
SINGLE-SOURCE SHORTEST PATHS

AS A LINEAR PROGRAM

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH

SEPTEMBER 9, 2025

Our primary use of linear programs in this course is as a tool to model combinatorial optimization
problems. At first, you may find these two concepts rather incompatible: What do things like shortest
paths, minimum spanning trees, vertex covers or independent sets have to do with assigning real values
to variables? The trick is to build LPs whose variables are associated with parts of the combinatorial
objects we try to model. Most of the problems we try to model are subset selection problems: A vertex
cover or independent set is a subset of the vertices of the graph; our goal is to select the right subset.
A minimum spanning tree is defined by its set of edges, so our goal is to select the right subset of edges
of the graph. We can model these problems by associating a variable with every vertex (for the vertex
cover and independent set problems) or with every edge (for the minimum spanning tree problem). We
constrain each variable to be between 0 and 1. If a solution assigns a value of 0 to a variable, then the
corresponding vertex or edge is not part of the solution; if the variable has value 1, then the vertex or
edge is part of the solution. We add appropriate constraints to the LP to ensure that the set of vertices or
edges defined in this way by a feasible solution is indeed a vertex cover, independent set or minimum
spanning tree. You may wonder what happens when a variable has a value strictly between 0 and 1. Is
the vertex or edge in the solution or not? That’s a great question with deep consequences, which we will
explore in the next topic.

In this topic, we will practice modelling combinatorial problems as linear programs using the the
single-source shortest paths problem (SSSP) as an example. For this problem, we will associate a variable
xv with every vertex v of the graph. Our goal is to define the right constraints so that in an optimal
solution x̂ of the LP, x̂v is the distance from the source vertex s to v.

Let us start by reviewing the necessary graph-theoretic definitions. Given a graph G = (V, E), a walk
from a vertex s to a vertex t is a sequence of vertices P = 〈v0, . . . , vk〉 such that v0 = s, vk = t, and there
exists an edge ei = (vi−1, vi) ∈ E for all 1≤ i ≤ k. This sequence P is a path if vi ̸= v j , for all i ∈ [k]0 and
j ∈ [k]0 \ {i} (see Fig. 1a). Depending on the context, P may be viewed as the sequence of its vertices,
the sequence of its edges 〈e1, . . . , ek〉 or the alternating sequence of both 〈v0, e1, v1, . . . , ek, vk〉. A walk
P = 〈v0, . . . , vk〉 is a cycle if v0 = vk (see Fig. 1b). An edge-weighted graph is a pair (G, w) consisting
of a graph G = (V, E) and an assignment w : E → R of weights to its edges. The weight or length
of a walk P in an edge-weighted graph (G, w) is the total weight of all edges in P: w(P) =

∑

e∈P we

(see Fig. 1a). A shortest walk from a vertex s ∈ V to a vertex t ∈ V is a walk ΠG,w(s, t) from s to t in
G such that every walk P from s to t in G satisfies w(P) ≥ w(ΠG,w(s, t)). The distance from s to t is
distG,w(s, t) = w(ΠG,w(s, t)).

Why did we just define the distance between two vertices as the length of a shortest walk, not of a
shortest path? The condition that a path cannot visit a vertex more than once is difficult to model both

1

d

c ts

ba

3 1

4

29

2

1 6

(a)

4

−4

1 5

1

2

−10

3

2

−3

(b)

Figure 1: (a) The red path 〈s, a, c, d, t〉 is a shortest path from s to t, of length 10. 〈s, d, t〉 is a path from
s to t but is not a shortest path because its length is 11. (b) The red and blue paths are cycles. The red
one is a negative cycle of weight −1. The blue one is not a negative cycle; its weight is 2.

in combinatorial algorithms for computing shortest paths and in linear programs. It is much easier to
look for shortest walks between vertices. However, shortest walks in an edge-weighted graph (G, w) are
well defined only if there are no negative cycles in (G, w), where a negative cycle is a cycle C in G with
w(C)< 0 (see Fig. 1b). Indeed, if there exists a walk from s to t that includes a vertex in some negative
cycle C , then it is possible to generate arbitrarily short walks from s to t by including sufficiently many
passes through C in the path. Thus, we will assume that there are no negative cycles in (G, w). Under
this assumption, we have

LEMMA 1. If (G, w) is an edge-weighted graph without negative cycles, then there there exists a path from s
to t of length distG,w(s, t), for any two vertices s and t. This path is a shortest path.

