

Abstract

We report on the development of a visual programming envi-
ronment for building applications for execution on a range of
parallel computing platforms. This work exploits the dataflow
and list-processing parallelism naturally exposed in the Prograph
language, by providing annotations to indicate that operations
can be remotely executed, supported by a task-pooling model for
parallel execution that preserves the sequential semantics of the
language. The goal is a practical system that builds on the com-
prehensive tools in the Prograph

CPX

 environment in a consistent
manner. This will be achieved via high-level editors for hardware
configurations, annotations and program analysis, and an under-
lying kernel that implements the pooling model.

1 Introduction

Effective exploitation of parallel and distributed comput-
ers has for some time been a major goal of the computing
industry and researchers. Recently, microcomputer manufac-
turers have begun to release symmetric multiprocessor (SMP)
or shared-memory architectures aimed at computing-inten-
sive applications such as rendering 3

D

 models. There are,
however, few tools for exploiting the parallel processing
potential of such machines, so application developers must
arrange the distribution of computing tasks among processors
using very low level facilities.

The work reported here forms part of the GraphIcsla
project at the University of Southampton, in which the use of
a graphical programming environment for parallel and dis-
tributed systems is being investigated. Its primary objective is
to address the shortcoming outlined above, by providing a
programming language that allows the natural expression of
parallelism, embedded in an application development envi-
ronment that provides the necessary support for developing,
debugging and deploying applications on parallel machines.
The programming environment which forms the basis for
this work is Prograph

CPX

 [17]. Since Prograph employs a
data flow evaluation model, it would appear to have potential
for programming target machines offering fine-grain parallel-
ism, such as the new SMP microcomputers. It would also be
useful, however, to exploit the potential of the idle cycles of
networked workstations by programming such networks as
parallel machines with particularly coarse-grain architectures,

such as the

SP

2 from

IBM

, which can be viewed as a network
of workstations. Here we show how minor additions can
make the Prograph language suitable for exploiting parallel-
ism on a range of architectures, propose extensions to the
Prograph

CPX

 environment to support development of paral-
lel applications, and discuss a development methodology.

Section 2 reviews aspects of the Prograph language, in par-
ticular those that relate to expressing parallel computation. In
section 3 we introduce the “bless” annotation that can be
applied to operations in a program to achieve parallel execu-
tion. The implementation model underlying Parallel
Prograph is presented in section 4, followed in section 5 by
an outline of the components of the system under construc-
tion. Sections 6 and 7 review related work and summarise the
project.

2 Expressing parallelism in Prograph

We assume here that the reader has a working knowledge
of Prograph. Brief descriptions of the language are given in
[4, 5], while a complete description of the language, its
sequential semantics, and the Prograph

CPX

 development
environment can be found in [17].

In Prograph, computations are expressed by data flow dia-
grams which expose the independence of operations. The lan-
guage also provides lists as a primitive datatype, together with
constructs that indicate potentially parallel list processing. As
a result, expressing algorithms in a parallel fashion becomes
the natural default, rather than a special effort requiring an
extra layer of syntax. So in this sense, the language is well-
suited to the aims of the project. To illustrate the various
sources of parallelism in the language, we consider the imple-
mentation of the Quicksort algorithm shown in Figure 1.

The most obvious source of parallelism, called

data flow
parallelism,

 lies in the non-sequential arrangement of opera-
tions in a data flow diagram. To execute, an operation
depends only on the availability of the input data it needs.

For example, once the operation in the first case of the

quicksort

 method has been executed, data is available to
both

quicksort

 operations which are then free to execute
simultaneously.

The operation in the first case of the method is a
partition multiplex, an example of a general class called

list
multiplexes

. The three-dimensional nature of this icon indi-
cates that the enclosed

≥

 operation will be repeatedly exe-
cuted, each time consuming one of the items from the list

A Visual Development Environment for Parallel Applications

Philip T. Cox

1

Hugh Glaser

2

Stuart Maclean

2

Faculty of Computer Science, Dalhousie University, Halifax, Canada

 1

Dept of Electronics and Computer Science, University of Southampton, UK

 2

This work was supported by EPSRC (UK) grant GR/K41526,
NSERC (Canada) grant OGP0000124, and a grant from AUCC
(Canada).

