

A Model for Object Representation and Manipulation
in a Visual Design Language

Philip T. Cox Trevor J. Smedley

Dalhousie University, Halifax, Nova Scotia, Canada

App

© 19
for c
obta
Abstract
Languages used for design activities in CAD software are usu-

ally textual languages akin to standard procedural programming
languages such as Basic or C++. This creates a discontinuity
between the drafting and solid modelling aspects of design, and
the programming aspects which are becoming increasingly impor-
tant as designers attempt to economise on their activities by
building parametrised specifications. The declarative language
LSD addresses this issue by applying visual programming to
design.

Here we present a formal model for objects in a design space
and for operations on design objects. We also show how this model
is integrated with LSD to provide a general mechanism for
extending the language through the addition of new operations.

1 Introduction
Visual software tools for some design tasks, CAD/CAM sys-

tems for example, have been in widespread use for many
years. Systems such as AutoCAD, ArchiCAD and MicroStation
[1, 2, 8] provide sophisticated general-purpose and special-
purpose tools for drawing and solid modelling. Support for
parameterised designs is also provided, but it is either quite
rudimentary, or requires the use of a textual language very
much like a programming language. AutoCAD supplies
AutoLISP for programming, but also allows connections to
modules written in other textual languages, and ArchiCAD
includes GDL, a low-level Basic-like language. As a result of
this dichotomy between design and programming, to fulfill
their need for parameterised components, users of commer-
cial CAD systems usually purchase separate packages. For
example a package for generating staircases of different styles
and sizes is available for AutoCAD, and is implemented in C.
Experience with visual programming languages indicates that
visual languages for design might be able to provide the pro-
gramming capabilities required for building parameterised
designs, while at the same time integrating more closely with
the drafting and solid modelling aspects of an industrial
design system.

Based on this observation, a visual language for designing
structured objects was proposed in [10]. This language was
obtained by extending Prograph, a general purpose visual
programming language [5, 9], by adding a new picture data
type, rules for combining and transforming pictures, and a

construct for iteratively aggregating pictures. However, even
though all aspects of this language are visual, the visualisation
is not homogeneous. When viewing the algorithms, the
objects are not visible, and vice versa. The sharp division
between algorithm and data in the language is a consequence
of the dataflow nature of Prograph. A similar dichotomy
would result if the basis were any other programming lan-
guage that concentrated on process rather than specification.
This leads to the conjecture that a declarative programming
language may provide a more satisfactory foundation. In logic
programming, for example, the primary focus is on func-
tional expressions (terms), and a program consists of a set of
logical sentences (clauses) that define the structure of terms we
are interested in computing.

In [7] we noted that the visual logic programming lan-
guage Lograph [3] provides a homogeneous visual representa-
tion for data and algorithms, and based on this observation,
presented a preliminary proposal for a Language for Struc-
tured Design (LSD) based on Lograph. In [6] following a brief
introduction to Lograph, we investigate this idea further,
clearly delineating the interface between the language and the
objects it manipulates, without considering the nature of the
objects themselves. The descriptions of LSD presented in [6]
and [7] focus on describing a particular design operation,
“bonding”, which fuses two components to create a new one.
However, other operations are obviously necessary, and may
vary from one design domain to another.

Here we concentrate on the design-space side of the inter-
face between language and manipulated objects, proposing a
formal model for solid objects in a design space in just
enough detail to integrate it into LSD. This model includes
both the specification of solids in space, and operations on
such solids. We then generalise the previous definition of LSD
by replacing the notions of “e-component” and “bond” with
abstract equivalents to solid objects and operations in a
design space. We also discuss the visual representation of
these entities in an LSD program, as well as some issues related
to implementation of the proposed model in a CAD-like envi-
ronment.

2 A short summary of LSD
To set the scene for discussing the main points we wish to

make, in this section we give a short explanation of LSD using
an example. In the interests of brevity, this explanation will be
quite superficial so we urge the reader to consult [6] for
details.This work was partially supported by NSERC grants OGP0000124

and OGP0121312.
1

earing in Proceedings of IEEE Visual Languages Symposium, Halifax (1998)
98 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
reating new collective works for resale or redistribution to servers or lists, or to reuse any copyright component of this work in other works must be
ined from the IEEE.

A program in LSD is a collection of designs, each of which
defines a family of components. These designs can be exe-
cuted in a process called assembly, to build explicit compo-
nents. Figure 1 depicts an LSD program consisting of two
designs partial cog and cog. The former defines a compo-
nent, partial cog, with a given number of teeth, by recursively
describing it as the component obtained by bonding a tooth
on to a partial cog with one less tooth. In the recursive case of
partial cog on the left of the figure, the icon named tooth is
an explicit component (e-component), representing a two-
dimensional object. The grey stripes are bonds, which connect
edges along which components will be fused during assembly.
These edges are either open edges of e-components, and will
participate in the execution of a bond, or edge terminals, rep-
resented by , which propagate bonds during the
assembly process. The icon named partial cog is an implicit
component (i-component), representing an invocation of the
design partial cog. The icon named +1 is a function cell.
Function cells are used for building abstract data structures as
functional expressions, analogous to terms in Prolog. The cell
+1 occurring here plays the role of the successor function for
defining integers, so during assembly, it will “decrement” the
incoming integer specifying the number of teeth.