Proof. It suffices to show that there exists a path P from s to t of length distG,w(s, t). This immediately
implies that P is a shortest path because every path is a walk, that is, there cannot exist a path from s to
t of length less than distG,w(s, t).

Consider a shortest walkΠG,w(s, t) = 〈v0, . . . , vk〉 from s to t in (G, w). Assume thatΠG,w(s, t) contains
the fewest vertices among all shortest walks from s to t. If ΠG,w(s, t) is a path, then it is the path P
we are looking for. So assume that ΠG,w(s, t) is not a path, that is, there exist indices i, j ∈ [k]0 with
i < j and vi = v j. The walk C = 〈vi , . . . , v j〉 is a cycle. Since there are no negative cycles in (G, w),
its weight is non-negative. Therefore, the walk Q = 〈v0, . . . , vi , v j+1, . . . , vk〉 is a walk from s to t of
length w(Q) = w(ΠG,w(s, t))−w(C)≤ distG,w(s, t), that is, w(Q) is a shortest walk from s to t. However,
Q contains fewer vertices than ΠG,w(s, t), contradicting the choice of ΠG,w(s, t). Thus, ΠG,w(s, t) must be
a path.

The single-source shortest paths problem is to compute the distance from some source vertex s to
every vertex v ∈ V :

PROBLEM 2 (Single-source shortest paths, SSSP). Given an edge-weighted graph (G, w) and a source vertex
s ∈ V , compute distG,w(s, v), for all v ∈ V .

In general, the goal is to find the actual shortest paths ΠG,w(s, v), not only the distances distG,w(s, v).

2

Exer. 2 asks you to show that computing the distances is the hard part of the problem.
The LP formulation of the SSSP problem is based on the following property of distances from s:

OBSERVATION 3. For every edge (u, v) in an edge-weighted graph (G, w), we have

distG,w(s, v)≤ distG,w(s, u) +wu,v .

Moreover, the absence of negative cycles in (G, w) implies that

OBSERVATION 4. distG,w(s, s) = 0.

Thus, if we want to design an LP with variables xv, for all v ∈ V (G), whose optimal solution x̂
satisfies x̂v = distG,w(s, v), then we should impose the constraints

xs = 0,

xv ≤ xu +wu,v ∀(u, v) ∈ E(G).
(1)

What’s the objective function? To answer this question, it helps to focus on undirected graphs for
now and visualize the graph as a model consisting of beads representing vertices and strings between
these beads representing the edges. The length of the string between two beads u and v is wu,v. Now
imagine holding this model by the bead s and another bead v and pulling these two beads apart as far
as you can. How far apart can you pull them? Exactly distG,w(s, v) because you will end up pulling all
strings on the path ΠG,w(s, v) tight, and then you cannot pull any further. If you simply hold up the
entire model by the bead s and let gravity do the pulling for you, then every vertex v will hang exactly
distG,w(s, v) lower than s. This is illustrated in Fig. 2.

Now it takes just a little extra effort to realize that pulling every vertex as far down below s as far as
possible and assigning the resulting distance from s to each vertex to the variable xv maximizes the sum

∑

v∈V (G)

xv .

distG,w(s, s) = 0

distG,w(s, a) = 3
distG,w(s, c) = 4
distG,w(s, b) = 5

distG,w(s, d) = 8

distG,w(s, t) = 10

s

a

c

b

d

t

3

4

2

29

6

1

1

Figure 2: Illustration of the single-source shortest paths problem using the beads-and-string model.
Holding the model from the vertex s makes each vertex hang the indicated distance below s.

3

Thus, we obtain the following LP formulation of the SSSP problem:

Maximize
∑

v∈V

xv

s.t. xs = 0

xv − xu ≤ wu,v ∀(u, v) ∈ E

(2)

It may seem strange at first that a shortest paths problem is expressed as a maximization LP, but our
beads-and-string model explains exactly why this is: the shortest path ΠG,w(s, v) limits how far we can
pull v away from s, so maximizing x̂v without “overstretching” the strings, as expressed by the constraints
that xv − xu ≤ wu,v , ensures that x̂v = distG,w(s, v). The next proposition proves this formally:

PROPOSITION 5. The optimal solution x̂ of the LP (2) satisfies x̂v = distG,w(s, v), for all v ∈ V .