Appearing in

Proceedings of IEEE Symposium on Visual Languages

, Halifax (1998)
© 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

2

that arrives on the list annotated ter-
minal . This is similar to “map”
operations available in functional lan-
guages. Under certain conditions, as
in this example, the operation could
be applied to each element of the
incoming list simultaneously. We refer
to this as

multiplex parallelism

. Note
that Prograph also has loop multi-
plexes, which, although they may have
list-annotated terminals, also have
loop-annotated terminals indicating
outputs from one iteration that are fed
as inputs to the next. Clearly such
multiplexes cannot be parallelised.

Each method in Prograph consists
of a sequence of cases, analogous to a
set of clauses defining a predicate in
Prolog. According to the sequential
semantics of Prograph, the cases are
tried in order until one of them exe-
cutes to completion. The switching
from one case to the next is accom-
plished by controls: for example, the
first case of the

quicksort

 method has two match operations

()

each

with a

next-case-on-success

 control . Whenever one
of these match operations succeeds, the associated control
causes execution of the case to stop, and execution of the sec-
ond case to begin. Clearly, all cases in a method could be con-
currently executed, obtaining

OR-parallelism

. Note, however,
that assumptions about input data that hold within a case of a
method being sequentially executed are not necessarily valid
with this kind of speculative execution. Consequently pro-
grams would have to be written specifically to take advantage
of it.

Having identified these sources of parallelism in the lan-
guage, we need to answer two issues.
First, what should be the nature of the
parallel programming model offered by
our target environment? Second, how
should the model be implemented to
achieve parallel execution? We address
the first of these questions in the next
section, and the second in sections 4
and 5.

3 Annotating for parallelism

To achieve a practical environment
for developing parallel applications for
the various kinds of architectures men-
tioned in our introductory remarks, we
are interested in building on the facili-
ties already offered in Prograph

CPX

. In
line with this goal, we wish to preserve
the sequential semantics of the language
so that applications can be developed
on a sequential processor then easily

deployed on a parallel platform.
Therefore we have not attempted to
implement OR-parallelism, since it
is more suited to very large numbers
of closely coupled processors and
would require changes to established
Prograph programming style. We
focus therefore on exploiting data
flow and multiplex parallelism.

Given the range of architectures
we are considering, in the remainder
of this paper we use the word “pro-
cessor” to refer to processing entities.
We also use the words “local” and
“remote” to distinguish between the
process or execution that is our cur-
rent focus and one that occurs else-
where. Hence the terms “local
processor” and “remote processor”
can mean threads within the same
SMP machine or processors commu-
nicating at a distance over a network.

The availability of multiple pro-
cessing units does not immediately

guarantee a reduction in execution time since overheads due
to synchronisation, data copying and task or process manage-
ment may result in parallel execution with worse performance
than that of equivalent sequential execution. For example,
dispatching an operation for execution on another processor
is unlikely to improve performance if the operation is a trivial
one, such as applying an arithmetic primitive. Clearly, opera-
tions selected for dispatch should be carefully selected, taking
into account various factors such as the size of the computa-
tion involved, the amount of data that must be copied and
sent to the target processor, or whether the local processor
will be gainfully employed while the remote processor is at
work. Answers to these and other questions might be

obtained by analysis of the program in
order to automate dispatching deci-
sions: however, such analysis is likely
to be expensive. We will return to this
issue later. The programmer, on the
other hand, is likely in most situations
to have very good intuitions about the
value of remotely executing a particu-
lar operation. Initially, therefore, we
will leave it to the programmer to
annotate operations for parallel execu-
tion, as described below. In the longer
term we hope to be able to automate
the annotation process to some extent.

3.1 Blessing

Annotation-based parallelism was
pioneered by Hewitt and Baker [1]
and Halstead [10]. We define an anno-
tation called a

bless

 which can be
applied to Prograph operations to indi-

Figure 1: Quicksort in Prograph

Figure 2: First case of quicksort
method with one blessed quicksort

operation

3

cate that they may be executed remotely. From a human-
computer interface point of view, blessing is consistent with
other features of the Prograph language, where operations,
terminals and roots are adorned in various ways by annota-
tion. Blessing differs from these other adornments, however,
in that it has no semantic significance, as we shall see.

