THE SIMPLEX ALGORITHM

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH
SEPTEMBER 22, 2025

This topic discusses the Simplex Algorithm, a classical and fairly simple algorithm for solving linear
programs, that is, for finding optimal solutions of linear programs. As explained when discussing the
complexity of linear and integer linear programming, the Simplex Algorithm does not run in polynomial
time in the worst case, but it is remarkably fast in practice.

The Simplex Algorithm expects its input in standard form. This is not a restriction, as we have shown
that every LP can be transformed into an equivalent LP in standard form. Throughout this discussion of
the Simplex Algorithm, all LPs will be in standard form, so we simply refer to them as linear programs
without explicitly stating the assumption that they are in standard form.

The Simplex Algorithm can be summarized as follows: Every LP in standard form has a unique special
solution called its basic solution. If this solution is feasible, it is called a basic feasible solution (BES).
The first step of the Simplex Algorithm is to decide whether the given LP P is feasible, whether it has
a feasible solution at all. If it doesn’t, the algorithm terminates and reports that P is infeasible. If P
has a feasible solution, then the Simplex Algorithm transforms it into an equivalent LP P(®) whose basic
solution is feasible. More precisely, the algorithm tries to construct such an LP P© without first testing
whether P is feasible; if this fails, then P is infeasible, and the algorithm reports this. Now recall the
concept of equivalence of two LPs: they have the same set of feasible solutions and assign the same
objective function value to any such solution. Thus, the BFS of P(%) is also a feasible solution of P. After
constructing P(?), the Simplex Algorithm continues to transform this LB producing a sequence of LPs
P© .. P that are all equivalent to P and all have basic feasible solutions. The transformation of
each LP P®) into the next LP PG6*1), called pivoting, also ensures that the BFS of P61 has an objective
function value that is no less, ideally greater, than the objective function value of the BFS of P®). Thus,
the algorithm makes steady progress towards better and better solutions. Once the Simplex Algorithm
can verify that the BFS of the current LP P(t) is optimal, something that is particularly easy to check for
a BFS, it terminates and reports this solution. Since P(*) is equivalent to P, this solution must also be an
optimal solution of P.

Our discussion of the Simplex Algorithm is organized as follows: We start with a discussion of
tableaux in § 1, a tabular representation of LPs in standard form that the Simplex Algorithm uses. Sec. 2
introduces what the basic solution of an LP in standard form is. This is followed, in § 3, by a discussion of
how the Simplex Algorithm recognizes that the current BFS is optimal or that the LP is unbounded. If the
Simplex Algorithm cannot confirm (yet) that the current BFS is optimal or that the LP is unbounded, then
it tries to construct an equivalent tableau with a better BFS. This is called pivoting and is discussed in § 4.
Starting with a tableaux—that is, with an LP—whose basic solution is feasible, the Simplex Algorithm
repeatedly applies this pivot operation to obtain equivalent tableaux whose basic solutions get better and
better until it determines either that the current BFS is an optimal solution or that the LP is unbounded.
This leaves the question of how we find the initial tableau whose basic solution is feasible. As we will

discuss in § 5, the Simplex Algorithm does this by applying the basic approach for solving LPs discussed
so far to an auxiliary LP derived from the LP we are trying to solve—how is that for bootstrapping?!
This will complete the description of the Simplex Algorithm. With a complete description of the Simplex
Algorithm in hand, § 6 will walk through an entire run of the Simplex Algorithm on an example LB which
will hopefully aid your understanding of the algorithm (and will allow you to appreciate that it is a really
simple algorithm after all). A discussion of the Simplex Algorithm isn’t complete without addressing
cycling. Recall that the goal of pivoting is to obtain LPs with better and better basic feasible solutions.
Sometimes though, a pivoting step fails to improve the solution. In fact, the solution does not change at
all, only the basis of the tableau changes. This may cause the Simplex Algorithm to get stuck at the same
BFS while cycling through a given set of bases indefinitely; it never terminates. Sec. 7 discusses Bland’s
Rule as one of many rules that can be used to choose which variable leaves and which variable enters
the basis in each pivoting step, and we prove that this rule ensures that the Simplex Algorithm does not
cycle. This immediately gives us an upper bound on the number of iterations that the Simplex Algorithm
executes before producing an answer, which we prove in § 8.

1 TABLEAUX
We will use the following LP as a running example to illustrate how the Simplex Algorithm works:

Maximize x; — 2Xx9 + X3

S.t. y1 — X1—2Xx9—2x3=-3
Yo —3X1—2X2— X3:—5 (1)
Y3 + Xq +3X3 =10

y4+ X1+ X2+ X3 = 9

leXZJXS’ylﬁszyS)y42 0

The basic variables are yy, ¥, ¥3, ¥4. The non-basic variables are x, x5, x3. Recall from our discussion of
standard form that the basic variables have coefficient 1 in exactly one of the constraints, and coefficient
0 in all other constraints and in the objective function. In particular, by writing the basic variables
in the correct order at the beginning of the vector of variables in the matrix/vector notation of the
LP—Az = b—the matrix A decomposes into an identity matrix and an arbitrary matrix whose columns
correspond to the non-basic variables. In this concrete example, we have

(Jﬁ\

Y2 —3 1000|-1 -2 —2
s —5 0100|-3 -2 —1
2=l Yals b= @A=L 00 1 0l 0 3
1 9 000 1|1 —2 1
Xy

\Xs}

The objective function of the LP can similarly be written as cz + d, where in this case,
c=(0,0,0,0,1,—2,1) and d=0.

Given that the LP is in standard form, we have the constraint that every variable should be non-negative.
We simply remember this and don’t write it down explicitly. The other pieces of information can be
collected in a tabular form that shows much better which coefficients in A and ¢ are associated with
which variable. We write the variables across the top, basic variables before non-basic variables. Below
this, we write down the matrix A and the vector c, thereby clearly showing the association of columns
in A and ¢ with their corresponding variables. We complete the table by adding a column on the left
that contains b and —d. (We’ll discuss shortly why we write —d, not d, in the bottom-left corner of the
table.) For our example LB this looks as follows:

Basic Non-basic
Y1 Y2 Y3 Y4 | X1 X2 X3
-3 1 0 0 O0|—-1 -2 -2
-5/ 0 1 0 0|-3 —2 -1
10, 0 0 1 O 0
91 0 0 O 1 1
0 0 0 O O —2

This is called the tableau representation of this LR Note two important properties of a tableau that follow
immediately from the LP being in standard form:

* The portion of A in the basic columns is an identity matrix.
* The objective function coefficients of all basic variables, written below this identity matrx, are O.

To highlight these two properties better, we omit all Os from the tableau from here on (except in the
bottom-left corner if d happens to be 0) and, for compactness, we omit the labelling of columns as basic
and non-basic; we simply remember that the left group of variables are the basic ones, and the right
group of variables are the non-basic ones. This gives us the final tableau representation we will use
throughout the rest of these notes:

Y1 Y2 Y3 Y4 | X1 X2 X3
3] 1 -1 -2 =2
-5 1 -3 -2 -1
2
10 1 1 @
9 1 1
0 —2

We will use transformations of tableaux to implement transformations of the LPs they represent. We
are interested in two simple transformations: column swaps and basic row operations.

1.1 COLUMN SWAPS

A column swap does just that: it simply swaps two columns of the tableau. We will use this operation
to swap a basic column and a non-basic column. For example, swapping the second basic column
(corresponding to y,) with the second non-basic column (corresponding to x,) in (2) produces the
following tableau:

Y1 Xa Y3 Y4 | X1 Y2 X3
-3 1 -2 -1 -2
-5 -2 -3 1 -1
3
10 1 1 (3)
9 1 1
0 -2

Note that we swap the entire two columns: variables, matrix entries, and objective function coefficients.
Thus, as long as we swap two columns associated with variables, the associations between variables
and their coefficients in constraints and objective function do not change. Since we do not change the
column storing b and —d either, we have the following observation:

OBSERVATION 1. For any tableau T, obtained from a tableau T; by swapping two columns in T; that
correspond to variables, T, and T, represent the same linear program.

