MATCHINGS

CSCI 4113/6101
INSTRUCTOR: NORBERT ZEH
OCTOBER 31, 2025

In this topic, we introduce matchings. As a warm-up exercise, we discuss how to find a maximal matching
in linear time. A maximum matching is much harder to find.! We will discuss algorithms for finding
different types of matchings in upcoming topics. We end the introduction to matchings in this topic by
showing that the maximum matching problem on bipartite graphs can be expressed as a maximum flow
problem. Thus, as a starting point, we can use the maximum flow algorithms we discussed already to
compute maximum matchings, at least in bipartite graphs.

1 MATCHINGS

Matching problems are also known as assignment problems because the basic problem is to pair entities.
For example, consider a set of compute jobs to be run and a set of machines they can be run on. Each
machine completes each job in a particular amount of time based on the demands of the job in terms of
CPU speed, memory bandwidth, and amount of memory available, and on the machine’s specifications.
You are renting these machines from Amazon at some cost per hour. In this scenario, it is not hard to
imagine that the cost of running each job can differ significantly from machine to machine. We want to
assign jobs to available machines so that the total cost of running all jobs is minimized.

We can model this as a bipartite graph G whose vertex set is the union of two sets J and M
representing the jobs and machines, respectively. If a job j € J can run on a machine m € M (some jobs
may not be possible to run on a given machine at all, for example, if the job requires more memory than
the machine has), then there is an edge {j,m} € G with weight equal to the cost of running job j on
machine m. If we assume that we want to run every job on a different machine, our goal is to pick a
subset of the edges in G such that no two edges share an endpoint (no two jobs run on the same machine
and no job can be split over multiple machines), every vertex in J is the endpoint of a chosen edge (we
run every job), and the total weight of the chosen edges is minimized.

A set M CE of edges in a graph G = (V, E) such that no two edges in M share an endpoint is called
a matching (see Figs. 1a,b). For every edge {u,v} € M, we call u and v mates. If every vertex of G is
the endpoint of an edge in M, then M is called a perfect matching (see Fig. 1c). In the above scenario
of scheduling jobs on machines, if the number of jobs equals the number of available machines, then the

T am not sure whether mathematicians use this terminology, but in the algorithms literature, the terms “maximal” and
“maximum” are both used as adjectives with rather distinct meanings. A maximal solution is a local optimum in the sense that
we cannot make it bigger by adding to it. For example, a maximal matching has the property that it does not have a proper
superset that is also a matching. In contrast, a maximum solution is one with maximum objective function value. A matching is
maximum if there is no matching containing more edges. A maximal matching M may not be maximum because there may be
larger matchings in the given graph, only they are not supersets of M. The same distinction applies to the terms “minimal” and
“minimum®. A minimum solution is one of minimum objective function value, while a minimal solution has no proper subset
that is also a feasible solution.

~ P
N NV

(a) (b) (@

N
el

Figure 1: (a) A set of edges (red and blue) that are not a matching because the two red edges share an
endpoint. (b) A matching in the same graph that is not a perfect matching. The two red vertices are
unmatched. (c) Two perfect matchings (red and blue) in the same graph. The red one is a minimum-
weight perfect matching, the blue one is not.

1 3 1

Figure 2: A graph whose maximum matching (red) is not a maximum-weight matching (blue) and vice
versa.

requirement that every job has an incident edge in the matching implies that every machine also has an
incident edge in the matching. Thus, we are looking for a minimum-weight perfect matching (see
Fig. 1c¢). Such a matching may not exist since not every pair of vertices is connected by an edge. Thus,
we may also consider the simpler problem of deciding whether a perfect matching exists. This decision
problem can be generalized to the maximum matching problem, which is to find a matching containing
the maximum number of edges. A matching is perfect if and only if its cardinality is n/2, where n is
the number of vertices of the graph. In the same way that we went from the minimum-weight perfect
matching problem to the simpler problem of finding a perfect matching, we can generalize the maximum
matching problem to the maximum-weight matching problem where edges have weights and we want
to find a matching of maximum weight. Note that a maximum-weight matching may contain fewer
edges than a maximum matching for the same graph if the edge weights in the graph vary sufficiently.
An example is shown in Fig. 2. Exer. 1 asks you to prove that we can use any maximum-weight matching
algorithm to find a matching of maximum weight among all maximum matchings or a matching of
maximum cardinality among all maximum-weight matchings, in an attempt to maximize both the size
and the weight of the matching. Tbl. 1 lists the different types of matchings we are interested in in this
course. There are many other quality measures for matchings, which arise in different applications, but
we won't discuss them here.