Figure 2 shows the

bless applied to the left hand

quick-
sort

 operation in the first case of the

quicksort

 method indi-
cating that the operation is a candidate for parallel execution
by a remote processor.

As noted above, list multiplexes promote concurrency
owing to the absence of data dependencies between list ele-
ments, so under certain conditions the applications of the
multiplexed operation to individual list elements may pro-
ceed in parallel. For example, blessing the operation

gather

enclosed in the multiplex as shown in Figure 3(a), indicates
that each of the executions of that operation can be per-
formed on a (different) remote processor. We call this

inter-
nally blessing

 the multiplex. This does not imply that the
multiplex as a whole is dispatched to a remote processor. The
execution of the multiplex, that is, the management of the
constituent executions and the assembly of returned results, is
performed locally. To indicate that the multiplex itself is a
candidate for remote execution, the bless must be applied to
the multiplex rather than the enclosed operation as shown in
Figure 3(b), called an

external blessing

. Blessing the multiplex
both internally and externally as shown in Figure 3(c) indi-
cates that the multiplex may be executed on a processor dif-
ferent from that of the enclosing case, and that the individual
executions of the enclosed operation may be further dis-
patched.

3.2 Factors affecting annotation decisions

In the introduction to this section, we mentioned the
need for caution in selecting an operation as a candidate for
remote execution. Some of the factors affecting the decision
to annotate an operation are as follows. These factors are not
necessarily independent.
1.

Size of computation

. If faster execution is the aim then
the amount of computation required to execute the
operation must be large enough that benefit of doing
this computation on a remote processor outweighs the
overhead cost of dispatching the task. Assessing this
overhead cost depends on 2 and 5 below. Estimating the
benefit of remote execution must take 6 into account.

2.

Quantity of data to be copied and transmitted

. Within the
range of hardware models we consider are platforms con-
sisting of networks of processors with no shared memory.
In such architectures the data required for a computation
to be executed remotely must be copied to the remote

processor.
3.

Side-effects

. So far our discussion has avoided an impor-
tant issue. An industrial-grade programming language
must support abstract data types and supply a library of
ADTs on which applications can be built. Prograph
accomplishes this via object-orientation. As a conse-
quence, Prograph is not a “pure” data flow language in
that data passing through its diagrams can consist of
class instances subject to side-effects. Clearly the integ-
rity of data will be compromised if parallel processes are
allowed to return altered copies of an instance. The issue
of side-effects is discussed in [6], and in [13] algorithms
are presented for analysing Prograph programs to infer
datatypes and potential side-effects. To execute these
algorithms on any program large enough to be useful is
unlikely to be practical. However, in many cases the pro-
grammer will know whether blessing an operation is
“safe” with respect to side-effects.

4.

Load balancing

. Dispatching a task to another processor
makes sense only if the local processor will be gainfully
employed while the remote process executes. For exam-
ple, if both

quicksort

 operations in the first case of the

quicksort

 method in Figure 2 were blessed, then since
the data for both is available at the same time, both
would be dispatched leaving the current processor idle.

5.

Communication speed

. The speed of communication
between processors affects the overhead associated with
dispatching tasks.

6.

Processor speeds and characteristics

. Processors in a target
hardware configuration may be different. For example, if
the network contains a node consisting of a high-speed
array processor, then dispatching a list multiplex to that
processor may be worthwhile even if this leaves the cur-
rent processor with little computation to do in the
interim.

4 The Pool Model for Parallel Execution

So far we have discussed remote execution of tasks and
annotation for parallelism from the programmer’s point of
view, which we consider gives an appropriate but pragmatic
level of abstraction. In this section we present the model we
have adopted for dealing with the mechanics of the underly-
ing process.

A possible meaning for the bless annotation is that it
denotes a

future

 in the sense of the mechanism employed in
Multilisp [10]. Under this interpretation, the operation and
its input data would be packaged as a future, possibly to be
exported to another processor. When the return value of the
operation is required, the future is inspected (“touched”), and
if the result is available, the calling process uses it and contin-
ues its computation. If the result is not available and execu-
tion of it has not yet begun, the calling process may elect to
execute it itself as a conventional subroutine, or may wait.