Assembly transforms a specification, a network of function
cells and components, using four rules, replacement, merge,
deletion and bonding, the first three of which are inherited
from Lograph. Replacement expands an i-component by
replacing it with the body of one of the cases of the corre-
sponding design. Merge and deletion eliminate function cells,
and bonding fuses e-components along open edges. Figure 2
illustrates these rules. The specification in 2(b) is obtained
from the one in 2(a) by first replacing the i-component par-
tial cog with the first case of the design partial cog, which
introduces a tooth e-component, a partial cog i-component
and a +1 function cell. Merge and deletion then result in
reducing the function cells 8 and +1 to the cell 7. Note that
one of the consequences of this transformation is that the
specification now contains a bond connecting two open
edges. Executing this bond effects the transformation from
2(b) to 2(c), producing a new e-component. Assembly stops
when a specification is produced that cannot be further trans-
formed, and hopefully consists of an e-component. An ani-
mation of an assembly can be found at (http://www.cs.dal.ca/
~smedley/papers/cog.mov).

Lograph, on which LSD is based, is a logic programming
language with an underlying textual representation in which
each case corresponds to a Horn clause of a special flat form
in which there are no nested terms. Its semantics are defined
by a set of deduction rules on flat clauses called surface deduc-
tion [4], the pictorial manifestations of which are the replace-
ment, merge and deletion rules that LSD inherits from
Lograph. The definitions below are reproduced from [6] in
order that we may refer to them in later sections.

In the following we assume the existence of an alphabet
consisting of disjoint sets of function symbols, predicate sym-
bols, and variables. The set of predicate symbols is partitioned
into implicit symbols and explicit symbols. The latter cannot
have defining clauses. For convenience, we assume the exist-
ence of special function symbols f0, f1, f2, … of arity 0, 1, 2
… respectively, which we will use for grouping terms. For
each i ≥ 0 and terms t1, …, ti we denote the term fi (t1, …, ti)
by [t1, …, ti].

Definition 2.1: A function cell is a literal of the form x = f(y1,
…, yk) where f is some k-ary function symbol, k ≥ 0, x is a
variable, and yi is a variable for each i (1 ≤ i ≤ k). Each yi is a
called a terminal of the cell, and x is called the root.
Definition 2.2: An implicit component (i-component) is a lit-
eral of the form p(v1, …, vk) where p is some k-ary implicit
symbol, k ≥ 0, and for each i (1 ≤ i ≤ k), vi is a variable called
a terminal of the component. The terminals are partitioned
into two sets: simple terminals and edge terminal. The signa-
ture of an i-component p(v1, …, vk) is a list (F1, …, Fk)
where Fi = s if vi is a simple terminal, and otherwise Fi = e for
each i (1 ≤ i ≤ k).
Definition 2.3: An explicit component (e-component) is a set of
literals consisting of
• some literals, called open edges, of the form w = [[x1, y1, x2,

y2], [u1, …,um]], , for some m ≥ 0, where w, x1, y1, x2, y2,
u1, …, um are variables distinct from each other, and w,
called an implicit edge terminal, has no other occurrences in
the component; and

Figure 1: The LSD designs
partial cog and cog

Figure 2: Some steps
in an assembly.

(a)

(b)

(c)
2

• a literal of the form q(v1, …, vk),called the anchor of the
component, where q is a k-ary explicit symbol for some
k ≥ 0, and {v1, …, vk} is the set of all variables occurring in
the open edges of the component, excluding the edge ter-
minals.

Definition 2.4: For each explicit component e, there exists a
formula Ke called the specification of e such that every variable
occurring in e, except the edge terminals, also occurs in Ke.
An e-component is valid iff its specification is satisfiable; oth-
erwise it is invalid.
Definition 2.5: An internal bond is a pair of equalities of the
form u = [[x1, y1, x2, y2], w], v = [[x2, y2, x1, y1], w], where w,
x1, y1, x2, y2, u, v and w are variables distinct from each
other. u and v are called implicit edge terminals of the bond.
Definition 2.6: A component design (or simply design) consists
of a set of cases with no variables in common, such that the
heads have the same implicit symbol and signature. A case is a
flat clause the head of which is a literal of the same form as an
implicit component, with simple terminals, edge terminals
and signature defined analogously. The body of a case is a set
of function cells, components or bonds, satisfying the follow-
ing conditions:
• No variable occurring in an e-component or bond occurs

anywhere else in the case, with the exception of the
implicit edge terminals of the component or bond.

• Any variable in the case which occurs as an edge terminal
or implicit edge terminal has exactly two occurrences. If
one of these occurrence is in a component, the other must
be in the head or a bond, otherwise both occurrences must
be in the head.
The above definition of internal bond is such that the

merge and deletion rules accomplish most of the bonding
process as illustrated in the preceding example. However, one
final step is required, requiring a minor addition to the
semantics: that is we must create a new e-component out of
the literals that remain from the two components involved in
the bonding. This is accomplished by replacing the two
anchors with a single anchor constructed with a new explicit
symbol. We define the specification for the new component
as the conjunction of the specifications of the two combined
components, and check that this specification is satisfiable. If
it is not, execution halts.