Obs. 1 implies in particular that if T, is obtained from T; by a column swap operation, then the two
LPs respresented by T; and T, are equivalent; after all, they are the same LP.

1.2 BASIC ROw OPERATIONS

The operation that actually transforms the LP represented by the tableau is called a basic row operation.
This operation takes two of the rows of the tableau, say the ith and the hth row, and adds a multiple of
the ith row to the hth row. For example, adding —1 times the second row of the tableau (3) to the first
row produces the tableau

Y1 X2 Y3 Ya| X1 Y2 X3
21 1 2 -1 -1
—5 —2 -3 1 -1
10 1
9 1 1
0 -2

For this to produce an equivalent tableau, we need to impose three conditions when adding a multiple
of the ith row to the hth row:

* Kind of obviously, neither the ith row nor the hth row should be the top row of the tableau holding
the variable names. (What would it even mean to add a number to a name?)

* The row i cannot be the last row storing the objective function (but h can). That is, we are allowed
to add a multiple of a row respresenting a constraint to another row representing a constraint,
possibly the same row, or to the row representing the objective function, but we are not allowed to
add a multiple of the objective function row to any other row, not even to the objective function

row itself.

* If h = i, then the coefficient with which we multiply the ith row before adding it to the hth
row cannot be —1. This is necessary because adding —1 times the ith row to the ith row would
completely zero out this row, that is, it would eliminate the constraint represented by this row.

Traditionally, one distinguishes between two types of row operations: multiplying a given row by a
non-zero constant, and adding a multiple of one row to a different row. These are exactly the two types
of operations the Simplex Algorithm will use (together with column swaps). In order to avoid repetitive
proofs though, we use the observation here that multiplying the ith row by a coefficient « is the same
as adding a — 1 times the ith row to the ith row, so both types of row operations can be expressed as
adding rows to rows, subject to the conditions above.

Throughout the remainder of this discussion of the Simplex Algorithm, we will reserve the term
solution for any assignment 2 of values to the variables in the vector z such that AZ = b. Such a solution
is feasible if it additionally satisfies the condition that Z > 0. This coincides exactly with the definition of
a feasible solution of the LB but we used the term “solution” before to refer to an arbitrary assignment of
values to the variables in the LP—it didn’t even have to satisfy A2 = b. In this discussion of the Simplex
Algorithm, we call two LPs equivalent if they have the same set of solutions (and, therefore, also the
same set of feasible solutions) and they assign the same objective function value to any solution.

LEMMA 2. If a tableau T, is obtained from a tableau T; via a basic row operation, then the two LPs
represented by these two tableaux are equivalent.

Proof. To establish equivalence of the two LPs, we need to prove that they have the same set of feasible
solutions and that any solution has the same objective function value in both LPs. Let the two LPs
represented by the two tableaux be

Maximize cz +d

s.t. b=Az C))
z2=>0
and
Maximize ¢’z +d’
s.t. b =Az (5)
z > 0.

We distinguish two cases:

If the row operation adds o times the ith constraint row to the objective function row, then this
clearly does not change the set of solutions, as A’ = A and b’ = b in this case. Thus, we need to prove
that every solution Z has the same objective function value in both LPs. We have

cJ'.=cj+a-aij Vje[n]

d'=d—a-b;.

(This is why we write —d instead of d in the bottom-left corner of the tableau, so that adding a times
the ith constraint to the objective function row subtracts ab; from d instead of adding it.) Since every

solution £ satisfies Az = b, we have in particular that

Therefore,
n

n
ZC;£] + d/ = Z(CJ + aaij)éj + (d - abi)
j=1 j=1
n n
j=1

i=1
n
= ZCJ'ZJ' + d,
j=1

that is, every solution Z has the same objective function value in both LPs.

If the row operation adds a times the ith constraint to the hth constraint, then this does not change
the objective function and thus does not change the objective function value of any solution 2. We need
to prove that the two LPs have the same set of solutions, that A’2 = b’ if and only if AZ = b.

First assume that AZ = b. Then

n

> ayg=b; Vke[ml. (6)

j=1
If k # h, this implies that
n
Z allcjéj = by,
=1

because a,’cj = ay;, for all j € [n], and b, = by in this case.

For k = h, we have
n

n
/ 5 = . . A4
Zakaj = Z(ahl + aa;;)2;
j=1 j=1
n n
= ZahJ§] + aZaijﬁj
j=1 Jj=1

= bh + abi
— b,
by (6).
Now assume that A’2 = b’. Then
n
> lag g =b Vke[m]. 7
=
If k # h, this implies that
n
Zakjﬁj = bk: (8)
=1

because a,’q. = ay;, for all j € [n], and b, = by in this case.
For k = h, we distinguish whether h =i or h #i. If h = i, then a}’u. = (1 + a)ayj, for all j € [n],
b, = (1+a)by, and a #—1. Thus, 1+ a # 0 and

n

n
Za;jﬁj =b, = (1+ a)Zahjﬁj =(1+a)b,
i=1 i=1
n

— Zahjéj = bh.
j=1

If h #1i, then

n n
z : A z : Ao 2 2N
Clhij +a Cliij = Clhij
j=1 j=1 j=1

, ©)
= bh
= bh + abi
and, since i # h and by (8),
n
auéj = bi'
j=1
The latter implies that
n
a) a;;%; = ab;
j=1
Together with (9), this shows that
n
hj%j = bp. O
j=1

2 BASIC SOLUTIONS AND BASIC FEASIBLE SOLUTIONS

Letzh,...,zjm

possible solution of the LP represented by the tableau:

be the basic variables of the current tableau, from left to right. Then the following is one

éji = bi Vl (S [m]
2;=0 Vje[n]\{j,....jm}
In words, this solution sets all non-basic variables to 0 and assigns to each basic variable z; the constant

b; of the ith constraint. Since z;, is the only basic variable with a non-zero coefficient in the ith constraint,
and this coefficient is 1, we have

E a;i%; = E aUzJ—z b;,

Jj=1 []\{h Jm}

that is, the ith constraint is satisfied. Since this is true for all i € [m], £ is indeed a solution of the LP We
call this the basic solution of the tableau. As an example, the basic solution of the tableau (2) is:

y1:—3 y2=—5 y3:10 y4:9
x1=0 XZZO X3=0

This is not a feasible solution because y;, y, < 0. If the basic solution is feasible, that is, if it assigns
non-negative values to all variables. then it as called the basic feasible solution (BFS) of the tableau. If
the basic solution is not feasible, then the tableau does not have a BFS, because the basic solution of the
tableau is fully determined by the tableau. The LP may have a a feasible solution in this case, but it is
not the basic solution of the tableau.

Observe that all non-basic variables have value 0 in the basic solution, and all basic variables have
objective function coefficient 0. Thus, every variable contributes 0 to the objective function value of the
basic solution. Therefore, if the objective function is cz + d, the objective function value of the basic
solution is simply d, the negation of the value in the bottom-left corner of the tableau.

3 RECOGNIZING OPTIMAL SOLUTIONS AND UNBOUNDED LPS

The Simplex Algorithm should stop if the BFS of the current tableau is an optimal solution or if the
algorithm determines that the LP is infeasible. In the former case, we have found the solution we are
looking for, so the algorithm reports this solution. In the latter case, there is no point in looking for
an optimal solution because for every feasible solution, there exists a better solution. Therefore, the
Simplex Algorithm reports that the LP is unbounded in this case. In this section, we discuss how the
Simplex Algorithm detects that the BFS of the current tableau is optimal or that the LP is unbounded.