We have chosen not to use the futures model for several
reasons. First, the mechanism requires the runtime system, or
even the programmer, to explicitly test the current state of the
future. Since futures are first class objects, that is, they can be

(a) (b) (c)

Figure 3: Combinations of blessings on a multiplex

4

passed to and from functions and
stored in data structures, such testing is
non-trivial. This mechanism imposes
an execution overhead on the runtime
system of up to 50%, even for a
sequential program. Second, the pro-
gram development environment, and
in particular the set of primitives sup-
plied in the language, would require
changes to accommodate unevaluated
futures. Finally, side-effects which are
predictable when all operations in a
case must be evaluated before the case
finishes become considerably less so if
cases are allowed to return unevaluated
futures.

We use a conservative model in
which executes a blessed operation by
creating a task which may be executed
remotely, and must always evaluated
before execution of the case where it is
created is finished. This containment
keeps the programmer’s view of the
model simple, and promotes reuse of
program components which would not be easily achievable
were unexecuted tasks, like futures, allowed to flow out of
cases.

Like the futures model, the pool model is based on pack-
aging operations and associated data into a task data struc-
ture. When a process encounters a blessed operation, it places
a task data structure into a central pool of tasks, and later
investigates this pooled task in the hope that it has been exe-
cuted.

A prototype implementation in Prograph of the pool
model provides a clear description of how this mechanism
works [6]. We will use a modified version of that implemen-
tation as the basis for our explanation. Since the Prograph

CPX

 editor and compiler are not easily customisable, annota-
tion cannot be directly
incorporated. Instead,
operations that would be
annotated are expanded as
illustrated in Figure 4,
where the blessed

quick-
sort

 operation in Figure 2
has been replaced by several
operations and synchros as
indicated by the grey region
in the diagram which
arrange for

quicksort

 to be
executed, as follows. First
the inputs to the blessed
operation are packed into a
list by the primitive

pack

.
Next, the universal method

poolit

 is invoked with
three inputs, the name of

the blessed operation, the list of inputs
to the blessed operation, and an integer
specifying the number of outputs the
blessed operation produces.

poolit

returns an instance of an appropriate
class to represent the task, and may also
add this instance to a pool of tasks to
be performed. The operation

/get-
PooledValue

 receives the task instance,
extracts from it the list of results com-
puted by the execution of the task,
removes the task from the task pool if
necessary, and returns the list of values.
Finally,

unpack

 extracts the individual
values from this list.

A task which has been pooled by

poolit

 may be picked up for processing
by another processor so that by the
time

/getPooledValue

 executes, the
result is available. Clearly we want to
maximise the opportunity for this to
happen, which is why the two synchros
from

poolit

 to

quicksort

 and from

attach-l

 to

/getPooledValue

 have
been introduced in the expansion of the blessed operation.
The first ensures that the task is pooled before any other com-
putation takes place in the current case, while the second
ensures that as much computation as possible is done in the
current case before the value of the task is requested.

In general, a blessed operation is expanded as follows. The
operation is replaced by six operations as in the example,
where the

pack

 and

unpack

 operations have the same num-
ber of terminals and roots respectively as the blessed opera-
tion. The datalinks connected to the terminals and roots of
the blessed operation are replaced by datalinks connected to
the terminals of

pack

 and roots of

unpack

 respectively.
In order to describe how synchros are introduced by the

expansion, we note that a case represents a partial order on
the operations occurring in
it, determined by the graph
of datalinks and synchros.
Prograph determines a
legitimate execution order
by finding a linear order
that satisfies this partial
order, subject to the extra
conditions that the input
and output bars are always
first and last respectively,
and operations with con-
trols occur as early as possi-
ble. Let

x

 be some
operation in the case before
expanding the bless such
that

x

 occurs before the
blessed operation in some

Figure 4: Expansion of blessed
quicksort operation

Figure 5: The poolit
method

5

legitimate linear orderings and after in others. Let

X

 be the set
of all such operations, and let

Y

 be the set of elements of

X

which are minimal with respect to the partial order. We intro-
duce a new synchro from

poolit

 to

y

 for each operation

y

in

Y

.
Synchros from other operations in the case to

/getPooled-
Value

 are introduced analogously.
The method

poolit

 is shown in Figure 5. The first case
checks if the pool, maintained as a list of instances in the per-
sistent