3 Solids as primitive data
The above definitions of e-components and bonds deal

only with those aspects which are necessary for incorporating
them syntactically into the underlying flat Horn clause repre-
sentation of Lograph, and to account for their interaction
with the surface deduction rules. They do not characterise the
properties of e-components as objects in a design space, nor
do they deal with incorporating visual representations for e-
components and bonds into the language. Neither does LSD
as described permit any other operations on components,
which would clearly be required in a practical design system.
We address these issues here by defining solids in a design
space, and in Section 4 relate them to e-components.

By design space we mean an augmented 3-space defined by
the usual three real dimensions, together with an arbitrary
but fixed finite set of extra real-valued dimensions called prop-
erties. We will define a solid as a function which maps a vector
of parameter values to a set of points in space constituting the
volume of the solid, and associates with each of these points a
unique value for each of the properties. Therefore, a solid in
the design space actually represents a family of solids, each
member of which corresponds to a particular choice of
parameter values.

Although we restrict the values of properties to be real
numbers, this clearly does not reduce the generality of our
definitions. Also, for simplicity we require every solid to have
a value for every property at every point in its volume. This
might seem to be unrealistic since, for example, one may not
be interested in the electrical potential at some point inside a
wooden chair leg. However, since solids are parameterised, we
could define the wooden chair leg as a solid with a parameter
that determines electrical potential. If we provide values for
all parameters except this one, we get a wooden chair leg
which is fully specified in all respects except electrical poten-
tial, which we are not interested in anyway.

Here and in following sections, we denote by |x| the num-
ber of elements in a set or sequence x. We will use overscored
variables, as in , to abbreviate a vector of variables that
should be expanded in place. For example A(,) is short
for an expression of the form A(x1,…,xm,y1,…,yn).

Definition 3.1: A design space in m dimensions over r properties
for some integers n ≥ 0 and r ≥ 0 is the set of all subsets of
Rm × Rr. Note that although we are primarily interested in
spaces up to three dimensions, there is no reason to limit the
generality of our definitions.

Definition 3.2: If D is a design space and n is an integer ≥ 0,

a solid in D in n variables is a function Φ: Rn → D such that,

if (v, p) and (v, q) ∈ Φ(y) for some y ∈ Rn, then p = q. By the
variables of Φ we mean the set of integers {1,…,n}. We may
also use symbolic names to refer to the variables of a solid.
Definition 3.3: If Φ and Ψ are solids in n and k variables
respectively, Φ and Ψ are said to be equivalent, denoted
Φ ≡ Ψ, iff {S | S = Φ(y), S ≠ ∅ , y ∈ Rn} = {S | S = Ψ(y),
S ≠ ∅ , y ∈ Rk}.
Definition 3.4: Let Φ be a solid in n variables, and P be a
subset of its variables. Then P is said to be sufficient for Φ iff
for all y, z ∈ Rn, if yi = zi for all i ∈ P, then Φ(y) = Φ(z).
Clearly, if P is sufficient for Φ then the projection of Φ on to
P, denoted ΦP is a solid in |P| variables and Φ ≡ ΦP. P is called
a parameter set for Φ iff P is sufficient for Φ and no proper
subset of P is sufficient for Φ.

To illustrate these definitions, suppose we have a 2D
design space with properties colour, material and temperature,
containing an ellipse defined by a function Φ in 12 variables
corresponding to the quantities marked on the diagram in
Figure 3, together with colour, material and temperature. Let
us also suppose that colour is determined by material and tem-

x
x y
3

perature, and temperature is deter-
mined by material and colour. There
are 24 parameter sets for Φ, for exam-
ple (a1, a2, c1, c2, α, material, colour)
and (a1, a2, x1, y1, α, material, tem-
perature). Hence there are at least 24
solids with non-redundant variables
equivalent to Φ.

Having characterised solid objects,
we now turn our attention to defining
operations that compute new solids
from existing ones. Operations per-
formed in a CAD system or other design environment are usu-
ally of three kinds: applying some transformation to a single
object, combining two objects to create a new one, or group-
ing objects [1,2]. The first can be characterised as constrain-
ing the given object in some way; for example creating a cube
from a rectangular solid. Operations in the second category
involve positioning, orienting or scaling two objects relative
to each other, while at the same time blending them into one.
Such an operation can be viewed as constraining the two
objects while combining them with some set operation.
Grouping operations can be regarded as applying some con-
straint to a set of objects. Therefore, to define operations on
solids, we need to be able to capture two notions: combining
objects viewed as sets of points, and constraining objects. To
this end, we define a generic concept “operation”.