PROPOSITION 3. If all non-basic variables have non-positive objective function coefficients and the basic
solution of the tableau is feasible, then this solution is an optimal solution of the LP

Proof. We assume explicitly that the basic solution £ of the tableau is a BFS, so if it is not an optimal
solution, then there exists another feasible solution Z with

n

n
ZCij > ZC]ZJ
j=1

Jj=1

This implies that there must exist an index j such that c;%; > c;£; and, therefore, %; # £;. Since all basic
variables have objective function coefficient 0, z; must be a non-basic variable. Since 2 is the BFS of the
tableau, this implies that 2; = 0 and, therefore, c;%; = 0 and c;%; > 0. Since % is a feasible solution, we
have %; > 0. Therefore, since £; # £;, we have £; > 0. Since we just observed that c;Z; > 0, this implies
that ¢; > 0.

We have shown that if the BFS is not an optimal solution, then there exists an objective function

coefficient c; > 0. The proposition states the contrapositive. O

The next claim we made was that if there exists a non-basic variable with a positive objective function
coefficient and with onle non-positive coefficients in all constraints, then the LP is unbounded. The
following proposition proves this:

PROPOSITION 4. If the basic solution of the tableau is feasible and there exists a non-basic variable z; with
¢y > 0and a;, <0, for all i € [m], then the LP is unbounded.

Proof. It suffices to prove that the following solution 2 is a feasible solution of the LB for any A > 0:

ﬁh:A
ﬁji = bi —Cll'hA Vl (S [m]
ﬁJ:O VjE[Tl]\{h,j],...,jm}.

This solution has objective function value

n
chzj +d=c,A+d
j=1

because all basic variables have objective function coefficient 0 and every non-basic variable z; with
J # h satisfies £; = 0. Thus, we can choose A arbitrarily large to achieve an arbitrarily large objective
function value: the LP in unbounded.

To show that 2 is a feasible solution, we need to prove that it satisfies all equality constraints, and
that 2; > 0, for all j € [n].

First, consider an arbitrary equality constraint:

n

Zaiij = bi'

j=1

We have a;;, = 1. For all i’ # i, we have q;
satisfied if

j» = 0. For all j # h, we have £; = 0. Thus, this constraint is

bi = éh + ClihZA'h = ﬁ]l + aihA.

Since 2;, = b; —a;, A, this is the case.

It remains to prove that all variables have non-negative values. Since 2;, = A > 0 and every basic
variable z; with j # h satisfies £; = 0, all non-basic variables have non-negative values. So let z;, be an
arbitrary basic variable. Then £; = b; —a;, A. Since a;; < 0 and A > 0, we have a;;, A < 0 and, therefore,

2j, = b;. Since the basic solution of the tableau is feasible, we have b; > 0. Thus, £; = 0. O

J

4 PIVOTING

As long as the current tableau does not satisfy the conditions of Props. 3 and 4, the Simplex Algorithm
repeatedly applies pivot operations. Each such operation transforms the current tableau into a tableau
whose BFS is no worse, ideally better, than the BFS of the current tableau. For this to work, the current
tableau must have a BFS. Therefore, to illustrate pivoting, we need a tableau with a BFS. The following
tableau has a BFS (because all the entries of the vector b in the leftmost column are non-negative):

X1 X2 Y3 Y4 | Y1 X3 Y2
1 1 1
11 7 ~3 T3
1 1 -3 5 1
2 71 3

R (10)
9 1 2 3 2
1 1 1
7 1\ 2 3 3
1 —2 4 1

This tableau is equivalent to (2): you can verify that it can be obtained from (2) by column swaps that
arrange the columns in the order shown and then performing row operations to restore the tableau to
standard form. We will discuss later how we can find a tableau with a BFS for any input tableau, or to
decide that no such tableau exists.

Given this tableau, our goal is to construct a new tableau whose BFS has a greater objective function
value. Remember, the negation of the objective function value of the BFS is written in the bottom-left
corner of the tableau. We are trying to decrease this value.

What we will actually be doing is to look for a better solution of the current tableau, and then we
rearrange the tableau to ensure that the solution we have found is the BFS of the new tableau.

If we try to change the values of many variables at once in an attempt to obtain a better solution, then
we may have to deal with complex interactions between these changes to variable values: increasing
one variable my increase the objective function value, but then we may have to change the values of
other variables to keep the solution feasible, which may decrease the objective function value. Whether
this results in a net loss or gain depends on the coefficients of variables in the constraints and in the
objective function. Better to focus on changing few variables at a time, or rather to change only variables
with very simple interactions with each other. This is where the structure of a BFS helps tremendously.
We start with a few important observations; organizing these will immediately lead us to the definition
of the pivot operation:

* Basic variables have coefficient 0 in the objective function. Thus, we can increase or decrease their
values without affecting the objective function value at all. In particular, if we aim to increase the
objective function value, we need to change the values of non-basic variables.

* In the BFS, non-basic variables have value 0. Thus, since all variables are required to be non-
negative in a feasible solution, if we change the value of a non-basic variable, we can only
increase it.

* Individually, increasing the value of a non-basic variable increases the objective function value
only if this non-basic variable has a positive objective function coefficient.

* If we increase the value of one non-basic variable, this generally makes the solution infeasible,
so we need to adjust the values of other variables to return to satisfying all equality constraints.
Adjusting the values of basic variables is by far the easiest way to do this, for two reasons: (1) As
already observed, basic variables have coefficient O in the objective function, so changing their
values does not negate the gains in the objective function value we have made by increasing the
value of the non-basic variable we chose. (2) Every basic variable has a non-zero coefficient in
exactly one constraint. Thus, we can adjust the basic variables one by one to restore the solution
to satisfying each equality constraint in turn.

10

* We need to ensure though that the values of all basic variables remain non-negative. Thus, if
increasing the value of the non-basic variable forces us to decrease the value of a basic variable
accordingly, then we need to limit by how much we increase the non-basic variable to avoid making
any of the basic variables negative.

This gives us almost the complete description of pivoting already: A pivot operation chooses a non-basic
variable with a positive objective function value. Since we assume that the current tableau does not
meet the conditions of Prop. 3, such a variable exists. The pivot operation has to decide by how much
it can increase this variable, and adjust the values of basic variables to maintain satisfaction of the
equality constraints, while keeping all variable values non-negative. We discuss this next. The final step
of pivoting is to rearrange the tableau so the new solution we have constructed is the BFS of this new
tableau.

Assume that we have chosen the non-basic variable z; as the one whose value we want to increase.
In (10), x5 and y, have positive objective function coefficients, so we can choose either of them. Let’s
choose x3.! Assume we increase z, by some amount A > 0. Since the value of z, in the current BFS
is 0, A is the new value of z;, after this update. By how much do we need to adjust the values of basic
variables to maintain satisfaction of the equality constraints? Consider the ith constraint,

i

Zaijzj' = bi‘

=1

The value of the corresponding basic variable z;, in the current BFS is b;. Here is the important part: if z;,
is the only non-basic variable whose value we change, then only z; and z, make non-zero contributions
to the left-hand side of this equation, because all basic variables apart from z; have coefficient 0 in this
constraint and and all non-basic variables (except z;, after increasing it) have value O in the BFS. This
simplifies the constraint to the equality

zj, + apzp = b;.

Since we assign the value A to 2y, the new value of z; must satisfy

Zji + aihA = bi
Zji = bi —aihA. (11)

We need to choose A so that this new value of z;, is non-negative, that is, so that b; —a;, A is non-negative.
Since b; > 0 (the current basic solution is feasible) and A > 0 (we do not decrease the value of), this
is true no matter how large we choose A if a;;, < 0. In this case, the ith constraint imposes no bound on

by how much we can increase the value of z,. If a;; > 0, then z; > 0 as long as

b;
AL —.
ain

!This may seem like the better choice because x, has the greater objective function coefficient than y,, so an increase of
X, leads to a greater increase of the objective function value than the same increase of y,. However, the constraints may be
such that y, can increase by a much greater amount than x5 before some basic variable becomes negative. Thus, choosing the
variable with the greater objective function coefficient doesn’t always ensure that we make rapid progress towards an optimal
solution. In general, it is very difficult to develop rules that ensure that we make progress towards the optimal solution quickly.