Task Pool

, already holds some maximum number of
tasks, in which case the task is executed and the result placed
in an instance of class

Value

 which is returned to the caller.
Putting a ceiling on the pool size provides a primitive throt-
tling mechanism to control runaway pooling. The primitive

call

 executes the method named by its first input, passing this
method the list of values specified by its second input. The
called method produces the number of outputs specified by
the third input. These values are returned by

call

 packed into
a list. The second case of

poolit

 creates an instance of class

Task

 to record the information about the task, adds the
instance to the pool and returns the task to the caller.

Recall that the first case of

poolit

 executes a task immedi-
ately and creates an instance of

Value

 to contain the result of
the computation. The method

getPooledValue

 of class

Value

simply retrieves this result as shown in Figure 6.
Dealing with a pooled task is somewhat more complicated

since it may be pending, executing or executed. The method

getPooledValue

 of class

Task

 is also shown in Figure 6. If the
task is pending, it is removed from the pool and executed as
shown in the first case. Otherwise, if the task is executing, the
local operation

wait

 is repeatedly executed. As shown in Fig-
ure 6, in each iteration

wait

 checks the status of the task and
yields the processor if the task is still executing; otherwise the
task is removed from the pool, its result extracted and the
iteration of the multiplex stopped. Note that if the task is
done when

getPooledValue

is executed, the first iteration of
the multiplexed

wait

 will execute the second case of

wait

returning the result. “Yielding the processor” here refers to
the fact that in the Prograph

CPX

 prototype, management of
the task pool and communication with other processors is
dealt with in separate threads. Note that a practical system
would use a more sophisticated waiting mechanism, such as
waiting on an event signifying task completion.

To deal with an externally blessed multiplex, we introduce
a new method consisting of a single case containing the mul-
tiplex without a bless annotation, replace the original exter-
nally blessed multiplex with a simple blessed operation
referring to this new method, then expand this operation as
described above.

Expansion of an internally blessed multiplex is illustrated
by the example in Figure 7. The multiplex in the case in Fig-
ure 7(a) is replaced by the multiplexes and synchros indicated
by the grey region in 7(b). The multiplexed local operation

pool ‘em

has the same arrangement of terminals (simple or
list) as the original multiplex, connected to roots in the case
in the same way. Similarly, the multiplexed local

get ‘em

 pre-

(a) (b)

Figure 7: Expanding an internally blessed multiplex
(c)

Figure 6: The methods getPooledValue of classes
Value and Task, and associated local method wait

6

serves the roots and associated datalinks of the original multi-
plex.

pool ‘em

 has a single list root connected to the single list
terminal of

get ‘em

. The methods for the two introduced
locals are shown in Figure 7(c). Finally, synchros from
pool ‘em to other operations in the case, and from other
operations to get ‘em are added according to the rule defined
above for expanding a simple blessed operation.

Each execution of the multiplexed pool ‘em operation
deals with one element of each of the list inputs to the origi-
nal multiplex, packing them together with any simple inputs
into a list, then invoking the method poolit as described ear-
lier. This either creates and pools a Task, or evaluates the
method in question and creates an instance of Value. The
effect, therefore, is to do the same “packaging and pooling”
for each set of input values as is done for a simple blessed
operation. Similarly, the multiplexed get ‘em performs the
same “retrieving and unpacking” on each of the created Tasks
as is performed on the single task corresponding to a simple
blessed operation.

The result of this expansion is that as early as possible in
the execution of the case, one task will be pooled for each
application of the operation enclosed in the multiplex, and
values returned by these tasks are retrieved as late as possible.

The above description of the pool model is slightly defi-
cient in two respects related to controls. Recall that in
Prograph one outcome of executing an operation is failure,
which must be intercepted by a control on the operation. The
above description of the pool model cannot deal with blessed
operation that can fail. Neither can it deal with an internally
blessed list multiplex that, when executed sequentially, stops
before all elements of the shortest input list are consumed.
This occurs if the invoked method fires one of the controls
finish, terminate or fail. Neither of these issues can be handled
by the above Prograph simulation of pooling since control
messages are not accessible to the programmer. They are
addressed, however, in the implementation described in the
next section.