Definition 3.5: If D is a design space and n is a positive inte-
ger, an n-ary operation in D is a 4-tuple (P, E, L, C) where

• P = (p1,…,pn) is a sequence of n distinct variables called
operands;

• E is an expression constructed from the operands and set
operations in the usual way, such that all the operands
occur in E;

• L = (L1(y1,),…,Ln(yn,)) is a sequence of formulae,
called selectors, such that for each i (1 ≤ i ≤ n) if w is a free
variable of Li(yi,) then w = yi or w is one of the variables
in .

• C(,…,) is an open formula, called the constraint of the
operation, in which the only free variables are those in

,…,

• for each i (1 ≤ i ≤ n),
Note that to each selector we can associate an integer, identi-
fied in the fifth bullet of this definition. We will call this the
size of the selector.

Definition 3.6: If D ∈ D then ↓D = ∅ if ∃ (v, p), (v, q) ∈ D
such that p ≠ q, otherwise ↓D = D.
Definition 3.7: If Φ is a solid in m variables and L is a selec-
tor of some operation, then an L-interface to Φ is a function
φ:Rm→ Rk, where k is the size of L, such that ∀ y ∈ Rm, if
Φ(y) ≠ ∅ then L(Φ(y),φ(y)) is valid. Φ is said to expose φ iff
there exists a subset I of the variables of Φ, which we suppose
without loss of generality to be {1,…,k}, such that for every

y ∈ Rm, if Φ(y) ≠ ∅ then yk = φ(y),
where yk denotes the first k elements of
y. Each of the variables in I is said to
be required by φ. Two interfaces are
said to be equivalent if they corre-
spond to the same selector.
Lemma 3.8: If Φ is a solid with an
interface φ, then there exists a solid Φ′
such that Φ′ ≡ Φ and Φ′ exposes an
interface equivalent to φ.

Proof: In the following, if y ∈ Rk+m

we denote by yk and ym the first k and
remaining m elements of y respectively.
Suppose Φ is a solid in m variables and the selector L of φ is
of size k. Let Φ′ be the function from Rk+m to Σ such that for
y ∈ Rk+m, Φ′(y) = ∅ if φ(ym) ≠ yk and otherwise Φ′(y) =
Φ(ym). Then Φ′ is clearly a solid in k+m variables

Suppose X = Φ(y) for some y ∈ Rm and X ≠ ∅ . Let y′ be the
element of Rk+m obtained by appending φ(y) to the begin-
ning of y. Then Φ′(y′) = Φ(y) = X. Now suppose X = Φ′(y) for
some y ∈ Rk+m and X ≠ ∅ . Since Φ′(y) ≠ ∅ , Φ(ym) = Φ′(y) =
X. Hence Φ′ ≡ Φ.
Suppose φ is an L-interface to Φ. Let φ′ be the function from
Rk+m to Rk such that for y ∈ Rk+m, φ′(y) = φ(ym). If y ∈ Rk+m

and Φ′(y) ≠ ∅ , then Φ′(y) = Φ(ym), so L(Φ′(y),φ′(y)) =
L(Φ(ym),φ(ym)) is valid. Therefore φ′ is an L-interface for Φ′.
Finally, if y ∈ Rk+m, then according to the definition of φ′,
φ′(y) = φ(ym), and if Φ′(y) ≠ ∅ , by the definition of Φ′,
φ(ym) = yk. Hence φ′(y) = yk proving that Φ′ exposes φ′.

Note that if Φ is a solid with several interfaces, by repeated
applications of this lemma, we can construct a solid Ψ that
exposes equivalent interfaces.

Although not strictly necessary, it would be useful for
practical reasons to purge the redundant variables from a
solid, while retaining those that expose interfaces we may be
interested in. Hence the following definition.
Definition 3.9: If Φ is a solid which exposes each interface in
some set N of interfaces to Φ, let Q be the set of all variables
of Φ required by the interfaces, and let P be a minimal super-
set of Q such that P is a set of parameters for Φ, then ΦP as

defined in 3.4 is said to be reduced with respect to N.
Lemma 3.10: If Φ, N, P, Q and ΦP are as in 3.9 then ΦP
exposes interfaces equivalent to those in N.

The proof is straightforward and left to the reader. Note
also that, as observed in Definition 3.4, ΦP is equivalent to Φ.

Returning to our earlier example, suppose we have an
ellipse defined by the function Φ in 12 variables correspond-
ing to the quantities marked on the diagram in Figure 3
together with colour, material and temperature. If the vari-
ables a1, c1, x1, colour, and temperature are required by some
set of interfaces, then there is a solid Ψ in the 9 variables {a1,

z 1 zn

zi
zi

x1 xn

x1 xn

zi xi=

(c1,c2)

α

a2
a1

(x1,y1)
(x2,y2)

Figure 3: An overspecified solid.
4

a2, c1, c2, x1, α, material, colour, tempera-
ture} such that Ψ is equivalent to Φ and
is reduced with respect to the set of
interfaces.