11

Since this condition must be satisfied by every constraint where 2;’s coefficient is positive, we obtain that
the maximum value A by which we can increase z; is

. {bi
A =min{ —
aip

ie[m),ay> 0} . (12)

Note that this quantity is well-defined because the current tableau does not satisfy the conditions of
Prop. 4, so there exists at least one index i € [m] with a;;, > 0.

We restore satisfaction of all equality constraints by updating all basic variables according to (11).
This gives the solution

é’\'h =A
ﬁji = bi —aihA Vie [m] (13)
£ =0 Vi e\t i i}

In our example tableau (10), given that we chose z;, = x5, we have

pmmin{ L 2 7]
B 5/4°7/2°1/4) 5

Accordingly, we obtain the solution:

1 4 7
X =1+-.—-=2
2 5 5
5
XZ=].——'i=O
4 5
x 4
s=—
5
=0 a4
y2=0
o 743
Y3TI7To 5T s
1 4 34
=7_-._ ==
Ya 5 5

This is easily verified to be a feasible solution of (10). The following two lemmas prove that (13) is
always a feasible solution provided the current tableau has a BFS, and its objective function value is no
less than the objective function value of the BFS.

LEMMA 5. If the basic solution of the tableau is feasible, then so is the solution £ defined by (12) and (13).
Moreover, there exists an index i € [m] such that £;, = 0.

Proof. Prop. 4 proves that 2 satisfies all equality constraints of the LB no matter how we choose A, and
that 2; > 0 if a;;, < 0. Thus, we only need to prove that £; > 0 also if a;;, > 0, and that there exists an
index i € [m] such that z;, =0.

Consider an arbitrary index k € [m] such that a;j, > 0. Then

. {bi
A =min{ —
aip

b
ie[m),ay> O} <k,
Akh

12

Therefore,

X b
ij = bk—akhA > bk—akh— =0.
Akh

If we choose the index k € [m] such that

b . b;
—k — mind =%
Akh aip

ie[ml ay> 0}

(such an index clearly exists), then

X by
ij = bk—akhA = bk—akh— =0.
Akh

This proves that there exists an index k with 2; = 0. O

LEMMA 6. Let 2 be the solution defined by (12) and (13). If ¢;, > 0, then Z;.n:l cjéj +d >d, that is, £ has
an objective function value no less than that of the BFS of the tableau.

Proof. 1f z; is a non-basic variable and j # h, then £; = 0. If 2; is a basic variable, then c; = 0. Therefore,
m
D et +d =g, +d.
j=1

Since c, > 0, we have ¢,2;, +d > d if and only if £, > 0. This condition is satisfied because, by Lem. 5,
2 is a feasible solution. O

Why can’t we guarantee that the new solution is strictly better than the current BFS? Don’t we
increase z; and, thereby, increase the objective function value because c;, > 0? Not necessarily. We may
have A = 0, namely if there is an index i € [m] with a;; > 0 and b; = 0. As we will discuss in § 7, this
may cause the Simplex Algorithm to cycle, and we need to be careful to prevent cycling. For now, we
will ignore this issue.

Eq. (13) is a feasible solution, but in general, it is not a basic solution of the current tableau because,
in general, %, > 0, and g, is currently a non-basic variable. Lem. 5 states that there exists a basic variable
Z;, whose value is z“'jl_ = 0. If we move g, into the basis, and ;. out of the basis, then we restore the
property that all non-basic variables are 0. This is easily achieved by swapping the columns of the tableau
that correspond to z;, and z;,. In (10), given our choice of z, = x3, we have z; = x,. Swapping the two
corresponding columns gives us the following tableau:

X1 X3 Y3 Ya| Y1 X2 Y2
1 1 1
1 =3 2 —3
1) -3 1 1
3 3 3

7 1 1 (15)
1 1
7 3 N 3
1 4 —2 1

Since this tableau is obtained from (10) via a column swap, it is equivalent to (10), but we obviously

13

have a new problem: the tableau is no longer in standard form, because z;,, now being the basic variable
corresponding to the ith constraint, should have coefficient 1 in the ith constraint, and coefficient 0 in
all other constraints, and in the objective function.

We can convert (15) into an equivalent tableau in standard form by applying basic row operations:
We multiply the second row by g and then add the resulting row multiplied by %, —%, —%r, and —4 to the
first, third, and fourth constraint rows, and to the objective function row, respectively. This gives the
following tableau in standard form:

X1 X3 Y3 Ya| Y1 X2 Y2
7 1 2 2
511 5 5 73
4 1 3 1 1
5 5 5 5
31 1 8 _14 _1 (16)
5 5 5 5
34 12 101
5 5 5 5
_1u 2 _16 1
5 5 5 5

Since basic row operations produce tableaux equivalent to the original tableau, by Lem. 2, this tableau is
once again equivalent to (15) and, therefore, to (10).

Note that the basic solution of this tableau is feasible and is exactly the solution (14) we determined
earlier. As the next proposition shows, this is not a coincidence: swapping the columns corresponding
to 2, and zj, always produces a tableau with a BFS, and this BFS is exactly the solution in (13). Also
note that the BFS of (15) has objective function value —1 (the negation of the value in the bottom-left
corner), whereas the BFS of the new tableau as objective function value %, an improvement. Again, this
is not a coincidence because we already proved, in Lem. 6, that the solution in (13) has an objective

function value no less than that of the BFS at the beginning of the pivot operation.

PROPOSITION 7. The tableau produced by a pivot operation has the solution defined by (12) and (13) as
its BFS.

Proof. Since z; is a non-basic variable of the updated tableau, for all j € [n]\ {h, ji,..., jn}, €ach such
variable has value 2; = 0, as required.

The variable z; is the basic variable corresponding to the ith constraint of the updated tableau. Thus,
if b is the entry in the leftmost column of the ith constraint, then £, = b!. The coefficient of z in the ith
constraint of the original tableau is a;;,. To ensure that z; has coefficient 1 in the ith constraint of the
updated tableau, we divide the ith row by a;;, that is,

, b;
Zn = bl/ = —l.
Ain
Since the index i was chosen so that f—; = A, this shows that £, = A, as required.

Since z;, is a non-basic variable of the updated tableau, it has value 0. The choice of i ensures that

b.
b —apA=b;—ay— =0,
aip

so z;. has the value b; —a;, A, as required.

14

For i’ € [m]\ {i}, we have £, = b,. Thus, £, = by —a;, A if b, = by — a; A. The coefficient of z,
in the (i")th constraint of the original tableau is a;;. To ensure that 2 has coefficient 0 in the updated
tableau, we subtract a;;, times the ith constraint of the updated tableau from the (i’)th constraint of the
original tableau. Thus,

bl, = by —ayb!.

Since we already argued that b} = A, this shows that b}, = by — a; A. O

We arrived at the pivot operation from first principles, but this left the description of this operation a
bit scattered. Here is the description of the entire operation in one place. A pivot operation performs the
following steps:

* Choose a non-basic variable z;, with positive objective function coefficient. Since we apply the
pivot operation only if the tableau does not satisfy the conditions of Prop. 3, such a variable exists.

e Calculate

. {bi
A =min{ —

ie[m),ay> O}
Ain

and choose one of the indices i such that a;;, > 0 and A = % Since we apply the pivot operation
only if the tableau does not satisfy the conditions of Prop. 4, A is well-defined, and such an index

1 exists.

* Swap the ith basic column corresponding to variable z; with the non-basic column corresponding
to 2, thereby moving z;, into the basis, and z; out of the basis.

* Restore the tableau to standard form using basic row operations.

Since the tableau this produces is obtained from the original tableau via a column swap and basic row
operations, Obs. 1 and Lem. 2 show that the two tableaux are equivalent. Lems. 5 and 6 and Prop. 7
show that if the basic solution of the original tableau was feasible, then so is the basic solution of the
tableau obtained after pivoting, and its objective function value is no less than the objective function
value of the BFS of the original tableau.