The final generalization we consider is to drop the requirement that the given graph be bipartite.
A graph G = (V,E) is bipartite if its vertex set can be partitioned into two subsets U and W—that
is, UUW =V and U NW = —such that every edge in E has one endpoint in U and one endpoint
in W. We often specify this partition of V explicitly by writing G = (U, W, E). Many natural applications
of matching problems work with bipartite graphs and, as we will see, solving matching problems on
bipartite graphs can be significantly easier than on arbitrary graphs. Nevertheless, it is useful to be
able to find various kinds of matchings in arbitrary graphs, particularly as a building block for other
algorithms.

Name Input Output

Maximal matching Graph G = (V,E) Matching M C E such that there
does not exist a matching M’ C E
with M’ > M

Maximum matching Graph G = (V,E) Matching M C E such that there
does not exist a matching M’ C E
with |[M’| > |M|

Maximum-weight matching Graph G = (V,E) Matching M C E such that there
Edge weights w: E >R does not exist a matching M’ C E
with w(M’) > w(M)

Minimum-weight perfect Graph G = (V,E) Perfect matching M C E such that
matching Edge weights w: E - R there does not exist a perfect
matching M’ C E with
w(M’) < w(M)

Table 1: The different types of matchings we study in this course

2 MAXIMAL MATCHING

As a warm-up exercise, this section discusses the maximal matching problem. Given a graph G = (V, E),
the problem is to find a matching M C E such that there is no matching M’ that satisfies M ¢ M’ C E.
The algorithm is extremely simple. We start by setting M = (). Then we inspect every edge e € E in
turn. When inspecting e, we add e to M if and only if e’s endpoints are unmatched at this time. This
algorithm can clearly be implemented in O(n + m) time using an adjacency list representation of the
graph, which allows us to enumerate the vertices and edges of G in linear time and find the endpoints of
each edge in constant time: First, we mark every vertex as unmatched; this takes O(n) time. Then we
inspect every edge e € E. For each edge {u, v}, we check whether both u and v are unmatched. If so, we
add {u, v} to M and mark u and v as matched. This takes constant time per edge, O(m) time in total.

LEMMA 1. A maximal matching of a graph G can be computed in O(n + m) time.

Proof. We already argued that the above algorithm takes O(n + m) time. To see that its output is a
matching, assume the contrary. Then there exist two edges e and f in M that share an endpoint v.
If w.l.o.g. e is added to M before f, then v is marked as matched after adding e to M. Thus, when
inspecting f, v is matched, and we do not add f to M, a contradiction.

To see that the computed matching M is maximal, assume there exists an edge {u, v} € E such that
M U {{u, v}} is also a matching. Then both u and v are unmatched at the end of the algorithm and,
therefore, also when the algorithm inspects the edge {u, v}. Thus, we would have added {u, v} to M,
a contradiction again. O

A related problem is the independent set problem. An independent set in a graph G =(V,E) is a
subset I C V such that no two vertices in I are adjacent (see Fig. 3). Again, we can distinguish between
a maximal independent set, which has no independent proper superset, and a maximum independent
set, which is an independent set of maximum cardinality. Exer. 2 asks you to verify that a maximal

Figure 3: A maximal but not maximum independent set (blue) and a maximum independent set (red).
Both sets are vertex covers. The blue set is a minimum vertex cover, the red one is not.

independent set can be computed in O(n + m) time using an algorithm very similar to the maximal
matching algorithm above. The maximum-cardinality variants of matching and independent set, on the
other hand, are of greatly different difficulty. While the focus of the next three topics is to demonstrate that
a wide range of matching problems can be solved in polynomial time, finding a maximum independent
set is NP-hard and in fact W[1]-hard. W[1]-hard problems are unlikely to be fixed-parameter tractable
in the same sense that NP-hard problems are unlikely to be solvable in polynomial time. We will discuss
fast exponential-time algorithms for finding a maximum independent set later in this course. Matchings
are also closely related to another classical NP-hard problem, the vertex cover problem, which is to
find a minimum-size subset C of G’s vertices such that every edge of G has at least one endpoint in C
(see Fig. 3). Based on this connection, we will use the matching algorithms discussed in this course as
building blocks for parameterized algorithms for the vertex cover problem.