Suppose now that φ1 and φ2 are
interfaces to Φ corresponding respec-
tively to selectors L1 and L2, both of size

3, such that L1(y,) = true iff y is an

ellipse and is (u1,v1,d) where d=d1+d2

(see Figure 4), and L2(y,) = true iff y is an ellipse and is
(x1,y1,colour). Then there is a solid in the 9 variables {u1, v1,
d, x1, y1, colour, material, u2, v2} which is equivalent to Φ and
reduced with respect to {φ1, φ2}. Another choice for an equiv-
alent reduced solid is one in the 10 variables {u1, v1, d, x1, y1,
x2, y2, α, colour, material}.

Definition 3.11: Let ⊗ = (P, E, L, C) be an n-ary operation;
where L = (L1,…,Ln), and for each i (1 ≤ i ≤ n) let Φi be a
solid in ni variables, and φi be an Li-interface to Φi for ⊗ . We

define a solid Ψ in variables called the application of

⊗ to Φ1,…,Φn via φ1,…,φn as follows. If y ∈ Rt denote by y1
the first n1 elements of y, denote by y2 the next n2 elements of
y and so forth, then we define

Ψ(y) = { z | z ∈ ↓E(Φ1(y1),…,Φn(yn))
and C(φ1(y1),…, φn(yn)) is valid}

Note that the set of points that results from applying the set
expression to the operands may contain several copies of the
same point with different property values. Such a set is not a
solid. The role of the ↓ operator is to reduce the set to ∅ in
such cases.

Some examples of operations for creating new solids from
existing ones are as follows.
Constraining: An operation for ensuring that a rectangular

solid is a cube is ({p}, p, {L}, C), where L(x,h,w,l) = true
iff x is a rectangular solid and h,w and l are respectively
the height, width and length of the rectangular solid,
and C(x,y,z) is the formula x=y ∧ x=z.

Union: Unioning two solids is accomplished by the operation
({p,q}, p ∪ q, {true, true}, true).

Bonding: Bonding solids in a 2D design space as illustrated in
Section 2 is defined by the operation ({p,q}, p ∪ q,
{edge,edge}, bond) where bond(u1,v1,u2,v2,u3,v3,u4,v4)
is the formula (u1,v1) = (u4,v4) ∧ (u2,v2) = (u3,v3) and
edge(x,u1,v1,u2,v2) = true iff (u1,v1) and (u2,v2) are
points in the set x of points, every point on the line
between them is in x, every point to the right of this line
is in x, and every point to the left of this line is not in x.

The intuition behind these definitions is that an interface
to a solid delivers the information necessary to apply an oper-
ation to the solid. In the case of bonding, for example, an
open edge interface defines the end points of the edge

together with other characteristics of the
component that must be accounted for in
bonding. Note that a selector may occur
more than once in an operation. For
example, since bonding is a symmetric
binary operation it has two identical selec-
tors. A selector may also occur in several
operations, in which case a solid with a
corresponding interface may serve as an
operand via that interface to any such

operation. A solid may, via different interfaces, serve as more
than one operand to an operation. The cog design in Figure
1, for example, assumes that a partial cog has two open edge
interfaces and applies bonding to them.

4 Generalising e-components
In LSD as defined in [6], bonding and the associated con-

cepts, “open edge” and “edge terminal”, are built in. How-
ever, other operations are necessary, and the set of operations
required may differ from one domain to another. Rather than
try to come up with a comprehensive toolbox of operations,
we will take the opposite approach. That is, we generalise the
definitions in Section 2 to accommodate the concept of oper-
ations on solids defined in Section 3, thereby providing a
basis for incorporating any required operations into the lan-
guage.

The following definitions assume the existence of a design
space D, a set S of solids in D, and a set O of operations in
D. In view of Lemmas 3.8 and 3.10 we can assume that each
solid exposes a set of interfaces and is reduced with respect to
that set. The alphabet from which the various entities are
constructed consists of disjoint sets of function symbols,
predicate symbols, and variables. Corresponding to each
selector occurring in an operation in O there is a unique
function symbol called an interface symbol. The other func-
tion symbols are called abstract. Similarly, to each solid in k
variables corresponds a unique k-ary predicate symbol called
an explicit symbol, and to each operation a unique predicate
symbol called a link symbol. The sets of explicit and link sym-
bols are disjoint. Remaining predicate symbols are called
implicit symbols. If X is a selector, solid or operation, we
denote the corresponding symbol by  X .

The definition of function cell remains as in Definition
2.1 except that only abstract symbols are used to construct a
function cell. Implicit components are defined as in Defini-
tion 2.2 except that each terminal of an i-component is classi-
fied as a simple terminal or as an explicit group terminal of type
L where L is a selector of some operation, and the signature of
an i-component p(v1, …, vk) is a list (F1, …, Fk) where for
each i (1 ≤ i ≤ k), Fi = s if vi is a simple terminal, and Fi = L if
vi is a group terminal of type L.

Definition 4.1: An explicit component (e-component) consists
of
• a literal of the form Φ (v1, …, vk), called the anchor of

the component, where Φ is a solid in k variables for some k
≥ 0, and v1, …, vk are distinct variables; and

z

z

z z

nii 1=

n

∑

d1

(u1,v1)

(u2,v2)

Figure 4: Another interface to
an ellipse.

d2
5

• for each exposed interface φ of Φ, one literal of the form
w =  L (y1,…,ym), called a group, where L is the selector
corresponding to φ, y1,…,ym are distinct variables from
{v1,…, vk}, and {j | yi = vj for some 1 ≤ i ≤ m} is the set of
variables of Φ required for φ. The variable w, is called an
implicit group terminal of type L.