5 FINDING A TABLEAU WITH A BFS

The pivot operation we have discussed allows us to transform a tableau with a BFS into a new tableau
whose BFS is no worse than the BES of the current tableau. The Simplex Algorithm applies this operation
repeatedly until it arrives at a BFS that is an optimal solution. In the absence of cycling, this happens in
a finite number of iterations. Therefore, all we need to figure out to obtain a complete description of the
Simplex Algorithm is how to determine whether the given LP is feasible and, if so, find an equivalent
tableau P(?) whose BFS is feasible.

If the basic solution 2 of the tableau P given to the Simplex Algorithm as input is feasible, that is, if
the vector b in the leftmost column of the tableau satisfies b > 0, then P clearly has a feasible solution
and 2 is in fact a BFS, so we can set P(9) = P. Therefore, assume that P’s basic solution is infeasible.

15

To decide whether P has any feasible solution, we solve the auxiliary LP Q:

Maximize —s

s.t. b=Az—1s
z2=0
s=>0,
where 1 = (1,...,1)7 is the m-element vector with all components equal to 1 and s is a new slack

variable. In other words, Q is obtained from P by subtracting s from the right-hand side of each equality
constraint and changing the objective function to —s. Q has the same basis B as P. If 2 is the basic
solution of P, then (2,$) with § = 0 is the basic solution of Q. To illustrate this, consider the tableau (3)
again, reproduced here for easier reference:

Yi Y2 Y3 Y4 | X1 X3 X3
3|1 -1 -2 =2
—5 1 -3 -2 -1
10 1 1
9 1 1
0 —2

As observed before, its basic solution 2 is not feasible because j;, , < 0. The tableau representing the
corresponding auxiliary LP Q is obtained by zeroing out the objective function row and adding a column
representing s on the right, with coefficient —1 in every row.

Y1 Y2 Y3 Va4 | X1 X2 X3 S
=31 -1 -2 =2 -1
-5 1 -3 -2 -1 -1
10 1 1 3 -1

9 1171 1 1 -1
0 -1

Let us defer the discussion of how to solve Q. How does solving it help us to decide whether P is
feasible?

LEMMA 8. P is feasible if and only if Q’s optimal solution (Z,$) has objective function value —$ = 0.

Proof. Given the constraint s > 0, Q has no feasible solution with objective function value greater than 0,
so any solution with objective function value 0 must be optimal.

If P is feasible, then there exists a solution 2 of P such that b = AZ and Z > 0. Setting § = 0 gives
b =A% —1§ and § > 0. Thus, (£,5) is a feasible solution of Q with objective function value —§ = 0 and is
thus an optimal solution of Q.

Conversely, assume that Q has an optimal solution (£, §) with objective function value —§ = 0. Then
§=0. Thus, b=AZ — 15§ =A% and Z > 0, that is, Z is a feasible solution of P. O

16

5.1 FROM AN OPTIMAL SOLUTION OF Q TO A TABLEAU WITH A BFS

By Lem. 8, we can answer that P is infeasible if Q’s optimal solution has objective function value less
than 0. So assume that Q has an optimal solution (£,) with objective function value 0. As shown in the
proof of Lem. 8, is a feasible solution of P. Thus, it suffices to convert P into an equivalent LP P() that
has 2(® = 2 as its BFS.

As we discuss below, we solve Q using the Simplex Algorithm. Thus, if Q has a feasible solution (£,)
with § = 0, then we find a tableau that has such a solution as its BFS and represents an LP Q" equivalent
to Q. This tableau is obtained from the tableau representation of Q via column swaps and basic row
operations. Next, we discuss how to obtain a tableau representation of PO from it:

e First we ensure that s is not a basic variable of the tableau. If it is, assume that s is the basic
variable that corresponds to the ith constraint. Then we pick a non-basic variable z;, with a;;, # 0,
and we apply a pivot operation to move g, into the basis, and s out of the basis. As Lem. 9 below
shows, such a non-basic variable exists. Lem. 10 below shows that this only results in a change of
basis but leaves the BFS unchanged.

» Now consider the tableau obtained from the tableau representation of Q' by dropping the non-basic
column corresponding to s and replacing the objective function coefficient of every variable z;
with its objective function coeffcient c; in P. This tableau has Z as a BFS. Moreover, it can be
obtained from the tableau representation of P by swapping columns to bring them in the desired
order and then applying the same basic row operations that were used to obtain Q' from Q, except
those basic row operations that modify the objective function row. Thus, the LP P’ it represents is
equivalent to P.

 P’is almost in standard form (becaus Q’ is), except that there may be basic variables with non-zero
objective function coefficients. We can use basic row operations (subtracting c;, times the ith
constraint from the objective function row, for all i € [m]) to ensure that all basic variables have
objective function coefficient 0. The resulting tableau is in standard form and, since we did not
change the basis or the constraint rows, has Z as a BFS. Since this tableau is obtained from the
tableau representation of P’ via basic row operations, and P’ is equivalent to P, this tableau
represents an LP P(9) equivalent to P, and its basic solution is feasible. Thus, this is the tableau we
can use as the starting point for the search for an optimal solution of P via repeated pivoting.

LEMMA 9. Consider a tableau representing an LP Q' equivalent to Q, and assume that s is the basic variable
corresponding to the hth constraint of this tableau. Then there exists a non-basic variable z; with a;; # 0.

Proof. Since s is the basic variable corresponding to the hth constraint of Q’, it has coefficient 1 in the
hth constraint. Since Q’ is obtained from Q via basic row operations, the ith constraint in Q’ is a linear
combination of the constraints in Q. In particular, we have

m
/
l=gq, = E oA,
i=1

’ is the coefficient of s in the hth constraint of Q’, and a;, is the coefficient of s in the ith

where a,
S

17

constraint of Q. Since a;, = —1, for all i € [m], we therefore have

m
Zai =-—1.

i=1

This implies that there exists at least one index i such that @; < 0. Let z; be the basic variable that
corresponds to the ith constraint of Q. Then a,’l].‘ = a; < 0 because

m
/ /
dnj, = E :aiai/ji

i'=1

but a;;, =1 for i’=1,and ayj, = 0 for i’ #1i. Since z;, is basic in Q, but s is not, we have z;, #s. Since
s is the basic variable corresponding to the hth constraint of Q’, every other basic variable of Q' has
coeffcient O in the hth constraint of Q’. Thus, since a,/l]._ <0 and z; #s, j; is non-basic in Q". Thus, we

can choose z; = 2, as the desired non-basic variable of Q’. O

LEMMA 10. Consider a tableau representing an LP equivalent to Q, and assume that s is the basic variable
corresponding to the hth constraint of this tableau, and that z; is a non-basic variable with a;; # 0. Then
pivoting to move s out of the basis, and z; into the basis produces a tableau with the same BFS.

Proof. The BFS (£,5) of the current tableau satisfies

g,=b Vielm]\{h)
§=0 Vi'el\ly..jnk

By Prop. 7, the BFS (2,$) of the tableau produced by the pivot operation satisfies

§=0
ZAji =bi—aisA VlE[m]\{h}
2/=0 Vi € LI\ ok
where A = 57’3 = 0. Thus,
§ =0 =3
2 =bj—a;A=0b;=%; Vie[m]\{h}
ZA']/:O :Nj' VjIE[n]\{j,jl,...,jm}. O

5.2 HoOWw TO SOLVE Q

Remember that we obtained the tableau representation of Q from the tableau representation of P by
adding a non-basic column corresponding to s and changing the objective function to —s. This implies in
particular that, if 2 is the basic solution of the tableau representation of P, then (2, 0) is the basic solution

18

of the tableau representation of Q. Since we use the search for a feasible solution of P via Q only if 2 is
infeasible, (2, 0) is infeasible in this case, too. If we want to use the Simplex Algorithm to solve Q, we
need to transform Q into an equivalent LP Q(°) whose tableau representation has a BFS. If we don’t want
to get stuck in an infinite recursion, then we have to do this without constructing yet another auxiliary
LP. Thankfully, the structure of Q is such that a single careful pivot operation produces this LP Q(®.
Consider the index h such that
b, = min{b; | i € [m]}.