3 BIPARTITE MAXIMUM MATCHING VIA MAXIMUM FLOW*

Consider the problem of finding a maximum matching in a bipartite graph G = (U, W, E). To find such
a matching, we augment G with two new vertices s and t. Every vertex in U becomes an out-neighbour
of s; every vertex in W becomes an in-neighbour of t; and every edge of G gets directed from its endpoint
in U to its endpoint in W. Finally, we give every edge a capacity of 1. Let us call the resulting graph G.
This construction is illustrated in Fig. 4.

TN
NP

—

(@) (b)

Figure 4: Reduction of bipartite maximum matching to maximum flow. (a) A bipartite graph G =
(U, W, E). The vertices in U are the vertices on the left. The vertices in W are the vertices on the right.
Every edge has an endpoint in U and an endpoint in W. (b) The network G we construct from G. Edge
capacities are not shown because all edges have capacity 1. The red paths in G are the ones carrying one
unit of flow from s to t and correspond to the red matching in G.

LEMMA 2. M is a matching in G if and only if there exists an integral st-flow f in G such that M = {e € G |

fe=1}.

Proof. First, assume that M is a matching. Then set f;, = f,, = f,, = 1, for every edge {u,w} € M,
and f, = 0, for any other edge of G. Clearly, f is integral and satisfies the capacity constraints of all edges
in G. For every vertex u € G, if u is unmatched, then fsu=0and f,,, =0, for every edge {u,w} € G.
If u is matched, then f; , = 1 and f,,,, = 1, for exactly one edge {u,w} € G, because M is a matching.
Thus, f satisfies u’s flow conservation constraint whether u is matched or not. A similar argument shows
that f satisfies the flow conservation constraints of all vertices in W. Thus, f is an st-flow.

Now, assume that f is an integral st-flow in G. By the flow conservation constraint, we have
Yowew fuw = fsu < 1, for every vertex u € U. Since f is integral, this shows that there exists at most one
edge {u,w} € G such that f, , = 1. By an analogous argument, there exists at most one edge {u,w} € G
such that f,, , = 1, for every vertex w € W. Thus, the set M = {e € G | f, = 1} is a matching in G. O

PROPOSITION 3. A maximum matching of a bipartite graph G can be found in O (nzm) time.

Proof. Constructing G from G takes O(n + m) time. We can use the push-relabel algorithm to find a
maximum flow in G in O (nzm) time. As shown by Exer. 1 in the discussion of the push-relabel algorithm,
the flow f this algorithm finds in G is an integral flow because all edge capacities in G are integers. Thus,
by Lem. 2, the set M = {e € G | f, = 1} is a matching in G. Constructing M from f takes O(n + m) time.
Overall, computing M thus takes O (nzm) time.

Since U U {s} is an st-cut in G and every edge in G crosses this cut, we have |[M| = F,. If M is not a
maximum matching, then there exists a matching M’ such that |[M’| > |M|. By Lem. 2, M’ = {e € G |
f, = 1}, for some integral st-flow f’ in G. Again, since U U {s} is an st-cut, we have F!=|M'| > M| =F,,
a contradiction because f is a maximum flow in G. This proves that M is a maximum matching in G. O

Maximum-weight matching and minimum-weight perfect matching in bipartite graphs can also be
solved via network flows, but the flow problem is not a simple maximum flow problem: we need to
solve a minimum-cost flow problem in a network with capacities and costs on its edges. Since we did
not discuss minimum-cost flows in this course, we won’t discuss this reduction from maximum-weight
matching and minimum-weight perfect matching to flow problems here.

EXERCISES

EXERCISE 1. Prove that it is possible to adjust the weights in a weighted graph so that a maximum-weight
matching with respect to the adjusted weights is

(a) A matching of maximum weight (with respect to the original weights) among all maximum
matchings of the graph or

(b) A matching of maximum cardinality among all maximum-weight matchings (with respect to the
original weights) of the graph.

EXERCISE 2. Show that a maximal independent set of an arbitrary graph can be computed in O(n + m)
time.