Definition 4.2: An e-component is valid iff for some y ∈ Rm,
Φ(y)≠∅ where Φ is the solid corresponding to the e-compo-
nent and has m variables: otherwise the e-component is
invalid.
Definition 4.3: A link consists of

• a literal, called a knot, of the form ⊗ (, …,) where ⊗
is an n-ary operation and the variables in , …, are dis-
tinct; and

• for each i (1 ≤ i ≤ n) a literal wi =  Li () also called a
group. For each i (1 ≤ i ≤ n) wi is called an implicit group
terminal of type Li.

Definition 4.4: A component design consists of a set of cases
with no variables in common, such that the heads have the
same implicit symbol and signature. A case is a flat clause the
head of which is a literal of the same form as an implicit com-
ponent, with simple terminals, link terminals and signature
defined analogously. The body of a case is a set of function
cells, components and links, satisfying the following condi-
tions:
• No variable occurring in an e-component or link occurs

anywhere else in the case, with the exception of the
implicit group terminals of the component or link.

• Any variable in the case which occurs as a group terminal
or implicit group terminal has exactly two occurrences
which must both be of the same type. If one of these
occurrences is in a component, the other must be in the
head or a link, otherwise both occurrences must be in the
head.
The semantics of e-components and links is analogous to

that informally described at the end of Section 2. In the inter-
ests of brevity, we will give a similarly informal description of
the revised semantics. The merge and deletion rules will col-
lapse and remove groups from e-components and links that
are joined by their implicit group terminals. A knot can be
executed once all its groups have disappeared. This involves
the following steps:
• computing the application of the operation represented

by the knot to the solids represented by the associated
anchors (Definition 3.11);

• ensuring this new solid exposes
and is reduced with respect to
the relevant interfaces, that is,
those exposed by the replaced
solids but not involved in the
operation (Lemmas 3.8 and
3.10);

• replacing the knot and associated
anchors with a new anchor cor-

responding to the new solid, the variables of which are
those from the replaced anchors which also occur in
groups or other knots.

If the new solid is invalid, assembly halts.
The definitions in this section provide the generalisation

of the previous definition of LSD we seek. Whereas the origi-
nal definition of e-component provided specialised open
edges along which bonding can occur, we now define groups,
a general purpose mechanism for providing information
about the component to be used in the execution of an oper-
ation. A tooth, as in our cog example, is associated with a
solid through its anchor, and defines two groups specifying
the same information as the two open edges in our earlier dis-
cussion. The special purpose bond operation is now replaced
with the generalised link. The link defining bonding would
include a knot, which would be associated with the operation
to perform the bonding of the solids as outlined in the exam-
ple towards the end of Section 3, and two groups, indicating
that the information provided by the e-components partici-
pating in the operation must be in the form of open edges.

5 Visual representations and environment
In the preceding sections we have described an underlying

model for representing solid objects, and shown how to
incorporate such solids and operations on them into LSD as e-
components and links. In this section we investigate how
these language constructs might be visually represented.
Although our definitions of solids and operations are not lim-
ited to two or three dimensions, a practical design system is
likely to be concerned with at most three dimensions, so our
discussion will be similarly limited. Since solids and opera-
tions belong to the “real world” rather than the abstract world
of pure Lograph entities, their representations are more com-
plex and varied, and will need to be specified to a great extent
by the user of the system. Consequently we will suggest ways
in which an LSD-based environment might assist the user in
this regard. Since tools for creating visualisations are very
dependent on how solids and operations are implemented,
we will also discuss some implementation questions.

5.1 E-Components
Since e-components are syntactic manifestations of solids,

they should bear some resemblance to the solids they repre-
sent. Therefore, the appearance of an e-component is a draw-
ing representing the set of points in space defined by the
corresponding solid, Since a solid is a function, this picture
depends on the values of parameters which may correspond
to characteristics such as size, position, orientation in the
plane or colour. However, an e-component may correspond

to a solid for which some parameter
values are not specified. Such an e-
component is said to be free. In this
case the appearance of the e-compo-
nent is an “average” one, chosen to be
representative of that family, and bears
the symbol , as shown in the exam-
ple in Figure 5. We do not have a feel-

u1 un
u1 un

ui

Figure 5: A free e-component tooth
6

ing yet for the degree to which the process
of selecting parameter values for creating an
average representation might be auto-
mated. An obvious possibility is to choose a
size for the generated icon in relation to the
other icons in the program in which the
component is embedded. Clearly the more
parameters a solid has and the less con-
strained they are, the less likely it is that an
average representation could be automati-
cally generated.

We expect that an LSD-based design
environment would provide modelling
tools for building solids, similar to those in
CAD systems, or be capable of importing
objects from and exporting objects to other
systems. In addition to defining solids, such
tools would also provide facilities for speci-
fying how to compute average representa-
tions of solids. These specifications might
be generated by programming, by filling in
blanks in a dialogue, or by directly manipu-
lating or annotating a picture of the solid in
an appropriate editor.