Then we obtain Q© by using a pivot operation to move s into the basis and z;, out of the basis. Since
Q(O) is obtained from Q via a pivot operation, that is, via a column swap and basic row operations, Q and
Q® are equivalent. By the following lemma, Q(®) has a BFS.

LEMMA 11. The basic solution of Q) is feasible.

Proof. Note that s has coefficient —1 in every constraint and that b, = min{b; | i € [m]} < 0 because the
basic solution of Q is not feasible. In Q(?), s has coefficient 1, that is, the hth constraint is multiplied
by —1. Thus, the basic solution (2, §) of Q(© satisfies

§=b0 =—b,>0.

Since s has coefficient 0 in the ith constraint of Q(O) and coefficient —1 in the ith constraint of Q, for
i # h, the ith constraint of Q(O) is obtained by adding the hth constraint of Q(O) to the ith constraint of Q.
Thus,
2, =b® =b+b” =b,—b, >0,

where the last inequality follows because b, = min{b; | i € [m]} < b;.
This shows that all basic variables of Q(®) have non-negative values in (£,5). Since all non-basic
variables have value 0 in this solution, this shows that (£, $) is feasible. O

6 A COMPLETE EXAMPLE

The details of the Simplex Algorithm will become much clearer if we work through it using an example.
We will use the LP (1) we already used as a running example throughout the discussion. For reference,
here it is again:

Maximize x; —2x5 + X3

s.t. ¥; — X1—2Xx9—2x3=-3
Yo —3X1—2X2_ X3:_5
Y3 + X1 +3X3 =10

y4+ X1+ XZ+ X3 = 9

X1,X2,X3,¥1,Y2, Y3, Y4 = 0

19

And here is its tableau representation:

Y1 Y2 Y3 V4| X1 Xo2 X3
-3 1 -1 -2 -2
-5 1 -3 -2 -1
1
10 1 1 17
9 1 1
0 -2

The basic solution of this tableau is not feasible, so we need to use the technique from the previous
section to find an equivalent tableau whose basic solution is feasible. We then use repeated pivoting to
find an optimal solution.

6.1 FINDING A TABLEAU WITH A BFS

As discussed in § 5, we find a tableau equivalent to (17) whose basic solution solution is feasible by
solving the following auxiliary LP:

Y1 Y2 Y3 Ya| X1 X2 X3 S
=31 -1 -2 -2 -1
-5 1 -3 -2 -1 -1
18
10 1 1 3 -1 (18)
9 117 1 1 1 -1
0 -1

All we did here was to add the non-basic variable s to the LB with coefficient —1 in every constraint, and
we changed the objective function to —s.

The basic solution of this tableau is not feasible, so we need to apply the special pivoting step discussed
in § 5.2 to transform it into an equivalent tableau with a BFS. We have min{b;, by, b3, b4} = by = —5.
Thus, to obtain an equivalent tableau whose basic solution is feasible, we perform a pivot step that puts
s into the basis and removes y, from the basis. basis. First we reorder the columns of the tableau to
reflect the new basis:

Y1 S Y3 Y4 X1 Xo X3 Yo
3| 1 -1 -1 -2 -2
-5 -1 -3 2 -1 1
10 -1 1 1 3
9 -1 1 1 1 1
0 -1

Next we need to ensure that s has coefficient 1 in the second constraint and coefficient O in all other
constraints and in the objective function. To this end, we multiply the second constraint by —1, and
then we add the result to every other row of the tableau because s’s coefficient is —1 in every row of the

20

tableau:

Y1 S Y3 Y4 X1 Xo Xz Yo
2101 2 -1 -1
5 1 3 2 1 -1
1
15 1 4 2 4 -1 (19)
14 114 3 2 -1
5 3 2 1 -1

Since b > 0 in this tableau, its BFS is feasible. is objective function value is —5 (the negation of the 5 in
the bottom right corner). To find an optimal solution of this tableau, we use standard pivot operations
now.

Since there are non-basic variables with positive objective function coefficients, we cannot guarantee
yet that the current BFS is optimal. So we pick an arbitrary non-basic variable whose objective function
coefficient function is positive; x; is a valid choice because its coefficient is 3. This is the non-basic
variable that enters the basis in the pivot operation we are about to perform. To choose the basic variable
that leaves the basis, we need to find a constraint in which x; has a positive coefficient a; ,, and which

.. b;
minimizes the value ——.2 We have

by _2_, b, 5 by 15 b, 14
al’xl 2 az’xl 3 a3’xl 4 a4’x1 4 '
The smallest of these values is ai’l =1, so the first basic variable, y;, is the one that needs to leave the
X1

basis.
Having identified the pair of variables that need to enter or leave the basis, we now implement the
pivot operation as always, by first swapping the columns corresponding to these two variables,

X1 S Y3 Ya|X1 Xo X3 Y3
2| 2 1 -1 -1
51 3 1 2 1 -1
15| 4 1 2 4 -1
14| 4 1 3 2 -1
5| 3 2 1 -1

and the performing basic row operations to restore the tableau to standard form:

X1 S Y3 Ya| Y1 Xa X3)2
I P
2| 1 5oz 0§
11 1 -2 2 6 1
10 1/—2 3 4 1
z 32 1 1

2Given that the columns of the tableau keep being rearranged, I refer to the columns of the tableau not by index but by the

variables they represent here. So q; ,, is the coefficient of x; in the ith constraint.

21

Specfically, we divided the first row by 2 and then subtracted this row multiplied by 3, 4, 4, and 3 from
the remaining constraint rows and from the objective function row, respectively.

Note that the BFS of this LB x; = 1,s =2, y3 =11, y, = 10, and y; = x5 = x3 = y, = 0 has objective
function value —2, which is an improvement over the previous solution’s objective function value, —5.

We still have non-basic variables with positive objective function coefficients, so we need to continue
pivoting. This time, we choose x, as the variable that should enter the basis. The variable x, has
coefficients 2, 2, and 3 in the second, third, and fourth constraints, respectively. The coefficient in the
first constraint is 0, so only s, y3, and y, are valid candidates for basic variables that can leave the basis.
Of the three values % =1, 1—21, and %, 1 is the smallest. Thus, s is the basic variable that should leave the

basis. Again, we start by rearranging the tableau to reflect the new basis:

X1 Xo Y3 Ya| Y1 S Xz)2
B I -1 -
2 413

11 2 1 —2 6 1
10 3 1(—2 4 1
I IR

To give x5 a coefficient of 1 in the second constraint and coefficient O everywhere else, we divide the
second constraint by 2 and then subtract the result multiplied by 2, 3, and 2 from the third and fourth
constraint and from the objective function, respectively:

X1 X2 Y3 Ya| N1 S X3 Y2

1 1 1

1 1 —= = 2 2

3 2 3 3

(20)

9 1 |- 1 7l

1 3 1 1

7 o R S
0 -1

Now, all non-basic variables have non-positive coefficients in the objective function. Thus, the BFS of
the current tableau is an optimal solution of the auxiliary tableau (18)! We are still in the initialization
phase of the Simplex Algorithm.

Since this optimal solution has objective function value O (as stated in the bottom-left corner of the
tableau), our original LP (18) is feasible. Thus, we can convert (20) into a that is equivalent to (17) and
has a BES.

In this example, we do not need to remove s from the basis of (20) because it is not in the basis of
this tableau. Thus, we start by removing the non-basic column corresponding to s from the tableau and

22

restoring the objective function coefficients that all variables have in (17):

X1 Xo Y3 Yal| Y1 X3 Y2
1 1 1
N 2
1 1 -3 =2 1
3 3 4
1 71 21
9 1 2 3 2
1 1 1
7 11 2 3 3
ol 1 —2 1

We restore this tableau to standard form by subtracting the first constraint from the objective function
and adding twice the second constraint to the objective function. This gives the following tableau:

X1 Xo Y3 Ya| Y1 X3 Yo
1 1 1
11 7 ~3 T3
1 1 -3 5 1
i 7 3

1 7 1 (22)
’ S
7 11 2 7 3
1 —2 4 1

Since (21) can be obtained from (17) via column swaps and the same basis row operations that
produced (20) from (18), and (22) is obtained from (21) via additional basic row operations, (22) is
equivalent from (17). Its basic solution,

xp=1 xp=1 y3=9 y4=7 y1=x3=y,=0,
is a BFS because all variables have non-negative values. We are now ready to continue pivoting to find

an optimal solution of (22), which is also an optimal solution of (17).

