is already
a transition for it in the FSM.
Therefore, since the simulation
mode is set to “continuous,” the
simulation will not halt, but con-
tinue with a transition to the
state veer right.

Programming proceeds in this
way until all necessary states and
transitions have been defined, at
which time the simulation runs without stopping. At any time
during the programming process, clicking the button Show
state diagram opens a window depicting the FSM for the
behaviour under construction. For example, if this button is
clicked at the point in the above description when the robot
halts in the state veer right, the window shown in Figure 12
appears. The start state of the FSM is outlined. The label on a

transition is the combination of
sensor values that triggers the
transition.

In the subsumption architec-
ture, behaviours are autonomous
and concurrent, making it possi-
ble to build complex reactive sys-
tems in an incremental manner.
For example, once the Follow
Track behaviour has been
defined for the LEGO car, we can
expand the control program’s

capability by adding a Back Up behaviour that reverses the
motors if the touch sensors at the front of the car are activated.
Clearly motor settings produced by Back Up should take pre-
cedence over those from Follow Track. The subsumption
architecture provides message-flow diagrams to specify the pre-
cedence relationships between behaviours. We have yet to
address this aspect of subsumption.

For ease of presentation we have used a simple robot which
has a rather limited effect on its environment. It is important
to note, however, that the only limitations of our approach to

control programming are those
inherent in the subsumption
architecture. In fact there may be
potential for some “direct manip-
ulation” editors for defining the
effect that effectors have on the
environment.

In the example, we built an
idealised robot and environment
where sensors and effectors
behave perfectly. It would be
important in a practical HDM to
make the simulations more realis-
tic by introducing imperfect per-
formance, possibly by calibrating
the model against the hardware.
4 Concluding remarks

A recent series of experiments
in applying visual programming
to the task of controlling robots
began with simply using a gen-
eral-purpose visual language, and
progressed through more domain
specific implementation tech-
niques. Although this work pro-
duced VBBL, a general visual
language for robot control, we
felt that the result was disap-

pointing in that it did not in any way exploit the fact that
robots are physical objects with an obvious visualisation, pro-
viding instead concrete representations of abstract control con-
structs. This result is not really surprising, of course, since
maintaining generality while providing direct representation of
robots are rather contradictory aims.

The proposal presented here is an attempt to reconcile these

Figure 9: Representation of the LEGO car in HDM

Figure 10: Environment for programming the
LEGO car.

Figure 11: Programming a right turn.
(a) (b)

8

two aims by taking an approach
analogous to compiler compilers
for programming languages. The
compiler compiler supplies full
generality, and specific features
are provided by language defini-
tions that the compiler compiler
processes. Accordingly, we have
proposed a robot programming
system consisting of two modules;
a Hardware Definition Module
(HDM) and a Software Definition
Module (SDM). HDM consists of
a set of editors for specifying the structure and function of a
robot and its environment, while SDM uses the model built by
HDM to enable the programmer to build control programs by
directly manipulating a visual representation of the physical
robot.

In HDM the programmer describes a robot as a hierarchical
structure of components, capturing the way constituent com-
ponents are constrained together, and the function of the sen-
sors and effectors with which the robot observes and alters its
environment. Thus HDM is similar to CAD editors, but its pur-
pose is quite different. To ensure that a device can be manufac-
tured, a CAD editor is concerned with every intricate structural
detail, whereas we are interested in capturing only those fea-
tures of a robot’s mechanics relevant to programming it.

The output of HDM is a model that captures the syntax and
semantics of a particular robot. This model can be used by
SDM for various purposes. We have described how, by directly
interacting with a simulation of robot activity, a programmer
can build the finite state machines that implement behaviours
in the subsumption model of robot control. Clearly, SDM
could also incorporate a simulator for observing the perfor-
mance of control programs developed in other systems.

The modules described here have not yet been imple-
mented. Our intention is to build them as an extension to the
application framework of Prograph CPX and use them to test
the practical viability of this approach. In the process we will
formalise our example-based description presented here,
addressing issues such as robustness and generalisability.