Our model for solids as functions give just enough detail
to allow us to tie it to the design language. A sound software
engineering approach to implementation would be to specify
an “application programming interface” for solids (SAPI), a
library of routines that capture the functionality of solids as
defined in previous sections. This SAPI could then be imple-
mented in a variety of ways.

5.2 Operations
The generic definition of operations in Section 3 provides

a foundation on which to base a design environment for any
domain. An operation for a specific design space would be
defined by a “meta-user” for delivery to the designers using
such a system. This would involve specifying the functional-
ity of the operation, its selectors, its visual representation and
the visual representation of its group terminals and implicit
group terminals. In addition, it would be necessary to create
tools for extracting the necessary interfaces from solids to
allow them to interact with the operation.

The functionality of an operation lies in its constraint. If
the constraint is expressible in Horn clauses, Lograph could
be used as the programming language as illustrated in [6]
where a Lograph implementation of bonding is presented.
This is a reasonable approach to simple operations like bond-
ing, which merely unify some variables from groups, but
more complex computations will require access to the struc-
tures that implement the solids. So a more appropriate choice
might be a language oriented towards the details of that
implementation, or one built on facilities provided by the
solid API suggested above. Since many of the relationships
specified by a constraint would be spatial, such a language
might be partly visual. It is important to note, however, that
LSD users would not be confronted by this language since it is
for the meta-user.

Specifying a selector of an operation
involves building a formula which refers to
solids in a generic way, in the sense that a
selector might apply to a very broad range
of different solids. Again, a language relying
on the proposed SAPI could be designed for
this purpose, and being for the meta-user
could be more technical. However, since a
selector is used to extract interfaces from
solids, the system used to define it must also
either automatically generate a visual editor
which enables the LSD user to extract an
interface, or give the meta-user facilities for
building such an editor.

As an example, consider the open edge
selector in the example of bonding follow-
ing Definition 3.11. edge(x,u1,v1,u2,v2,)
defined to be true iff (u1,v1) and (u2,v2) are
points in the set x of points, every point on
the line between them is in x, every point to
the right of this line is in x, and every point
to the left of this line is not in x. This for-
mula defines the syntax of the open edge
interface, and could therefore provide the

specifications for a syntax directed editor for constructing
open edges on a solid. Figure 6 shows how an open edge edi-
tor might work. The cursor, as it moves over the solid,
changes to whenever it is over a point satisfying the criteria
for the tail of an open edge as in (a). A click on such a point
fixes it and creates a “rubber band” from the point to the cur-
sor as shown in (b). Whenever the cursor passes over a point
which qualifies as the head of the open edge, the rubber band
changes to a line of arrowheads as in (c), at which time a click
defines the open edge, depositing the arrowheads as its visual
representation.

Taking the view of selectors as syntax specifications for
interface editors could be a promising approach to designing
a language for them.

An LSD environment would need to provide editors for
the meta-user to build visual representations for links, explicit
group terminals and interfaces, which are all geometrically
related. We envisage that this process would start with an
interface, the visual representation of which would be
required for constructing the interface editor discussed above.
This would be accompanied by the design of the representa-
tion for the explicit group terminal corresponding to the
interface. Once the appearance and geometry of all the inter-
faces related to an operation had been determined, a repre-
sentation for the associated link would be designed, and for
the connectors that join explicit group terminals of a particu-
lar type.

6 Concluding remarks
As a continuation of our work on applying visual pro-

gramming language technology to the design of structured
objects, we have generalised our earlier proposal for the
design language LSD. The visual logic programming language

(a)

(b)

(c)

Figure 6: Editor for defining an
open edge on a 2D solid.
7

Lograph was chosen as the basis for LSD because logic pro-
gramming represents data and operations on data homoge-
neously — an important consideration for a design language
where the visual aspects of data are paramount.

In our original proposal, LSD was obtained by adding
design objects to Lograph as “explicit components”, together
with one operation, bonding, for fusing these components.
Although, the underlying details of components were ignored
in favour of the language issues, a clean interface between the
language and the design space was established.

Here we have addressed the design space side of this inter-
face in order to accomplish several goals: to get a clearer idea
of how to visually represent an e-component in an LSD pro-
gram; to provide a well-defined data model for the language;
and to generalise the language so that it can deal with any
operations on components. To this end we have proposed a
model for parameterised solids as functions from parameter
values into a design space, and for operations on such solids.
This model has some interesting implications for implemen-
tation. For example, although it certainly provides a basis for
customisable CAD system into which any operation on solids
can be incorporated, implementing such a system would
require the development of some sophisticated visual editors
and a visual editor generator.

7 References
[1] Autodesk Inc., AutoLISP Release 12 Programmers Reference Man-

ual (1992).
[2] Bentley Systems Inc., MicroStation 95 User’s Guide, (1995).
[3] P.T. Cox, T. Pietrzykowski, LOGRAPH: a graphical logic pro-

gramming language, Proceedings IEEE COMPINT 85, Mont-
real (1985), 145-151.