6.2 FINDING AN OPTIMAL SOLUTION

First let us try to move x5 into the basis. x5 has positive coefficients in the second, third, and fourth
constraints. The corresponding upper bounds imposed on x5 by these constraints are

1 4 9 18 7

— = = =28,
5/4- 5 7/2 7 1/4

The tightest of these upper bounds is g. Thus, if we want to bring x5 into the basis, the second basic
variable, x,, needs to leave the basis. Again, we start by rearranging the tableau,

23

X1 X3 Y3 Ya| V1 X2 Y2

1 1 1

11 —3 2 —3

5 3 1

1 7 -z 1 3

7 1 1

9 7 1 -3 2

1 1 1

7 3 1| 3 3

1 4 —2 1

and basic row operations restore this tableau to standard form:

X1 X3 Y3 Y4 | Y1 X2 Y2
7 1 2 2
511 5 5 ~5
4 1 _3 4 1
5 5 5 5
31 1 8 _14 _1
5 5 5 5
34 1] 2 -1 1
5 5 5 5
1 2 _16 1
5 5 5 5

Next, let’s move y; into the basis because its objective function coefficient is % ¥y has positive coefficients
in the first, third, and fourth constraints. The corresponding upper bounds on the value of y; imposed

by these constraints are
7/5 _ 31/5 31 34/5

= = =17,
1/5 8/5 8 2/5

of which % is the tightest. Thus, y; needs to leave the basis. We swap the columns corresponding to
these variables to reflect the change of basis,

X1 X3 Y1 Yal| Y3 X2 Y2

7 1 2 2
511 5 5 3
4 1 -3 4 1
5 5 5 5
31 8 1 -4 _1
5 5 5 5
34 2 _1 1
5 5 5 5
_u 2 _16 1
5 5 5 5

and basic row operations restore the tableau to standard form:

X1 X3 Y1 Ya| Y3 X2 Y2

5 1 3 3
g| 1 —§5 1 T8
25 1 3 _1 1
8 3 3 8
31 1 5 _7 _1
8 8 3 8
21 1| =1 1 1
4 3 2 3
_15 1 _5 1
4 3 2 3

We still have a non-basic variable with positive coefficient in the objective function left: y,. y, has

24

positive coefficients in the second and fourth constraints. The upper bounds on the value of y, imposed

by these constraints are
25/8 21/4

1/8 1/4
of which 21 is the tighter one. Thus, y, needs to leave the basis if y, enters the basis. We swap the
columns corresponding to these variables to reflect the change of basis,

21,

X1 X3 Y1 Y2 | Y3 X2 Y4
5 3 1 3
8| 1 —35|785 1
25 1 1 3 _1
8 8 8 7
31 1 -1 S _7
8 8 8 7
21 ry_1 1 4
Z ! 4 2
E] 1y_1 _5
Z ! 4 2
and basic row operations restore the tableau to standard form:

X1 X3 Y1 Y2 | Y3 Xa Y4
79 -1 3 3
2 2 2 2

1 1 L 1 _1
2 2 2 2
13 1 1 _3 1
2 2 2 2
21 1(-1 2 4
-9 -3 -1

Finally, all non-basic variables have non-positive coefficients in the objective function. Thus, the
current basic solution,

xlzz }’1=E

2 2

x5 =0 ¥y =21
1

X3=75 ¥3=0

Y4 =0,

is an optimal solution; its objective function value 9.

7 BLAND’S ANTI-CYCLING RULE*

As already mentioned briefly, the Simplex Algorithm may get stuck at a BFS that is a BFS for multiple
tableaux, simply cycling through these tableaux without making progress towards tableaux with better
BFSs. Constructing simple examples where this occurs is surprisingly tricky.> Your are welcome to Google
“When does Simplex cycle” and work through the examples that come up if you have the energy for it.

3I didn’t find any example online or in the literature that wasn’t underconstrained in the sense that it didn’t have more
variables than constraints. I tried to construct my own example that wasn’t underconstrained based on the geometric intuition
about when cycling occurs, but I failed.

25

Here, we will simply accept that picking the non-basic variable that should enter the basis in a pivoting
step arbitrarily from among those with positive objective function coefficients, and choosing the basic
variable that should leave the basis arbitrarily from among those whose corresponding constraints are
tightest, may cause the Simplex Algorithm to cycle. There are several rules one can use to choose the
variables leaving and entering the basis in a pivot operation carefully (i.e., not arbitrarily), in a manner
that prevents cycling. In this section, we discuss one such rule, called Bland’s rule.

Recall that the variable in the LP form a vector 2 = (21,...,%,)", that is, every variable has an index.
As we solve the LB we swap columns in the tableau, the variables my change position in the tableau. It is
important to note that when we say “index“, we mean the index of the variable, which may be different
from the number of the column in the current tableau that corresponds to the variable.

An oversimplified but easy to remember statement of Bland’s rule is, “Always pick the variable with
smallest index.” A more precise description of the rule considers the two key steps of pivoting: choosing
the non-basic variable that should enter the basis, and then choosing the basic variable that should leave
the basis. We discuss these two steps next.

In our description of pivoting, we allowed any non-basic variable with positive objective function
coefficient to be chosen as the one to enter the basis. Bland’s rule tells us to choose the non-basic variable
with minimum index from among all those with positive objective function coefficient. Assume we chose
the variable z; to enter the basis.

If the LP isn’t unbounded, then there exists at least one constraint such that a;; > 0. Thus, the
following quantity is well-defined:

. {bl
A =min{ —
ai'

i€ [m], ai]- > 0}
J

Our earlier description of pivoting stated that the basic variable that should leave the basis is any variable
zj, such that = A. Once again, Bland’s rule tells us to choose the basic variable z;, with minumum
index jj from among the variables that satisfy this condition.

This is the complete description of Bland’s rule. The remainder of this section proves that using
this rule ensures that the Simplex Algorithm does not cycle. In particular, it proves that Bland’s rule
ensures that there are no two tableaux with the same basis in the sequence of tableaux constructed by
the Simplex Algorithm. Before we can prove this, need two simple facts about the behaviour of the
Simplex Algorithm when it does cycle. Let (T™, ..., T(Y)) be the sequence of tableaux constructed by the
Simplex Algorithm, and let (3(V),...2(9) be the sequence of the BFSs of these tableaux. If the algorithm

cycles, then there exist two indices a and b such that T(® and T®) have the same basis.

LEMMA 12. If two tableaux T® and T have the same basis, then 2@ = 2(%) and both solutions have the
same objective function value.

Proof. If 2@ =2 then both solutions do have the same objective function value because T(® and T
are equivalent and thus assign the same objective function value to any solution.

To prove that 2@ = 2(b) et %j,--+,%;j be the variables in the common basis of T(4) and T, and let
the equality constraints of the LP represented by T,y be b = Az. Then recall recall from § 2 that setting
“(a) =0 forall j ¢ {ji,...,j,} uniquely determines the values of all basic variables in the basic solution

z(a) of T(@; 2j, =bj, forallie [m]. Is particular, 2@ is the only solution of T(@ that satisfies 21(.‘1) =0,

26

forall j & {ji,...,Jm}-
Since £(®) is the BFS of T(?), and {j1,- -+ Jjm} is the basis of T}, we have 2(0) = 0, forall j ¢ {ise- s Jm}-
Since T and T® are equivalent, £?) being a solution of T(®) implies that £(?) is also a solution of

T@. Thus, since £@ is the only solution of T(@ with z](.a) =0, forall j ¢ {j;,...,Jjn}, we must have
s(a) — 2(b)
g\ =g\, O

LEMMA 13. If two tableaux TY and T® with a < b have the same basis, then 89 = ... = 3,

Proof. By Lem. 12, 2(9 and £(®) have the same objective function value. By Lem. 6, there is no index
r such that 20+1) has a lower objective function value than £("). Together, these two facts imply that
5@ . 50 3]l have the same objective function value.