Proof. Consider the subgraph H = (V, E′) ⊆ G such that

E′ = {(u, v) ∈ E | x̂v − x̂u = wu,v},

let S ⊆ V be the set of all vertices reachable from s in H, and let T = V \ S (see Fig. 3a). First we prove
that T = ;, that is, that every vertex is reachable from s in H.

Let
C = {(u, v) ∈ E | u ∈ S, v ∈ T}.

Since every edge (u, v) ∈ C has the property that u is reachable from s in H but v is not, it must satisfy
(u, v) /∈ E′ and, thus, x̂v − x̂u < wu,v . Therefore,

δ =min{wu,v − (x̂v − x̂u) | (u, v) ∈ C}> 0.

Now define a new solution x̃ as

x̃v =

(

x̂v if v ∈ S

x̂v +δ if v ∈ T
.

0

3

4

5

7

8

3

4

2

3

2

4

3

4
2

S T

C

(a)

0

3

4

6

8

9

3

4
4

2

3

2

4

3

2

S

T

C

(b)

Figure 3: (a) The definition of the sets S and T in the proof of Prop. 5 corresponding to the solution
x̂ represented by the red vertex labels. Black edge labels are the edge lengths. The graph H contains
all tight edges (red). (b) A solution x̃ with higher objective function value. The new set S of reachable
vertices is bigger.

4

0

3

4

7

8

10

3

4

4
24

3

3

2 2

Figure 4: An optimal solution to (2) for the graph in Fig. 3a. Solid edges are tight, so S = V . The red
path is a shortest path from the leftmost to the rightmost vertex.

This is illustrated in Fig. 3b. Observe that s ∈ S, so x̃s = x̂s = 0 because x̂ satisfies (2). For every
edge (u, v) ∈ E, if v ∈ S, then x̃v = x̂v and x̃u ≥ x̂u. Thus, x̃v − x̃u ≤ x̂v − x̂u ≤ wu,v. If u, v ∈ T , then
x̃v = x̂v+δ and x̃u = x̂u+δ. Thus, x̃v− x̃u = x̂v− x̂u ≤ wu,v . Finally, if u ∈ S and v ∈ T , then x̃v = x̂v+δ
and x̃u ≥ x̂u. Moreover, (u, v) ∈ C , so δ ≤ wu,v − (x̂v − x̂u). Therefore, x̃v − x̃u ≤ x̂v − x̂u + δ ≤ wu,v.
This shows that x̃ is a feasible solution of (2).

Next observe that
∑

v∈V x̃v −
∑

v∈V x̂v = δ|T |. Since x̃ is a feasible solution and x̂ is an optimal
solution of (2), we have

∑

v∈V x̃v −
∑

v∈V x̂v ≤ 0, that is, T = ; and S = V .
The proposition now follows if every vertex v ∈ S satisfies x̂v = distG,w(s, v). Let P = 〈v0, . . . , vk〉 be

a path from s to v in H (see Fig. 4). Then x̂v0
= x̂s = 0 and, for 1≤ i ≤ k, x̂vi

= x̂vi−1
+wvi−1,vi

because P

is a path in H. Thus, x̂v = x̂vk
=
∑k

i=1 wvi−1,vi
= w(P). Since P is also a path from s to v in G ⊇ H, this

implies that
x̂v ≥ distG,w(s, v). (3)

Conversely, for the shortest path ΠG,w(s, v) = 〈u0, . . . , uℓ〉 from s to v in G, x̂u0
= x̂s = 0 and, since x̂ is a

feasible solution of (2), x̂ui
≤ x̂ui−1

+wui−1,ui
, for all 1≤ i ≤ ℓ, that is,

x̂v = x̂uℓ ≤
ℓ
∑

i=1

wui−1,ui
= distG,w(s, v). (4)

Together, (3) and (4) show that x̂v = distG,w(s, v). This finishes the proof.

EXERCISES

EXERCISE 1. In general, there may be more than one shortest path between two vertices s and t in a
connected edge-weighted graph (G, w). Prove that it is possible to choose a particular shortest path ΠG,w(s, v)
for each vertex v ∈ V such that the union of these shortest paths is a tree. This tree is called a shortest path
tree.

EXERCISE 2. Show that finding the shortest paths from a vertex s to all vertices v in an edge-weighted graph
(G, w) is no harder than computing the distances from s to all vertices in G. Specifically, if d : V → R is a
labelling of the vertices of G such that dv = distG,w(s, v) for all v ∈ V , show how to compute a shortest path
tree T with root s as in Exer. 1 in O(n+m) time.

5