[4] P.T. Cox, T. Pietrzykowski, Incorporating equality into logic
programming via Surface Deduction, Annals of Pure and
Applied Logic 31, North Holland (1986), 177-189.

[5] P.T. Cox, F.R. Giles, T. Pietrzykowski, Prograph: A step
towards liberating programming from textual conditioning,
Proceedings, IEEE Workshop on Visual Languages, Rome (1989),
150-156.

[6] P.T. Cox, T.J. Smedley, LSD: A Logic-Based Visual Language
for Designing Structured Objects, Journal of Visual Languages
and Computing, Academic Press (1998), to appear.

[7] P.T. Cox, T.J. Smedley, A Declarative Language for the Design
of Structures, Proceedings, IEEE Symposium on Visual Lan-
guages, Capri (1997), 442-449.

[8] Graphisoft R&D Rt., ArchiCAD 5.0: GDL Reference Manual
(1996).

[9] Pictorius Incorporated. Prograph CPX User’s Guide. (1993).
[10] T.J. Smedley, P.T. Cox. Visual languages for the design and

development of structured objects, Journal of Visual Languages
and Computing, v8, Academic Press (1997), 57-84.
8

	Figure 5: A free e-component tooth
	Abstract
	1 Introduction
	2 A short summary of LSD
	Figure 1: The lsd designs partial cog and cog
	Figure 2: Some steps in an assembly.
	Definition 2.1: A function cell is a literal of the form x = f(y1, …, yk) where f is some k-ary f...
	Definition 2.2: An implicit component (i-component) is a literal of the form p(v1, …, vk) where p...
	Definition 2.3: An explicit component (e-component) is a set of literals consisting of
	Definition 2.4: For each explicit component e, there exists a formula Ke called the specification...
	Definition 2.5: An internal bond is a pair of equalities of the form u = [[x1, y1, x2, y2], w], v...
	Definition 2.6: A component design (or simply design) consists of a set of cases with no variable...
	3 Solids as primitive data
	Definition 3.1: A design space in m dimensions over r properties for some integers n�³�0 and r�³�...
	Definition 3.2: If D is a design space and n is an integer ³�0, a solid in D in n variables is a ...
	Definition 3.3: If F and Y are solids in n and k variables respectively, F and Y are said to be e...
	Definition 3.4: Let F be a solid in n variables, and P be a subset of its variables. Then P is sa...
	Definition 3.5: If D is a design space and n is a positive integer, an n-ary operation in D is a ...
	Definition 3.6: If D Œ D then ØD = Æ if $ (v, p), (v, q)�Œ�D such that p � q, otherwise ØD = D.
	Definition 3.7: If F is a solid in m variables and L is a selector of some operation, then an L-i...
	Lemma 3.8: If F is a solid with an interface f, then there exists a solid F¢ such that F¢�º�F and...
	Definition 3.9: If F is a solid which exposes each interface in some set N of interfaces to F, le...
	Lemma 3.10: If F, N, P, Q and FP are as in 3.9 then FP exposes interfaces equivalent to those in N.
	Definition 3.11: Let ƒ = (P, E, L, C) be an n-ary operation; where L = (L1,…,Ln), and for each i ...

	4 Generalising e-components
	Definition 4.1: An explicit component (e-component) consists of
	Definition 4.2: An e-component is valid iff for some y�Œ�Rm, F(y)�Æ where F is the solid correspo...
	Definition 4.3: A link consists of
	Definition 4.4: A component design consists of a set of cases with no variables in common, such t...

	5 Visual representations and environment
	5.1 E-Components
	5.2 Operations

	6 Concluding remarks
	7 References
	[1] Autodesk Inc., AutoLisp Release 12 Programmers Reference Manual (1992).
	[2] Bentley Systems Inc., MicroStation 95 User’s Guide, (1995).
	[3] P.T. Cox, T. Pietrzykowski, LOGRAPH: a graphical logic programming language, Proceedings IEEE...
	[4] P.T. Cox, T. Pietrzykowski, Incorporating equality into logic programming via Surface Deducti...
	[5] P.T. Cox, F.R. Giles, T. Pietrzykowski, Prograph: A step towards liberating programming from ...
	[6] P.T. Cox, T.J. Smedley, LSD: A Logic-Based Visual Language for Designing Structured Objects, ...
	[7] P.T. Cox, T.J. Smedley, A Declarative Language for the Design of Structures, Proceedings, IEE...
	[8] Graphisoft R&D Rt., Archicad 5.0: GDL Reference Manual (1996).
	[9] Pictorius Incorporated. Prograph CPX User’s Guide. (1993).
	[10] T.J. Smedley, P.T. Cox. Visual languages for the design and development of structured object...

	Figure 3: An overspecified solid.
	Figure 4: Another interface to an ellipse.
	Figure 6: Editor for defining an open edge on a 2d solid.

	A Model for Object Representation and Manipulation in a Visual Design Language
	Dalhousie University, Halifax, Nova Scotia, Canada