5 Implementation
In this section we describe the implementation of Parallel

Prograph currently in progress. This consists of an implemen-
tation in Java of the pool model, called the Parallel Prograph
Kernel (PPGKERNEL), together with Parallel Prograph Client
(PPGCLIENT), a version of Prograph CPX modified to sup-
port blessing and employ the services of PPGKERNEL.
Although the goal of PPGKERNEL is to support PPGCLIENT,
client programs could be written in any language. Currently,
a preliminary version of PPGKERNEL exists: PPGCLIENT is
still in the design stage.

5.1 PPGKernel
PPGKERNEL consists of a task pool manager together

with three thread sub-systems which select tasks from the
pool to be executed locally or to be exported to a remote pro-
cessor. User threads execute the client program. An idler
thread periodically examines the task pool and spawns new
user threads to evaluate pooled tasks. A communications
thread selects tasks and dispatches them to other processors in

the distributed machine, and receives tasks dispatched from
other processors, which it passes to the pool manager for
inserting into the task pool.

In a loosely coupled architecture, each processor runs
PPGKERNEL, providing services to a client program. Proces-
sors in such a machine are not necessarily identical, so each
PPGKERNEL is configured according to the characteristics of
its host processor. Configuration parameters include pool
capacity, whether tasks should be actively sought or passively
received, number of user threads, and whether or not a pro-
cessor should competitively execute tasks which are under
execution by other processors (racing). Note that allowing
multiple user threads provides the model with fault tolerance,
since a processor can decide to evaluate an exported but
unfinished task.

In SMP machines, the implementation of threads pro-
vided by the operating system deals with farming out pro-
cesses to individual processors, making a communications
thread in our kernel unnecessary.

The design of the PPGKERNEL API follows the descrip-
tion of the pool model in section 4. At its highest level, the
API provides methods PoolIt, PoolAll and PoolI-
tAll. PoolIt implements blessing of simple operations
and external blessing of multiplex operations (Figures 2 and
3(a)); PoolAll implements internal blessing (Figure 3(b));
and PoolItAll implements combined external and inter-
nal blessing (Figure 3(c)). Each of these operations takes a
single BlessedOp object as argument, places a Task
object in the pool and returns a Proxy object referring to
the Task. The method GetPooledValue can be applied
to the Proxy to obtain the list of outputs.

 At lower levels the API lets the client become more
involved in particular task-to-processor matching decisions.
At the lowest level of abstraction, the client can bypass the
task pool altogether, sending an operation plus arguments to
a named processor for evaluation.

In the Prograph prototype described in section 4, Task
objects have a status attribute which can have any of the val-
ues pending, executing, or completed. To accommodate blessed
operations which can fail the status attribute of Task
objects in PPGKERNEL can also have the value fail. This flag
is returned to the user thread when the result is retrieved via
the associated Proxy. In effect, the execution message is
stored by the runtime system until the blessed operation’s
output values are requested.

To deal with early termination of internally blessed multi-
plexes, we add the values finish, terminate and fail to the rep-
ertoire of the status attribute. The PoolAll operation
creates an instance of MultiplexProxy, a subclass of
Proxy, which maintains a vector of the Tasks correspond-
ing to each of the executions of the multiplexed operation.
When GetPooledValue is applied to it, the Multi-
plexProxy inspects its task vector. If the status of one
of the Tasks is finish, terminate or fail and the status of
each of the Tasks to its left is completed, Multiplex-
Proxy composes appropriate values to return to the user
thread, and withdraws from the pool all remaining Tasks in

7

its task vector which are pending. This behaviour preserves the
sequential semantics of multiplex execution. Note that when
MultiplexProxy determines that the multiplex execu-
tion is complete, it does not kill any of the remaining Tasks
still executing. This will be implemented in future ver-
sions of PPGKERNEL.

5.2 PPGClient
PPGCLIENT will consist of modified versions of the

Prograph CPX editor, incremental and optimising compilers,
together with a PPG class library that extends the application
framework.