Issues yet to be investigated include dealing with environ-
mental properties that are not well expressed by tiles; how to
generate the subsumption model message-flow graphs via
direct manipulation of the robot model; what other models for
robot control might be used as a basis for programming in
SDM; how to deal with situations where the relationship
between sensors and effectors is described by a continuous
function, rather than discrete as in our examples here; and how
to generalise these concepts to three dimensions.
5 References
[1] C. Balkenius, Natural Intelligence for Autonomous Agents, LUCS

29, Lund University Cognitive Studies (1994).
[2] Borland, Delphi Reference Manual (1995).
[3] R.A. Brooks. A Robust Layered Control System for a Mobile

Robot. in IEEE Journal of Robotics and Automation, (1986).

[4] M. Burnett and A. Ambler, Inter-
active Visual Data Abstraction in
a Declarative Visual Program-
ming Language, Journal of Visual
Languages and Computing,
(1994), pp. 29-60.

[5] P.E. Caines and S. Wang,
COCOLOG: A conditional
observer and controller logic for
finite machines, SIAM Journal of
Control (1995).

[6] P.T. Cox, C.C. Risley, T. Smed-
ley, Toward Concrete Representa-
tion in Visual Languages for

Robot Control, Journal of Visual Languages and Computing,9(2),
(1998) to appear.

[7] P.T. Cox, T. Smedley, Using visual programming to extend the
power of spreadsheet computation, Proc. of Advanced Visual
Interfaces Workshop, Bari (1994), 153-161.

[8] CRS Robotics, RAPL-3 Language Reference Manual, (1997).
[9] R.E. Fikes and N.J. Nilsson, STRIPS: A new approach to the

application of theorem-proving to problem solving, Artificial
Intelligence, 2(4), (1971), pp. 189-208.

[10] T.R.G. Green, M. Petre, Usability Analysis of Visual Program-
ming Environments: A ‘Cognitive Dimensions’ Framework,
Journal of Visual Languages and Computing. 7(2), (1996),
pp. 131-174.

[11] IBM, Visual Age for Smalltalk, 1995
[12] E. Jackson and D. Eddy, Design and Implementation Methodology

for Autonomous Robot Control Systems, International Submarine
Engineering Ltd., http: //www.ise.bc.ca/robot1001.html,
(1997).

[13] E. Knapp, Wisconsin Power & Light, Private Communication
(1997).

[14] K. Konolige, K. Myers, E. Ruspini and A. Saffioti, The Saphira
Architecture: A Design for Autonomy, Journal of Experimental
and Theoretical Artificial Intelligence, vol. 9, 1997,pp. 215-235.

[15] R. Kowalski and M. Sergot, A logic-based calculus of events,
New Generation Computing, vol. 4, no. 1, (1986), pp 67-95.

[16] Y. Lespérance, H. Levesque, F. Lin, D. Marcu, R. Reiter, and
R.B Scherl, A logical approach to high-level robot programming
- a progress report, in B. Kiupers (Ed), Control of the Physical
World by Intelligent Systems, Papers from the 1994 AAAI Sympo-
sium, New Orleans (1994), pp. 79-85.

[17] Microsoft, Visual C++
[18] Pictorius Incorporated. Prograph CPX User’s Guide. (1993).
[19] D. Poole, Logic Programming for Robot Control, Proc. 14th

International Conference on Artificial Intelligence, Montreal,
(1995), pp. 150-157.

[20] M. Resnick. Behavior Construction Kits. Communications of the
ACM, (1994), pp.65-71.

[21] K. Schmucker, Apple Computer, Private Communication
(1997).

[22] D.C. Smith, A. Cypher and J. Spohrer, KidSim: Programming
Agents Without a Programming Language. Communications of
the ACM, vol. 37, (1994) pp. 54-68.

[23] H. W. Stone, Mars Pathfinder Microrover: A Low-Cost, Low-
Power Spacecraft, Proceedings of the 1996 AIAA Forum on
Advanced Developments in Space Robotics, Madison, WI, (1996).

[24] Symantec, Visual Café

Figure 12: FSM for turning right.