Now assume for the sake of contradiction that there exists an index a < r < b such that 207 # £(@,
Then we can choose r to be the smallest such index, that is, so that 2(¢) = ... = 201 Let the LP
represented by T("~1 be

Maximize cz + d

s.t. b=Az

z2>0.

Then, if {j;,...,jn} is the basis of T¢"™D, we have
BV =b Vielm]

zA](r_l)zo VienI\{i--sjm}

If 2, is the non-basic variable that enters the basis in the pivot operation that produces T from T,
then, by Prop. 7,

£0 = b—apa Vielm)

5(r) _
2y = A,
7 =0 Vi€ I\ (s,
where A is defined as in (12).
The non-basic variable z; to enter the basis is chosen such that ¢; > 0. Thus, the objective function

values of 2™V and £(") differ by c,A. As alrealy observed, 201 and (") have the same objective
function value. Therefore, A = 0. This implies that

éJ(}r) =bi—apA=b;= 21(';_1) - ﬁJ(la) vielml,

AREN =0 =3V =51,
A A(r—1 A . . .
&7 =0 =2 V=4 Vjeln]\{hji....in),
Thus, 27 = 2@ contradicting the choice of £("). This proves the lemma. O

We are now ready to prove that Bland’s rule prevents the Simplex Algorithm from cycling:

PROPOSITION 14. If the Simplex Algorithm uses Bland’s rule, then no two tableaux in the sequence of
tableaux produced by the algorithm have the same basis.

27

Proof. Assume for the sake of contradiction that T(® and T() have the same basis, for two indices a < b.

Let us call a variable z; fickle if it belongs to the basis of one but not all of the tableaux T @ .. 7,
Since two consecutive tableaux do not have the same basis, but the two bases of these two tableaux both
have size m, it follows that there exist at least two fickle variables.

Let £ be the maximum index of all fickle variables, and let a < p,q < b be indices such that gz, is a
basic variable of T® and of T but not of T®*V nor of T(?. In other words, z, leaves the basis in
the pth pivot operation and enters the basis in the gth pivot operation. Since T(®) and T® have the
same basis and g, is fickle, these indices exist.

Let 25, be the variable that enters the basis in the pth pivot operation, that is, 2, is a non-basic variable
of TP) and a basic variable of T®*1). Then 2y, is also fickle and, thus, by the choice of 2y, h < ¢.

Now assume that T represents the LP

Maximize cz + d
s.t. b=Az
z >0,

and T@, the LP
Maximize ¢’z + d’

s.t. b =A'z
z = 0.
Let the basis of T®) be {jy, ..., jn}-

Every (not necessarily feasible) solution # of T(?) that satisfies #, = A, for an arbitrary A € R, and
Z;=0,forall j € [n]\ {h,ji,...,jm}, satisfies

Zji = bi —aihA VI (S [m]

Since all basic variables of T?) have objective function coefficient 0 in T(®), the objective function value
of this solution is
ChA +d.

Since Z; =0, for all i € [n]\ {h, j3, ..., Jm}, and T®) and TD are equivalent, this value is the same as

m m
/ !/ = / / / /
LA+ E ;g +d =cA+ E cji(bi—aihA)+d.
i=1 i=1

Since this holds for every choice of A, this implies that

m

_ ’
Ch — Ch chialh.

i=1

Now observe that, since z; enters the basis in the pth pivot operation, we have ¢, > 0. Since z, enters
the basis in the gth pivot operation, we have cé >0.If c;l > 0, then z;, is a non-basic variable of T'@ that
can be chosen to enter the basis in the gth pivot operation. Since h < £, as already observed, this would
imply that £ does not enter the basis in the gth pivot operation, a contradiction. Thus, we must have

28

¢, <0 and, therefore,
m

Z cJ’.iaih <0.
i=1

This implies that there exists an index i € [m] such that
! 0
Cfi a;p < 0.

In particular c]'.i # 0. Since all basic variables of T(? have objective function coefficient 0 in T?, this
shows that z;, isnot a basic variable of T(9). Since it is a basic variable of T®), we conclude that zj, is
fickle. By the choice of ¢, this implies that j; < £.

Since z, is a basic variable of T®, we have { = Ji,» for some index 1 < i, < m. This index satisfies
a;,, > 0 because 2, leaves the basis in the pth pivot operation and 2 enters the basis in this operation.

Since { enters the basis in the gth pivot operation, we have cé > 0. Therefore,

/
¢ @, > 0.

Since cJ'.val-;1 < 0, this shows that j; # . Therefore, since j; < £, we have j; < (.
To finish the proof, observe that cj’.. < 0 because j; < £ and g, is chosen to enter the basis in the gqth

pivot operation. Since ¢’ a;;, < 0, this implies that a;; > 0. Since z; is not a basic variable of T@, it has
i L

j j

value Z; = 0 in the BFS 2 of T@, Since T® and T@ have the same BFS, by Lem. 13, this implies that
b, =0, that is, f—_; = 0. Since :‘/’h > 0, for every index i’ € [m] that satisfies a;, > 0, this shows that z;,
can be chosen to leave the basis in the pth pivot operation. Finally, we have the desired contradiction

because j; < ¢, z, leaves the basis in the pth pivot operation, and Bland’s rule chooses the variable with
smallest index from among those that can leave the basis in each pivot operation.

Since we derived this contradiction from the assumption that there exist two tableaux T(® and T(®
with the same basis, no two such tableaux can exist, which is what the proposition states. O

8 RUNNING TIME

This discussion of the Simplex Algorithm has been rather long, so let us end it with a really short section.
We have established the correctness of the Simplex Algorithm, and we have shown that using Bland’s
Rule ensures that the algorithm does not cycle. To round off the discussion, we need to bound the
running time of the algorithm.

A tableau with n variables and m constraints has size N = (m + 1)(n + 1). It is fair to consider N to
be the input size of the algorithm. It is easily verified that every pivoting operation takes O(N) time:

* In O(n) time, we can inspect all objective function coefficients of non-basic variables, find the
variables with positive objective function coefficients and choose the variable z; with mininum
index j among them.

* In O(m) time, we can inspect the constraints and identify those that satisfy a;; > 0 and minimize
the quantity f—‘ among them. We then inspect the basic variables corresponding to these constraints
)
and choose the one with minimum index j;, among them.

29

* With an efficient representation of the tableau, we can swap the columns corresponding to z; and
z; in constant time. Using a naive implementation, this column swap can certainly be performed
in O(N) time.

* A single basic row operation can be implemented in O(n) time, as it requires adding multiples
of the n + 1 entries in one row of the tableau to the n + 1 entries in another row of the tableau.
Since we can restore the tableau to standard form after a column swap by applying m + 1 basic
row operations, restoring the tableau to standard form takes O(mn) = O(N) time.

Since a single pivoting operation takes O(N) time, all we have to do is to bound the number of such
operations the Simplex Algorithm performs before reporting an optimal solution of the fact that the LP is
infeasible or unbounded. The following proposition provides such a bound.

PROPOSITION 15. If the Simplex Algorithm uses Bland’s anti-cycling rule, it terminates after at most (:1)
pivot operations.

Proof. The basis of a tableau consists of m basic variables, chosen from the n variables of the tableau.
Thus, there are (:1) distinct bases to choose from. Prop. 14 shows that Bland’s rule ensures that no
two tableaux in the sequence of tableaux constructed by the algorithm have the same basis. Thus, the
sequence of tableaux constructed by the algorithm contains at most (:1) tableaux, which implies that the
algorithm performs at most (:1) pivot operations. O

The upper bound on the number of pivot operations performed by the Simplex Algorithm established
by Prop. 15 is not polynomial, and there exist artificial inputs where the algorithm does indeed need an
exponential number of iterations to terminate. In practice, however, this exponential running time rarely
materializes.

30