The Prograph CPX application framework consists of
Application Building Classes (ABCs) which deliver standard
functionality such as user interface management and file
management, and Application Building Editors (ABEs)
which provide editors for the ABCs. To add new functional-
ity, one extends the ABCs by subclassing or adding new, inde-
pendent classes, and by adding classes to the ABEs to
implement editors for the new ABC classes. The PPG library
consists of two such extensions.

The Platform Specification Classes incorporate informa-
tion about the target computing platform into the project
that defines an application. Using the associated Platform
Specification Editor, the programmer defines such things as
the communication network topology, communication
speeds, processor speeds, and parameter settings for the
PPGKERNEL on each processor. Some defaults are assumed if
the programmer chooses not to define any of these character-
istics.

The Annotation Classes define various types of bless-
ing.The Annotation Editor is used to create new classes of
blessing and to customise blessings on operations. For exam-
ple, the programmer can make remote execution conditional
on such things as the size of the input data, or direct the
PPGKERNEL to use a specific processor for execution. The
latter customisation relies on structures built with the Plat-
form Specification Classes. If the programmer chooses not to
customise a blessing, a default will be assumed.

Since blessings are defined by classes in Prograph, the
Prograph CPX editor will need to be modified so that blessing
information, expressed in terms of these classes, can be
attached to the internal representation of an operation. The
incremental and optimising compilers will also need to be
modified to use this information in communicating with the
PPGKERNEL.

Initially the decision to bless an operation will be left to
the programmer, who, we believe, is in the best position to
know whether an operation is a good candidate for remote
execution. However, we expect that by making suitable
approximations erring on the conservative side, we will be
able to find less expensive forms of the current analysis algo-
rithms [13], thereby providing support for annotation deci-
sions. Another possible approach which would work in
concert with the analysis algorithms, would be to collect
information about types and side-effects during prototyping
on a sequential processor. Tools based on such analysis and

empirical information will eventually be incorporated into
the annotation editor.

6 Discussion and related work
The current practice when building applications to exe-

cute on parallel hardware is to combine a sequential language
such as C or Fortran, with a set of distribution primitives,
such as those provided by PVM [9] and more recently MPI
[16]. The concurrent programming model offered by such a
combination relies on message passing, and leads to code in
which details of the algorithms are intimately entwined with
the low-level detail of process coordination and communica-
tion. Higher level models, offering a clearer separation of pro-
gram components, include BSP [15], Linda [2] and Nexus
[7].

Visualisation has played a role in parallel and distributed
computing for many years, from paper-based diagrams for
understanding parallel computation, to program animation
and visual debugging aids, for example [3, 12]. Because of the
natural way in which pictures expose the parallelism in algo-
rithms, visual languages have from time to time been pro-
posed as a basis for programming various kinds of parallel
execution models. An early example is GPL, a simple visual
dataflow language developed to program the DDM-1 data-
flow machine built at the University of Utah in the early
1980s [8]. A more recent example is Pictorial Janus, a visual
concurrent logic programming language [11].

We consider that the major obstacle to programming
applications for distributed and parallel systems at present is
the programmer’s ability to deal simultaneously with the
complexity of the algorithms under consideration, the paral-
lelisation of those algorithms, and the details of communica-
tions between processors. We believe that to alleviate this
difficulty, it is necessary to devise appropriate programmer
models and languages for parallelism, and that visual pro-
gramming languages and environments have an important
role to play. To our knowledge, there are no practical visual
programming systems for developing parallel applications on
a par with the Parallel Prograph system we propose.

7 Concluding remarks
In this paper we have reported work in progress on imple-

menting a Prograph-based visual programming environment
for parallel applications. Our goal is a practical system in
which the sequential syntax of Prograph is preserved so that a
programmer can build an application on a sequential
machine in the normal way, making use of the comprehensive
tools provided by Prograph CPX, and deal with parallel
deployment once the application is debugged.

To this end we have proposed and implemented pooling, a
conservative model of parallelism based on “blessing” opera-
tions to take advantage of the dataflow and multiplex paral-
lelism exposed by the Prograph language.

The parallel execution engine PPGKernel is implemented
as a hierarchical API which deals with processors, resources,
explicit task placement, and at the lowest level, control mes-
sages through sockets. Exposing this layer to the user provides

8

some of the facilities which are traditionally associated with
distributed, as opposed to parallel, computing.

When an early version of this kernel running on net-
worked Pentiums was tested with some genetic programming
algorithms, a seven-fold performance improvement over the
same algorithms on a single processor was observed [14].

To exploit this kernel, we are currently designing PPGCLI-
ENT, a version of Prograph CPX modified to support blessing
at the editor and compiler level, and extended via additions
to the application framework to provide high level facilities
for specifying platform characteristics and customising bless-
ing annotations.

8 Acknowledgments
The authors acknowledge support from Apple Computer

and Pictorius Inc. during this project

9 References
[1] H. Baker, C. Hewitt, The incremental garbage collection of

processes, Proc. of the Symposium on Artificial Intelligence and
Programming Languages, SIGPLAN Notices 12, (1977), 55-59.

[2] N. Carriero, D. Gelernter, Linda in Context, Communication
of the ACM 32(4), (1989), 444-458.

[3] K.C. Cox, G-C. Roman, Visualising concurrent computations,
Proc. IEEE Workshop on Visual Languages, (1991), 18-24.

[4] P.T. Cox, F.R. Giles, T. Pietrzykowski, Prograph: a step
towards liberating programming from textual conditioning,
Proc. IEEE Workshop on Visual Programming, Rome (Oct
1989), 150-156. Reprinted in Visual Object-Oriented Program-
ming: Concepts and Environments, M. Burnett, A. Goldberg and
T.G. Lewis (Eds), Manning Publications (1995).

[5] P.T. Cox, T.J. Smedley, Visual Languages for the Design and
Development of Structured Objects, Journal of Visual Lan-
guages and Computing, v8, Academic Press (1997), 57-84.

[6] P.T. Cox, H. Glaser, B. Lanaspre, Distributed Prograph, Paral-
lel Symbolic Languages and Systems, T. Ito, R.H. Halstead and
C. Queinnec (eds.) Springer Verlag LNCS 1068 (1996), 128-
133.

[7] I. Foster, C. Kesselman, S. Tuecke, The Nexus Task-parallel
Runtime System, Proc. of 1st International Workshop on
Parallel Processing, McGraw-Hill (1994), 457-462.

[8] A. L. Davis, S. Lowder, A Sample Management Application
Program in a Graphical Data-Driven Programming Language,
Proc. of IEEE COMPCON (1981), 162-167.

[9] A. Geist, A. Berguelin, J. Dongarra, W. Jiang, R. Manchek, V.
Sunderam, PVM: Parallel Virtual Machine - A Users’ Guide and
Tutorial for Networked Parallel Computing, MIT Press (1994)

[10] R.H. Halstead Jr., Multilisp: A language for concurrent sym-
bolic computation, ACM Trans. on Programming Languages and
Systems, 7(4) (1985), 501-538.

[11] K. M. Kahn, V. A. Saraswat, Complete Visualizations of Con-
current Programs and Their Executions, Proc. IEEE Workshop
on Visual Languages, Skokie, IL, (1990), 7-15.

[12] H. Koike, T. Takada, T. Masui, VisuaLinda: A Framework for
Visualizing Parallel Linda Programs, Proc. IEEE Visual Lan-
guages Symposium, (1997), 174-180.

[13] B. Lanaspre, Static Analysis for Distributed Prograph, PHD The-
sis, Dept. of Electronics and Computer Science, University of
Southampton (1998).

[14] S. Maclean, H. Glaser, Execution Model Based on Graphical
dataflow, Working Paper, Dept. of Electronics and Computer
Science, University of Southampton (1998).

[15] W.F. McColl: BSP Programming, Specification of Parallel Algo-
rithms Proc DIMACS Workshop, Princeton(1994), 21-35.

[16] Message Passing Interface Forum: MPI - A message-passing
interface standard, International Journal of Supercomputer Appli-
cations and High Performance Computing, 8(3/4), (1994)

[17] Pictorius Inc., Prograph Reference Manual, (1996).

